COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Slide 1

Binary Search (j ava. util . Arrays)

public static int binarySearch(int[] a, int key) {

}

int low=o0;
int high = a.length - 1;
while (low <= high) {
int md=(low+ high / 2
int mdval =a[md];
if (madval < key)
low=md + 1
else if (madval > key)
high = md - 1;
el se

return mid; // key found

return -(low + 1); // key not found.

int md= (low+ high) / 2;

http://googl er esear ch. bl ogspot . conf 2006/ 06/
extra-extra-read-all-about-it-nearly. htm

Slide 2

Qe

NICTA

Qe

NICTA

Qe

Organisatorials
NICTA
When Wed 9:00-10:30
Fri 9:00 - 10:30
Where Mon: MatSc G10
Fri: MatSc G11
http://www.cse.unsw.edu.au/ ~cs4161/
Slide 3
e
About us

NICTA
Members of the seL4 verification team
0 Functional correctness of a C microkernel
Isabelle/HOL model <+ Haskell model <+ C code
0 10000 KLOC /300 000 lines of proof script (!)
0 25 person years / $6 million

Read all about it: htt p: // ert os. ni cta. com au/ publ i cati ons/

Slide 4

Oe

What you will learn

NICTA

how to use a theorem prover
background, how it works

how to prove and specify

how to reason about programs

O ooo

Health Warning

Theorem Proving is addictive

Slide 5

Oe

Content — Using Theorem Provers

NICTA

O Intro & motivation, getting started (today)

O Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

O Proof & Specification Techniques
e Datatypes, recursion, induction
e Inductively defined sets, rule induction
e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs

Slide 6

Oe

Credits

SO

NICTA

me material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

iis

David Basin, Burkhardt Wolff

Don’t blame them, errors are mine

Slide 7
Oe
What is a proof?
NICTA
to prove (Marriam-Webster)
O from Latin probare (test, approve, prove)
O to learn or find out by experience (archaic)
O to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court
pops up everywhere
O politics (weapons of mass destruction)
O courts (beyond reasonable doubt)
O religion (god exists)
O science (cold fusion works)

Slide 8

e
NICTA

In mathematics, a proof is a demonstration that, given certa in axioms,
some statement of interest is necessarily true. (Wikipedia)

What is a mathematical proof?

Example: /2 is not rational.

Proof: assume there is » € Q such that r% = 2.
Hence there are mutually prime p and ¢ with » = f—j.
Thus 2¢2 = p?, i.e. p? is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢® = p? and dividing by 2 gives ¢* = 2s%. Hence, ¢ is also
divisible by 2. Contradiction. Qed.

Slide 9

e

Nice, but..
NICTA

O still not rigorous enough for some

e what are the rules?

e what are the axioms?

e how big can the steps be?

e what is obvious or trivial?
O informal language, easy to get wrong
[easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must
have nine tails.

Slide 10

e

What is a formal proof?
NICTA

A derivation in a formal calculus

Example: A A B — B A A derivable in the following system
XeS) SU{X}+Y

Rules: S F x (@SSumption) g (impl)

SEFX SHY o SU{x YRz

St x Ay ©M oAy 7 ©onE)
Proof:
1. {A,B}+B (by assumption)
2. {A,B}F A (by assumption)
3. {A,B}FBANA (by conjl with 1 and 2)
4. {ANB}FBAA (by conjE with 3)
5. {}FAAB — BAA (byimplwith 4)

Slide 11

e

What is a theorem prover?
NICTA

Implementation of a formal logic on a computer.
O fully automated (propositional logic)
0 automated, but not necessarily terminating (first order logic)
O with automation, but mainly interactive (higher order logic)

O based on rules and axioms
O can deliver proofs

There are other (algorithmic) verification tools:
O model checking, static analysis, ...
O usually do not deliver proofs

Slide 12

Why theorem proving?

Analysing systems/programs thoroughly

Finding design and specification errors early

High assurance (mathematical, machine checked proof)
it's not always easy

OoooQgog

it's fun

Slide 13

Main theorem proving system for this course

Isabelle

O used here for applications, learning how to prove

Slide 14

Qe

NICTA

Qe

NICTA

Qe

What is Isabelle?

NICTA

A generic interactive proof assistant

O generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
O interactive:

more than just yes/no, you can interactively guide the system
O proof assistant:

helps to explore, find, and maintain proofs

Slide 15

Qe

Why Isabelle?

NICTA

free

widely used systems

active development

high expressiveness and automation
reasonably easy to use

(and because we know it best ;-))

Oooogoao

Slide 16

e

NICTA

If | prove it on the computer, it is correct, right?

Slide 17

e

If | prove it on the compulter, it is correct, right?

No,

O0o0ooooao

NICTA

because:

hardware could be faulty

operating system could be faulty
implementation runtime system could be faulty
compiler could be faulty

implementation could be faulty

logic could be inconsistent

theorem could mean something else

Slide 18

If | prove it on the computer, it is correct, right?

No, but:

probability for

0

O ooo

OS and H/W issues reduced by using different systems
runtime/compiler bugs reduced by using different compilers
faulty implementation reduced by right architecture
inconsistent logic reduced by implementing and analysing it
wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual pr

Slide 19

If | prove it on the compulter, it is correct, right?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4
Isabelle

explicit proofs + proof checker Coq
Twelf
Isabelle
HOL4

Slide 20

10

e

NICTA

oof

e

NICTA

Qe

Meta Logic
NICTA

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

Slide 21
. Oe
Meta Logic — Example
NICTA
Formulae: F:=V | F—F FAF | False
Syntax: V= [A-Z]

Derivable: S+ X X aformula, S a set of formulae

logic / meta logic

Xes SU{Xiry
SFX SEFX =Y
SEX SkY SU{X\Y3rz
SFXAY SU{XAY}FZ
Slide 22

11

Isabelle’s Meta Logic

A

Slide 23

Syntax: Az. F (F another meta level formula)

inASCIl: !Ix. F

O universal quantifier on the meta level

0 used to denote parameters
0 example and more later

Slide 24

12

Qe

NICTA

Qe

NICTA

Qe

NICTA

=

Syntax: A= B (A, B other meta level formulae)
inASCIl: A ==>B

Binds to the right:
A=—=B=C = A= (B=20)
Abbreviation:

[A;B]—=C = A= B=C

O read: A and B implies C'
0 used to write down rules, theorems, and proof states

Slide 25
e
Example: a theorem

NICTA
mathematics: ifr<0andy <0,thenz+y <0
formal logic: Fr<0Ay<0—24+y<0
variation: r<0y<0F 24+y<0
Isabelle: lemma "t <0AYy<0—z+y<0
variation: lemma "[z < 0;y < 0] = z+y < 0"

variation: lemma

assumes "z < 0" and "y < 0” shows "z +y < 0"

Slide 26

13

Example: a rule

X Y
logic: XAY

SEX StY
variation: SEXAY
Isabelle: [X;Y] = XA Y

Slide 27

Example: a rule with nested implication

Xy

XvYy 2z Zz
logic: Z

SU{X}FZ SU{Y}FZ

variation: SU{XVY}+Z
Isabelle: XVY; X = Z,)Y = Z] = Z
Slide 28

14

Qe

NICTA

Qe

NICTA

Oe

A

NICTA

Syntax: Az, F (F another meta level formula)
in ASCIl: %. F

lambda abstraction

used for functions in object logics

used to encode bound variables in object logics
more about this in the next lecture

O o0ooao

Slide 29

Oe

NICTA

ENOUGH THEORY!
GETTING STARTED WITH ISABELLE

Slide 30

15

