COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

&

¢




[0 Intro & motivation, getting started with Isabelle

[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Well founded recursion, Calculational reasoning
Hoare logic, proofs about programs

Locales, Presentation



DATATYPES

Example:
datatype ’alist = Nil | Cons 'a ™a list”

Properties:
[1 Constructors:
Nil  alist
Cons :: ’'a='alist="alist

[1 Distinctness: Nil £ Cons X Xs

[ Injectivity: (Consxxs =Consyys) =(X=Yy A XS =YS)




THE GENERAL CASE

datatype (ai,...,an)7 = CiTi1 ... Tin,

| Ck Tk Th ny
0 Constructors:  C;:7i1 = ... = Tim, = (Q1,...,0n) T
0 Distinctness: Ci...#C; ... ifi#y

O Injectivity: (C; z1...2n, =Ciy1 .- Yn;,) = (1 =1 A ... AT, = Yn,)

Distinctness and Injectivity applied automatically




How IS THIS TYPE DEFINED?

datatype ’alist = Nil | Cons 'a ™a list”

internally defined using typedef
hence: describes a set
set = trees with constructors as nodes

N R N I

inductive definition to characterize which trees belong to datatype

More detail: Datatype _Universe.thy




DATATYPE LIMITATIONS

Must be definable as set.

[ Infinitely branching ok.
[1 Mutually recursive ok.
[1 Stricly positive (right of function arrow) occurence ok.

Not ok:

datatype t C (t = bool)

| D ((bool = t) = bool)
| E ((t = bool) = bool)

Because: Cantor’s theorem (« set is larger than «)



Every datatype introduces a case construct, e.g.

(casexsof [|= ... |y #ys= ...y ... ys ...)

In general: one case per constructor

[ Same order of cases as in datatype
[1 Nested patterns allowed: z#y#zs

[0 Binds weakly, needs () in context




apply (case_tac t)

creates k subgoals

[[t:Ciiﬂl...ZBp;...]]:...

one for each constructor C;




DEMO




G

RECURSION




WHY NONTERMINATION CAN BE HARMFUL

How about f o = f « + 1?

Subtract f x on both sides.

' All functions in HOL must be total '




o. NICTA
PRIMITIVE RECURSION

primrec guarantees termination structurally

Example primrec def:

primrec app :: "alist = 'alist = ’a list”

where

"app Nil ys = ys” |
"app (Cons x xs) ys = Cons x (app XS ys)”




THE GENERAL CASE

If 7 is a datatype (with constructors C4,...,C%) then f :: 7 = 7/ can
be defined by primitive recursion

fF(Cry11 - Y1) = T1

f(Cryka - Ykn,) = Tk

The recursive calls in r; must be structurally smaller
(ofthe form fa; ... yi; ... ap)




e nicTa

primrec just fancy syntax for a recursion operator

Example: listrec:: b = (a=-"alist = b = 'b) = ’alist = 'b”
list_rec f1 fo Nil = f1
list.rec f1 fo (Consx xs) = fox xs (listrec fi fo xs)

app = list_rec (Ays. ys) (Az xs xs’. Ays. Cons x (zs’ ys))

primrec app :: "alist = 'alist = ’a list”
where

"app Nil ys = ys” |
"app (Cons x xs) ys = Cons x (app Xs ys)”



Defined: automatically, first inductively (set), then by epsilon

(xs,xs") € list_rel f1 fo
(Nil, f1) € list_rel f1 fo (Cons z xs, fo x xs xs’) € list_rel f1 fo

list.rec f1 fo xs = SOME y. (xs,y) € list_rel f1 fo

Automatic proof that set def indeed is total function
(the equations for list_rec are lemmas!)




G

PREDEFINED DATATYPES




NAT IS A DATATYPE

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec
fO
f(Sucn) = .. fn..




datatype ’a option = None | Some ’'a

Important application:
'b = 'aoption ~ partial function:

None ~ noresult
Somea ~ resulta

Example:

primrec lookup :: '’k = ('k x 'v) list = 'v option
where

lookup Kk [] = None |

lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)



G

DEMO: PRIMREC




G

INDUCTION




STRUCTURAL INDUCTION

P xs holds for all lists xs if
(1 P Nil

[0 and for arbitrary x and zs, P xs = P (z#xs)

Induction theorem list.induct:
[P []; Nalist. Plist = P (a#tlist)] = P list

[1 General proof method for induction: (induct x)

e x must be a free variable in the first subgoal.
e type of x must be a datatype.




BASIC HEURISTICS

Theorems about recursive functions are proved by induction

Induction on argument number ; of f
If fis defined by recursion on argument number i




A tail recursive list reverse:

primrec itrev :: 'alist = 'alist = 'a list
where

itrev || ys = ys |

itrev (z#xs) ys = itrev xs (z#ys)

lemma itrev zs || = rev xs




G

DEMO: PROOF ATTEMPT




GENERALISATION

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by V
(except the induction variable)

lemma Vys. itrev xs ys = rev xsQys




WE HAVE SEEN TODAY ...

[
[
[]
[
[]

Rule induction in Isar
Datatypes

Primitive recursion
Case distinction

Induction




]

N R N I B

e nicta

look athttp://isabelle.in.tumde/library/HOL/ Dat at ype__
Uni ver se. ht m

define a primitive recursive function Isum :: nat list = nat
that returns the sum of the elements in a list.

show "2 x Isum [0.. < Sucn] =n*(n+1)"
show "Isum (replicate n a) = n *x a”

define a function IsumT using a tail recursive version of listsum.

show that the two functions are equivalent: Isum xs = IsumT zs




