

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein Formal Methods

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting

→ Proof & Specification Techniques

- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Well founded recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation

DATATYPES

Example:

datatype 'a list = Nil | Cons 'a "'a list"

Properties:

→ Constructors:

Nil :: 'a list

Cons :: 'a \Rightarrow 'a list \Rightarrow 'a list

→ Distinctness: Nil ≠ Cons x xs

→ Injectivity: (Cons x xs = Cons y ys) = $(x = y \land xs = ys)$

- \rightarrow Constructors: $C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1,\ldots,\alpha_n) \tau$
- \rightarrow Distinctness: $C_i \ldots \neq C_j \ldots$ if $i \neq j$
- \rightarrow Injectivity: $(C_i x_1 \dots x_{n_i} = C_i y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and Injectivity applied automatically

How is this Type Defined?

datatype 'a list = Nil | Cons 'a "'a list"

- → internally defined using typedef
- → hence: describes a set
- → set = trees with constructors as nodes
- → inductive definition to characterize which trees belong to datatype

More detail: Datatype_Universe.thy

Must be definable as set.

- → Infinitely branching ok.
- → Mutually recursive ok.
- → Stricly positive (right of function arrow) occurrence ok.

Not ok:

$$\begin{array}{rcl} \textbf{datatype t} &=& C \ (\textbf{t} \Rightarrow \textbf{bool}) \\ &|& D \ ((\textbf{bool} \Rightarrow \textbf{t}) \Rightarrow \textbf{bool}) \\ &|& E \ ((\textbf{t} \Rightarrow \textbf{bool}) \Rightarrow \textbf{bool}) \end{array}$$

Because: Cantor's theorem (α set is larger than α)

Every datatype introduces a case construct, e.g.

(case
$$xs$$
 of $[] \Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots)$

In general: one case per constructor

- → Same order of cases as in datatype
- \rightarrow Nested patterns allowed: x#y#zs
- → Binds weakly, needs () in context

CASES

creates k subgoals

$$\llbracket t = C_i \ x_1 \dots x_p; \dots \rrbracket \Longrightarrow \dots$$

one for each constructor C_i

DEMO

RECURSION

How about f x = f x + 1?

Subtract f x on both sides.

$$\Longrightarrow 0 = 1$$

All functions in HOL must be total

primrec guarantees termination structurally

Example primrec def:

```
primrec app :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where
```

"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

If τ is a datatype (with constructors C_1, \ldots, C_k) then $f :: \tau \Rightarrow \tau'$ can be defined by **primitive recursion**:

$$f(C_1 y_{1,1} \dots y_{1,n_1}) = r_1$$

 \vdots
 $f(C_k y_{k,1} \dots y_{k,n_k}) = r_k$

The recursive calls in r_i must be **structurally smaller** (of the form f a_1 ... $y_{i,j}$... a_p)

How does this Work?

primrec just fancy syntax for a recursion operator

```
Example:
                 list_rec :: "'b \Rightarrow ('a \Rightarrow 'a list \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'a list \Rightarrow 'b"
                 list_rec f_1 f_2 Nil = f_1
                 list_rec f_1 f_2 (Cons x xs) = f_2 x xs (list_rec f_1 f_2 xs)
                 app \equiv list_rec (\lambda ys. ys) (\lambda x xs xs'. \lambda ys. Cons x (xs' ys))
                 primrec app :: "'a list \Rightarrow 'a list \Rightarrow 'a list"
                 where
                 "app Nil ys = ys" |
                 "app (Cons x xs) ys = Cons x (app xs ys)"
```


Defined: automatically, first inductively (set), then by epsilon

$$\frac{(xs,xs') \in \mathsf{list_rel}\ f_1\ f_2}{(\mathsf{Nil},f_1) \in \mathsf{list_rel}\ f_1\ f_2} \qquad \frac{(xs,xs') \in \mathsf{list_rel}\ f_1\ f_2}{(\mathsf{Cons}\ x\ xs,f_2\ x\ xs\ xs') \in \mathsf{list_rel}\ f_1\ f_2}$$

list_rec
$$f_1$$
 f_2 $xs \equiv$ SOME y . $(xs, y) \in$ list_rel f_1 f_2

Automatic proof that set def indeed is total function (the equations for list_rec are lemmas!)

PREDEFINED DATATYPES

datatype nat
$$= 0 \mid Suc nat$$

Functions on nat definable by primrec!

primrec

$$f 0 = \dots$$

 $f (\operatorname{Suc} n) = \dots f n \dots$

datatype 'a option = None | Some 'a

Important application:

'b
$$\Rightarrow$$
 'a option \sim partial function: None \sim no result Some a \sim result a

Example:

primrec lookup :: 'k \Rightarrow ('k \times 'v) list \Rightarrow 'v option **where**lookup k [] = None |
lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)

DEMO: PRIMREC

INDUCTION

STRUCTURAL INDUCTION

P xs holds for all lists xs if

- \rightarrow P Nil
- \rightarrow and for arbitrary x and xs, $P xs \Longrightarrow P (x \# xs)$

Induction theorem list.induct:

$$[P]: \land a \ list. \ P \ list \Longrightarrow P \ (a\#list) \implies P \ list$$

- → General proof method for induction: (induct x)
 - x must be a free variable in the first subgoal.
 - type of x must be a datatype.

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i

A tail recursive list reverse:

primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list

where

itrev []
$$ys = ys$$
 |

itrev
$$(x\# xs)$$
 $ys =$ itrev xs $(x\# ys)$

lemma itrev $xs \mid | = \text{rev } xs$

DEMO: PROOF ATTEMPT

Replace constants by variables

lemma itrev $xs \ ys = \text{rev} \ xs@ys$

Quantify free variables by \forall

(except the induction variable)

lemma $\forall ys$. itrev $xs \ ys = \text{rev } xs@ys$

WE HAVE SEEN TODAY ...

- → Rule induction in Isar
- → Datatypes
- → Primitive recursion
- → Case distinction
- → Induction

- → look at http://isabelle.in.tum.de/library/HOL/Datatype_ Universe.html
- → define a primitive recursive function **Isum** :: nat list ⇒ nat that returns the sum of the elements in a list.
- → show "2 * Isum $[0.. < Suc \ n] = n * (n+1)$ "
- \rightarrow show "lsum (replicate $n \ a$) = n * a"
- → define a function **IsumT** using a tail recursive version of listsum.
- \rightarrow show that the two functions are equivalent: Isum xs = IsumT xs