

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein Formal Methods

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Well founded recursion, Calculational reasoning
 - Hoare logic, proofs about programs
 - Locales, Presentation

LAST TIME

→ Sets in Isabelle

C

LAST TIME

- → Sets in Isabelle
- → Inductive Definitions

O NICTA

LAST TIME

- → Sets in Isabelle
- → Inductive Definitions
- → Rule induction

O NICTA

LAST TIME

- → Sets in Isabelle
- → Inductive Definitions
- → Rule induction
- → Fixpoints

EXERCISES

Formalize the last lecture in Isabelle:

- \rightarrow Define **closed** f A :: $(\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- ightharpoonup Show closed $f \ A \wedge \operatorname{closed} f \ B \Longrightarrow \operatorname{closed} f \ (A \cap B)$ if f is monotone (mono is predefined)
- \rightarrow Define **Ifpt** f as the intersection of all f-closed sets
- \rightarrow Show that Ifpt f is a fixpoint of f if f is monotone
- → Show that Ifpt f is the least fixpoint of f
- **→** Declare a constant $R :: (\alpha \operatorname{set} \times \alpha) \operatorname{set}$
- \rightarrow Define $\hat{R} :: \alpha \text{ set} \Rightarrow \alpha \text{ set in terms of } R$
- ightharpoonup Show soundness of rule induction using R and Ifpt \hat{R}

RULE INDUCTION IN ISAR

INDUCTIVE DEFINITION IN ISABELLE

```
inductive X :: \alpha \Rightarrow \mathsf{bool}
where
\mathsf{rule}_1 \colon "[\![X\ s; A]\!] \Longrightarrow X\ s'"
\vdots
|\ \mathsf{rule}_n \colon \dots
```



```
show "X x \Longrightarrow P x"

proof (induct rule: X.induct)

fix s and s' assume "X s" and "A" and "P s"

...

show "P s'"

next

:

qed
```



```
show "X x \Longrightarrow P x"
proof (induct rule: X.induct)
  case rule<sub>1</sub>
  show ?case
next
next
  case rule_n
  show ?case
qed
```


IMPLICIT SELECTION OF INDUCTION RULE

```
assume A: "X x"

:
show "P x"

using A proof induct

:
qed
```


IMPLICIT SELECTION OF INDUCTION RULE

```
assume A: "X x"
show "P x"
using A proof induct
qed
lemma assumes A: "X x" shows "P x"
using A proof induct
qed
```


RENAMING FREE VARIABLES IN RULE

case (rule_i
$$x_1 \dots x_k$$
)

Renames first k variables in rule_i to $x_1 \dots x_k$.

→ case (rule_i x y) ... show ?case is easy to write and maintain

A REMARK ON STYLE

- → case (rule_i x y) ... show ?case is easy to write and maintain
- \rightarrow fix $x \ y$ assume $formula \dots$ show formula' is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)

→ Formalising inductive sets and rule induction

- → Formalising inductive sets and rule induction
- → Rule induction in Isar

- → Formalising inductive sets and rule induction
- → Rule induction in Isar
- → Implicit induction rule selection

- → Formalising inductive sets and rule induction
- → Rule induction in Isar
- → Implicit induction rule selection
- → Case abbreviations

- → Formalising inductive sets and rule induction
- → Rule induction in Isar
- → Implicit induction rule selection
- → Case abbreviations
- → Renaming case variables