

COMP 4161NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin KleinFormal Methods

1

CONTENT

- **→** Intro & motivation, getting started with Isabelle
- **→** Foundations & Principles
	- Lambda Calculus
	- Higher Order Logic, natural deduction
	- **•** Term rewriting
- ➜ **Proof & Specification Techniques**
	- **Inductively defined sets, rule induction**
	- Datatypes, recursion, induction
	- Calculational reasoning, mathematics style proofs
	- Hoare logic, proofs about programs

LAST ^TIME

- **→** Permutative rewriting, AC rules
- → More confluence: critical pairs
- **→** Knuth-Bendix Algorithm, Waldmeister
- **→** More Isar: forward, backward, obtain, abbreviations, moreover

→ Give an Isar proof of the rich grandmother theorem (automated methods allowed, but proof must be explaining)

BUILDING UP ^SPECIFICATION ^TECHNIQUES

SETS IN ^ISABELLE

Type **'a set**: sets over type 'a

- $\rightarrow \{\}, \{e_1, \ldots, e_n\}, \{x. P x\}$
- $\rightarrow e \in A, \quad A \subseteq B$
- $\rightarrow A \cup B, \quad A \cap B, \quad A B, \quad -A$
- $\rightarrow \bigcup x \in A$. B x , $\bigcap x \in A$. B x , $\bigcap A$, $\bigcup A$

 $\rightarrow \{i..j\}$

$$
\Rightarrow \text{ insert} :: \alpha \Rightarrow \alpha \text{ set} \Rightarrow \alpha \text{ set}
$$

$$
\Rightarrow f^{\prime} A \equiv \{y. \exists x \in A. y = f x\}
$$

→

PROOFS ABOUT ^SETS

Natural deduction proofs:

- \rightarrow equalityl: $[A \subseteq B; B \subseteq A] \Longrightarrow A = B$
- \rightarrow subsetI: $(\bigwedge x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- \rightarrow ... (see Tutorial)

BOUNDED ^QUANTIFIERS

- $\rightarrow \forall x \in A$. $P x \equiv \forall x. x \in A \longrightarrow P x$
- $\rightarrow \exists x \in A$. $P x \equiv \exists x. \ x \in A \land P x$
- \rightarrow ballI: $(\bigwedge x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- \rightarrow bspec: $[\forall x \in A$. $P x; x \in A] \Longrightarrow P x$
- \rightarrow bexI: $[P x; x \in A] \Longrightarrow \exists x \in A. P x$
- \rightarrow bexE: $[\exists x \in A. P x; \Lambda x. [x \in A, P x] \Longrightarrow Q] \Longrightarrow Q$

DEMO: SETS

INDUCTIVE DEFINITIONS

EXAMPLE

NICTA

$$
\frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \longrightarrow \sigma''}
$$

$$
\boxed{[b]\sigma = \mathsf{False}}
$$

$$
\langle \text{while } b \text{ do } c, \sigma \rangle \longrightarrow \sigma
$$

$$
\frac{[b]\sigma = \text{True} \quad \langle c, \sigma \rangle \longrightarrow \sigma' \quad \langle \text{while } b \text{ do } c, \sigma' \rangle \longrightarrow \sigma''}{\langle \text{while } b \text{ do } c, \sigma \rangle \longrightarrow \sigma''}
$$

WHAT DOES THIS MEAN?

- $\rightarrow \langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$
- \rightarrow relations are sets: E :: (com \times state \times state) set
- \rightarrow the rules define a set inductively

But which set?

SIMPLER ^EXAMPLE

$$
\overline{0 \in N} \qquad \frac{n \in N}{n+1 \in N}
$$

- \rightarrow *N* is the set of natural numbers **N**
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- ➜ IN is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- ➜ Objective: **no junk**. Only what must be in ^X shall be in ^X.
- → Gives rise to a nice proof principle (rule induction)
- ➜ Alternative (greatest set) occasionally also useful: coinduction

FORMALLY

define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set \times A \quad $(R,$ X possibly infinite)

Applying rules R to a set B : \hat{R} B $\equiv \{x. \exists H. (H, x) \in R \wedge H \subseteq B\}$

Example:

$$
R = \{(\{\}, 0)\} \cup \{(\{n\}, n+1) \mid n \in \mathbb{R}\}\
$$

$$
\hat{R} \{3, 6, 10\} = \{0, 4, 7, 11\}
$$

Definition: B is R-closed iff $\hat{R} B \subseteq B$

Definition: X is the least R -closed subset of A

This does always exist:

Fact: $X = \bigcap \{ B \subseteq A : B \ R-\text{closed} \}$

GENERATION FROM ^ABOVE

RULE ^INDUCTION

$$
\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}
$$

induces induction principle

$$
[P\ 0; \bigwedge n. \ P\ n \Longrightarrow P\ (n+1)] \Longrightarrow \forall x \in X. \ P\ x
$$

In general:

$$
\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}
$$

WHY DOES THIS WORK?

$$
\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}
$$

$$
\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a
$$

says

$$
\{x. \ P \ x\} \text{ is } R\text{-closed}
$$

but: X is the least R -closed set **hence:** $X \subseteq \{x. P x\}$ **which means:** $\forall x \in X$. *P* x

qed

NICTA

RULES WITH SIDE CONDITIONS

$$
\underbrace{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}_{a \in X}
$$

NICTA

induction scheme:

$$
(\forall (\{a_1, \ldots a_n\}, a) \in R. \ P \ a_1 \land \ldots \land P \ a_n \land C_1 \land \ldots \land C_m \land {a_1, \ldots, a_n} \subseteq X \Longrightarrow P \ a)
$$

$$
\quad \Longrightarrow \quad
$$

 $\forall x \in X. P x$

X as $\boldsymbol{\mathsf{FixP}\text{OINT}}$

How to compute X **?**

 $X = \bigcap \{B \subseteq A \ldotp B \ R - \mathsf{closed}\}$ hard to work with. **Instead:** view X as least fixpoint, X least set with \hat{R} X $=X$.

Fixpoints can be approximated by iteration:

 $X_0 = \hat{R}^0 \{\} = \{\}$ $X_1 = \hat{R}^1 \downarrow =$ rules without hypotheses ... $X_n = \hat{R}^n \{\}$

$$
X_{\omega} = \bigcup_{n \in \mathbb{N}} (R^n \{\}) = X
$$

GENERATION FROM ^BELOW

DEMO: INDUCTIVE DEFINITONS

WE HAVE SEEN TODAY ...

- \rightarrow Sets in Isabelle
- \rightarrow Inductive Definitions
- \rightarrow Rule induction
- \rightarrow Fixpoints

EXERCISES

Formalize this lecture in Isabelle:

- **→** Define **closed** f A :: (α set \Rightarrow α set) \Rightarrow α set \Rightarrow bool
- → Show closed $f A \wedge$ closed $f B \Longrightarrow$ closed $f (A \cap B)$ if f is monotone (**mono** is predefined)
- **→** Define **lfpt** *f* as the intersection of all *f*-closed sets
- \rightarrow Show that lfpt f is a fixpoint of f if f is monotone
- \rightarrow Show that lfpt f is the least fixpoint of f
- \rightarrow Declare a constant R :: $(\alpha$ set \times $\alpha)$ set
- \rightarrow Define \hat{R} $:: \alpha$ set $\Rightarrow \alpha$ set in terms of R
- \blacktriangleright Show soundness of rule induction using R and lfpt \hat{R}