COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

[0 Intro & motivation, getting started with Isabelle

[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Calculational reasoning, mathematics style proofs
Hoare logic, proofs about programs

Permutative rewriting, AC rules

More confluence: critical pairs
Knuth-Bendix Algorithm, Waldmeister

O O 0O

More Isar: forward, backward, obtain, abbreviations, moreover

[1 Give an Isar proof of the rich grandmother theorem
(automated methods allowed, but proof must be explaining)

G4

BUILDING UP SPECIFICATION TECHNIQUES

SETS IN ISABELLE

Type 'a set: sets over type 'a

O {}, A{ei,...,en}, {z. Px}
ec A, ACB

AuB, AnB, A—-B, -A

UreA. Bz, Nx€A. Bz, A4 UA
i}

insert:: a = a set = «a set
fA={y.FIx € A.y= f z}

[
[]
[
[]
[
[
.

PROOFS ABOUT SETS

Natural deduction proofs:
0 equalityl: [ACB; BCAl=— A=1B
[0 subsetl: Az.x € A—2x€ B)— ACB
0 ... (see Tutorial)

BOUNDED QUANTIFIERS

0 Vee A Px=Ve. € A— Px
0 dx€e A . Px=dz. 2 € ANPx

O ball: (Ae.xr€e A= Px) =VzxecA Px
[0 bspec: [Vx € A. Px;x € Al — Pz

[0 bexl: [Pz;z € Al = Jx € A. Px
0 bexE: [dx € A. Px; \z. [r € A;Pz] = Q] = Q

G

DEMO: SETS

G

INDUCTIVE DEFINITIONS

le]o = v

(skip,0) — @ (x:=e,0) — olr — V]

(c1,0) — 0’ {co,0") — o

(c1;¢0,0) — o

[b]o = False

(while bdo ¢,0) — o

[b]c = True (c,0) — o’ (whilebdoc,o’) — o”

(while b do ¢,0) — o”

WHAT DOES THIS MEAN ?

0 {c,0) — o’ fancy syntax for arelation (c,o0,0’') € E
[0 relations are sets: F :: (com X state X state) set
[the rules define a set inductively

But which set?

SIMPLER EXAMPLE

nenN
0e N n+1eN

[1 N is the set of natural numbers IN

[1 But why not the set of real numbers? 0 e R, n€c R=—=n+1€ R
[1 IN is the smallest set that is consistent with the rules.

Why the smallest set?

[1 Objective: no junk . Only what must be in X shall be in X.
[1 Gives rise to a nice proof principle (rule induction)

[1 Alternative (greatest set) occasionally also useful: coinduction

a1 €X ... a, €X
ac X

Rules

with al,...,an,aEA

defineset X C A

Formally: setofrules R C Aset x A (R, X possibly infinite)

Applying rules RtoasetB: RB={z.3H. (H,z) e RAH C B}

Example:

R = {({},0}u{({n},n+1). ne R}
R{3,6,10} = {0,4,7,11}

Definition: B is R-closed iff R B C B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =(){B C A. B R—closed}

GENERATION FROM ABOVE

R

RULE INDUCTION

ne N
0e N n+1e N

Induces induction principle

[PO; An.Pn=—=P(n+1)]=Vre X. Px

In general:

V{ay,...an},a) e R.PayN...ANPa, = Pa

Ve X. Px

WHY DOES THIS WORK?

V{ay,...an},a) e R.PayAN...NPa, = Pa
Vee X.Px

V{ay,...an}t,a) e R.PayN...ANPa, = Pa
says
{z. P z} is R-closed

but: X is the least R-closed set
hence: X CH{x. Px}
which means: Vre X. Px

ged

RULES WITH SIDE CONDITIONS

aieX ... a,€X c; ... C,,
ac X

induction scheme:

V({a1,...an},a) € R-.Pay N...NPa, A
Cy Ao ANCpy A
{ai,...,a,} € X = Pa)

—
Vre X. Px

How to compute X?
X =(H{B C A. B R — closed} hard to work with.
Instead: view X as least fixpoint, X least set with R X = X.

Fixpoints can be approximated by iteration:

Xo=R"{} ={}
X; = R! {} = rules without hypotheses

GENERATION FROM BELOW

G

DEMO: INDUCTIVE DEFINITONS

WE HAVE SEEN TODAY ...

[1 Sets in Isabelle
[1 Inductive Definitions
[1 Rule induction

[Fixpoints

e nicTa

Formalize this lecture in Isabelle:

[0 Define closed f A :: (« set = « set) = « set = bool

[0 Show closed f A A closed f B =—> closed f (AN B) if f is monotone
(mono is predefined)

Define Ifpt f as the intersection of all f-closed sets
Show that Ifpt f is a fixpoint of f if f is monotone
Show that Ifpt f is the least fixpoint of f

Declare a constant R :: (a set X «) set

Define R :: a set = « set in terms of R

N [I B N B B

Show soundness of rule induction using R and Ifpt R

