

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein Formal Methods

1

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

LAST TIME

- → Isar, structured proofs
- → Term rewriting, rule applications
- → Conditional term rewriting
- → Congruence rules

ADVANCED TERM REWRITING

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas **add_ac** sort any sum (+)
- lemmas **times_ac** sort any product (*)

Example: apply (simp add: add_ac) yields $(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$

AC RULES

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Dемо

Last time: confluence in general is undecidable.But: confluence for terminating systems is decidable!Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs:

COMPLETION

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) $\{x \mapsto g z\}$ $a \xleftarrow{(1)} f g t \xrightarrow{(3)} b$ shows that a = b (because $a \xleftarrow{*} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Definitions:

A rule $l \rightarrow r$ is left-linear if no variable occurs twice in l. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

THAT WAS TERM REWRITING

MORE ISAR

LAST TIME ON ISAR

- → basic syntax
- → proof and qed
- → assume and show
- ➔ from and have
- → the three modes of Isar

BACKWARD AND FORWARD

- → proof picks an intro rule automatically
- → conclusion of rule must unify with $A \land B$

Forward reasoning: ...

assume AB: " $A \land B$ "

from AB have "..." proof

- → now **proof** picks an **elim** rule automatically
- → triggered by **from**
- ➔ first assumption of rule must unify with AB

General case: from $A_1 \ldots A_n$ have R proof

- \rightarrow first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- \rightarrow conclusion of rule must unify with R

FIX AND OBTAIN

fix $v_1 \dots v_n$

Introduces new arbitrary but fixed variables $(\sim \text{ parameters}, \wedge)$

obtain $v_1 \dots v_n$ where < prop > < proof >

Introduces new variables together with property

Dемо

FANCY ABBREVIATIONS

- this = the previous fact proved or assumed
- then = from this
- thus = then show
- hence = then have
- with $A_1 \ldots A_n$ = from $A_1 \ldots A_n$ this
 - **?thesis** = the last enclosing goal statement

MOREOVER AND ULTIMATELY


```
have X_1: P_1 \dotshave P_1 \dotshave X_2: P_2 \dotsmoreover have P_2 \dots\vdots\vdotshave X_n: P_n \dotsmoreover have P_n \dotsfrom X_1 \dots X_n show \dotsultimately show \dots
```

wastes lots of brain power on names $X_1 \dots X_n$

GENERAL CASE DISTINCTIONS

show formula

proof -

```
have P_1 \lor P_2 \lor P_3 <proof>
```

moreover { **assume** $P_1 \dots$ **have** ?thesis <proof> }

moreover { **assume** P_2 ... **have** ?thesis <proof> }

moreover { **assume** $P_3 \ldots$ **have** ?thesis <proof> }

ultimately show ?thesis by blast

qed

 $\{ \dots \}$ is a proof block similar to **proof** ... **qed**

{ **assume** $P_1 \dots$ **have** P <proof> } stands for $P_1 \implies P$

MIXING PROOF STYLES

from ... have ... apply - make incoming facts assumptions apply (...) : apply (...) done