

COMP 4161NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin KleinFormal Methods

1

{}

−→

CONTENT

- **→** Intro & motivation, getting started with Isabelle
- **→** Foundations & Principles
	- Lambda Calculus
	- Higher Order Logic, natural deduction
	- **Term rewriting**
- ➜ **Proof & Specification Techniques**
	- **Inductively defined sets, rule induction**
	- Datatypes, recursion, induction
	- Calculational reasoning, mathematics style proofs
	- Hoare logic, proofs about programs

LAST ^TIME

- **→** Isar, structured proofs
- **→** Term rewriting, rule applications
- **→** Conditional term rewriting
- **→ Congruence rules**

ADVANCED TERM REWRITING

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomeslexicographically smaller.

Example: $b + a \leadsto a + b$ but not $a + b \leadsto b + a$.

For types nat, int etc:

- lemmas **add ac** sort any sum (+)
- lemmas **times ac** sort any product (∗)

Example: apply (simp add: add ac) yields $(b + c) + a \leadsto \cdots \leadsto a + (b + c)$

AC RULES

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ **Commutative**: $x \odot y = y \odot x$

These ² rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: \bullet **AC** rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operatorIsabelle will order terms correctly

DEMO

 $\overline{7}$

Last time: confluence in general is undecidable. **But:** confluence for terminating systems is decidable! **Problem:** overlapping lhs of rules.

Definition:

Let l¹ −→ ^r¹ and ^l² −→ ^r² be two rules with disjoint variables. They form a $\textbf{critical pair}$ if a non-variable subterm of l_1 unifies with $l_2.$

Example:

Rules: (1) f $x \longrightarrow a$ (2) g $y \longrightarrow b$ (3) f $(g$ $z) \longrightarrow b$ Critical pairs:

(1)+(3)
$$
\{x \mapsto g z\}
$$
 $a \stackrel{(1)}{\longleftarrow} f g t \stackrel{(3)}{\longrightarrow} b$
(3)+(2) $\{z \mapsto y\}$ $b \stackrel{(3)}{\longleftarrow} f g t \stackrel{(2)}{\longrightarrow} b$

COMPLETION

(1)
$$
f x \longrightarrow a
$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) { $x \mapsto$ $\mapsto g \ z \} \qquad a \stackrel{(1)}{\longleftarrow} f \ g \ t \stackrel{(3)}{\longrightarrow} b$ shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

ORTHOGONAL ^REWRITING ^SYSTEMS

Definitions:

A **rule** *l* → *r* is **left-linear** if no variable occurs twice in *l*. A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

THAT WAS ^TERM ^REWRITING

MORE ISAR

LAST TIME ON ISAR

- \rightarrow basic syntax
- \rightarrow proof and qed
- \rightarrow assume and show
- \rightarrow from and have
- \rightarrow the three modes of Isar

BACKWARD AND ^FORWARD

- ➜ **proof** picks an **intro** rule automatically
- → conclusion of rule must unify with $A \wedge B$

Forward reasoning: . . .

assume AB: "^A [∧] ^B"

from AB **have** ". . ." **proof**

- ➜ now **proof** picks an **elim** rule automatically
- ➜ triggered by **from**
- \rightarrow first assumption of rule must unify with AB

General case: from $A_1 \ldots A_n$ have R proof
 \rightarrow first n assumptions of rule must unify with A_2

- \rightarrow first n assumptions of rule must unify with $A_1 \ldots A_n$
- \rightarrow conclusion of rule must unify with R

FIX AND ^OBTAIN

fix $v_1 \ldots v_n$

Introduces new arbitrary but fixed variables(\sim parameters, \bigwedge)

$\textsf{obtain}\; v_1 \ldots v_n$ where $<$ prop $>$ $<$ proof $>$

Introduces new variables together with property

DEMO

FANCY ^ABBREVIATIONS

- this ⁼ the previous fact proved or assumed
- **then** ⁼ **from** this
- **thus** ⁼ **then show**
- **hence** ⁼ **then have**
- **with** $A_1 \dots A_n$ = **from** $A_1 \dots A_n$ this
	- **?thesis** ⁼ the last enclosing goal statement

MOREOVER AND ULTIMATELY

have P_1 ... have X_1 : P_1 ... have X_2 : P_2 ... moreover have P_2 ... $\frac{1}{2}$ have $X_n: P_n \ldots$ moreover have P_n ... from $X_1 \ldots X_n$ show \ldots ultimately show ...

wastes lots of brain power on names $X_1 \ldots X_n$

GENERAL ^CASE ^DISTINCTIONS

show formula

proof -

```
have P_1 \vee P_2 \vee P_3 <proof>
```
moreover { **assume** ^P¹ . . . **have** ?thesis <proof> }

moreover { assume P_2 … have ?thesis <proof> }

moreover { assume P_3 ... have ?thesis <proof> }

ultimately show ?thesis **by** blast

qed

{ . . . } is ^a proof block similar to **proof** ... **qed**

 $\{ \textbf{ assume } P_1 \dots \textbf{ have } P \text{ \}$ stands for $P_1 \Longrightarrow P$

MIXING PROOF STYLES

from ...

have ...

apply - make incoming facts assumptions apply (\ldots) $\frac{1}{2}$ apply (\ldots) done