
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

−→ {}
1



CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

2



LAST TIME

➜ Isar, structured proofs

➜ Term rewriting, rule applications

➜ Conditional term rewriting

➜ Congruence rules

3



ADVANCED TERM REWRITING

4



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

5



AC RULES

Example for associative-commutative rules:

Associative : (x⊙ y)⊙ z = x⊙ (y ⊙ z)

Commutative : x⊙ y = y ⊙ x

These 2 rules alone get stuck too early (not confluent).

Example: (z ⊙ x)⊙ (y ⊙ v)

We want: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (x⊙ (y ⊙ z))

We get: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (y ⊙ (x⊙ z))

We need: AC rule x⊙ (y ⊙ z) = y ⊙ (x⊙ z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

6



DEMO

7



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

8



COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

9



DEMO: WALDMEISTER

10



ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

11



THAT WAS TERM REWRITING

12



MORE ISAR

13



LAST TIME ON ISAR

➜ basic syntax

➜ proof and qed

➜ assume and show

➜ from and have

➜ the three modes of Isar

14



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof
➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

15



FIX AND OBTAIN

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

16



DEMO

17



FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

18



MOREOVER AND ULTIMATELY

have X1: P1 . . . have P1 . . .

have X2: P2 . . . moreover have P2 . . .
...

...

have Xn: Pn . . . moreover have Pn . . .

from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn

19



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

20



MIXING PROOF STYLES

from . . .

have . . .

apply - make incoming facts assumptions

apply (. . . )
...

apply (. . . )

done

21


