COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

—>

[0 Intro & motivation, getting started with Isabelle

[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Calculational reasoning, mathematics style proofs
Hoare logic, proofs about programs

[1 Isar, structured proofs

[1 Term rewriting, rule applications
[1 Conditional term rewriting

[1 Congruence rules

G

ADVANCED TERM REWRITING

ORDERED REWRITING

Problem: z + y — y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.
Example: b+a~a+bbutnota+ b~ b+ a.

For types nat, int etc:
e lemmas add _ac sort any sum (+)

e lemmas times _ac sort any product (x)

Example: apply (simp add: add_ac) vyields
b+c)+a~---~a+ (b+c)

Example for associative-commutative rules:
Associative : (z0y)Oz=20 (YO 2)

Commutative : x0y=y0Oux

These 2 rules alone get stuck too early (not confluent).

Example: (z0xz) 0 (y©v)
Wewant: (z0z)0(yov)=0v0 (0 (yO2))
We get: 202)0WoOv)=v0 (Yo (z0O=2))

Weneed: ACrule z0(yo0z) =y (z0O z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

DEMO

BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ins of rules.

Definition:
Letl; — 1 and lo — r5 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with [.

Example:
Rules: () fz—a @ gy—0b @) f(gz)—b
Critical pairs:
W+@) {zgzh et fgt b
@)+(2) {2y p 2L rgr By

D fzx—a @Qgy—>b @) f(gz) —0b

IS not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:
(1) (3)
1)+@B) {z—gz} a<= fgt —b
shows that ¢ = b (because a «— b), so we add a — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

G

DEMO: WALDMEISTER

ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule | — r iIs left-linear if no variable occurs twice in L.

A rewrite system is left-linear if all rules are.

A system is orthogonal ifitis left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

G

THAT WAS TERM REWRITING

G

MORE ISAR

LAST TIME ON ISAR

[]
[]
[
[]
[

basic syntax

proof and ged

assume and show
from and have

the three modes of Isar

BACKWARD AND FORWARD

Backward reasoning: ... have "A A B” proof
[1 proof picks an intro rule automatically

[1 conclusion of rule must unify with A A B

Forward reasoning:
assume AB:"A N B”

from AB have "...” proof
[J now proof picks an elim rule automatically

[] triggered by from
(] first assumption of rule must unify with AB

General case: from A, ... A, have R proof
[1 first n assumptions of rule must unify with A; ... A,

[1 conclusion of rule must unify with R

FIX AND OBTAIN

fix v1...0,

Introduces new arbitrary but fixed variables
(~ parameters, A\)

obtain v ...v, where <prop> <proof>

Introduces new variables together with property

DEMO

FANCY ABBREVIATIONS

this = the previous fact proved or assumed
then = from this
thus = then show
hence = then have
with A4;... 4, = from A;...A, this

?thesis = the last enclosing goal statement

MOREOVER AND ULTIMATELY

have X: Py ... have P; ...

have Xo: Ps ... moreover have P ...
have X,,: P, ... moreover have P, ...
from X;...X,, show ... ultimately show ...

wastes lots of brain power

on names X;....X,

GENERAL CASE DISTINCTIONS

show formula
proof -
have P, V P,V P3 <proof>

moreover { assume P; ... have ?thesis <proof> }
moreover { assume P, ... have ?thesis <proof> }
moreover { assume P; ... have ?thesis <proof> }

ultimately show “?thesis by blast
ged

{ ...} is aproof block similar to proof ... ged

{assume P; ... have P <proof> }
stands for P, = P

o. NICTA
MIXING PROOF STYLES |

from ...

have ...
apply - make incoming facts assumptions
apply (...)
apply (...)

done

