COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

—>

CONTENT

[0 Intro & motivation, getting started with Isabelle
[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

0 Proof & Specification Techniques

e Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Calculational reasoning, mathematics style proofs
Hoare logic, proofs about programs

LAST TIME

Introducing new Types
Equations and Term Rewriting
Confluence and Termination of reduction systems

O O 0O

Term Rewriting in Isabelle

EXERCISES

[]
[]
[]
[]

use typedef to define a new type v with exactly one element.
define a constant u of type v
show that every element of v is equal to u

design a set of rules that turns formulae with A, Vv, —, —
Into disjunctive normal form
(= disjunction of conjunctions with negation only directly on variables)

prove those rules in Isabelle

use simp only with these ruleson (-B — (C) — A — B

ISAR

A LANGUAGE FOR STRUCTURED PROOFS

[]
[]
[]

apply scripts

unreadable
hard to maintain

do not scale

NoO structure.

[]
[]
[]

What about..

Elegance?
Explaining deeper insights?

Large developments?

|sar!

A TYPICAL ISAR PROOF

proof
assume formulag

have formula; by simp

have formula, by blast
show formula,q by ...

ged

proves formulag —> formula,.q

(analogous to assumes /shows in lemma statements)

De nic
ISAR CORE SYNTAX

proof = proof [method] statement* ged

| by method
method = (simp ...) | (blast...) | (rule...) | ...

statement = fix variables (A)
assume proposition (=)

[from name™] (have | show) proposition proof

next (separates subgoals)

proposition = [name:] formula

e nic
PROOF AND QED |

proof [method] statement* ged

lemma "[A; B] = AN B”
proof (rule conijl)

assume A:"A”

from A show "A” by assumption
next

assume B:"B”

from B show "B” by assumption

ged
[0 proof (<method>) applies method to the stated goal
[1 proof applies a single rule that fits
[0 proof - does nothing to the goal

How DO | KNOW WHAT TO ASSUME AND SHOW?

Look at the proof state!

lemma "[A; B] = AN B”
proof (rule conijl)

[J proof (rule conjl) changes proof state to
1. [A;B] —= A
2. [A;B] = B
[1 so we need 2 shows: show "A” and show "B”

[1 We are allowed to assume A,
because A is in the assumptions of the proof state.

THE THREE MODES OF ISAR

[1 [prove] :
goal has been stated, proof needs to follow.
[[state] :
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

1 [chain] :
from statement has been made, goal statement needs to follow.

lemma "[A; B] = A A B” [prove]
proof (rule conjl) [state]

assume A:"A” [state]

from A [chain] show "A” [prove] by assumption [state]
next [state] ...

HAVE

Can be used to make intermediate steps.

Example:

lemma "(z ::nat) + 1 =14 2"
proof -

have A:”z + 1 = Suc z” by simp

have B: "1 + x = Suc z” by simp

show "x 4+ 1 =1+ 2" by (simp only: A B)
ged

G

DEMO: ISAR PROOFS

G

BACK TO TERM REWRITING ...

APPLYING A REWRITE RULE

[0 I — r applicable to term t[s]
If there is substitution o suchthato | = s

[0 Result: t[o r]

[0 Equationally: t[s] = t|o r]
Example:

Rule: 0+n —n

Term: a+ (0+ (b+¢))

Substitution: o ={n+— b+ c}

Result: a + (b+¢)

CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

[[Plpn]]:>l=7“

IS applicable to term t[s] with o if
[0 ol=sand

0 o P, ..., o P, are provable by rewriting.

REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma "fr=gxANgx=fr= fzx=2"
simp use and simplify assumptions
(simp (no_asm)) ignore assumptions

(simp (no_asm_use)) simplify , but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions

PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

A +— A= False
A—B — A—B
ANB — A B
Ve, Ax — Alx
A — A=True
Example: (p—qNA-T)As
—

p=—q="True r = False s = True

DEMO

Oe nic
CASE SPLITTING WITH SIMP

P (if A then s else t)

(A— Ps)A (A — Pt)

Automatic

P (caseeof 0 = a|Sucn = b)

(e=0— Pa)A(Vn.e=Sucn — Pb)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CONGRUENCE RULES

congruence rules are about using context

Example : in P — () we could use P to simplify terms in Q

For —> hardwired (assumptions used in rewriting)
For other operators expressed with conditional rewriting.
Example: [P=P:;P = Q=Q] = (P —Q)=(P — Q)

Read: to simplify P — @
O first simplify P to P’
0 then simplify Q to Q' using P’ as assumption
O theresultis P/ — Q'

MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P; P =Q=0Q = (PANQ)=(P' NQ)

Context for if-then-else:
if cong: [b=cc=zrx=u"c= y=1v] =

(if b then x else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
If_weak _cong: b = ¢ = (if b then x else y) = (if c then x else y)

[1 declare own congruence rules with [cong] attribute
[1 delete with [cong del]

ORDERED REWRITING

Problem: z + y — y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.
Example: b+a~a+bbutnota+ b~ b+ a.

For types nat, int etc:
e lemmas add _ac sort any sum (+)

e lemmas times _ac sort any product (x)

Example: apply (simp add: add_ac) vyields
b+c)+a~---~a+ (b+c)

AC RULES

Example for associative-commutative rules:
Associative : (z0y)Oz=20 (YO 2)
Commutative : x0y=y0Oux

These 2 rules alone get stuck too early (not confluent).

Example: (z0xz) 0 (y©v)
Wewant: (z0z)0(yov)=0v0 (0 (yO2))
We get: 202)0WoOv)=v0 (Yo (z0O=2))

Weneed: ACrule z0(yo0z) =y (z0O z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

DEMO

BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ins of rules.

Definition:
Letly — r; and ls — 72 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with [.

Example:
Rules: () fz—a @ gy—0b @) f(gz)—b
Critical pairs:
W+@) {zgzh et fgt b
@)+2) {z—y) RS PO

De nic
COMPLETION

D fzx—a @Qgy—>b @) f(gz) —0b

IS not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:
(1) (3)
1)+@B) {z—gz} a<= fgt —b
shows that ¢ = b (because a «— b), so we add a — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

G

DEMO: WALDMEISTER

WE HAVE LEARNED TODAY ...

[
[
[]
[
[]

Isar

Conditional term rewriting
Congruence rules

AC rules

More on confluence

