
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

−→
1

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

2

LAST TIME

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

3

EXERCISES

➜ use typedef to define a new type v with exactly one element.

➜ define a constant u of type v

➜ show that every element of v is equal to u

➜ design a set of rules that turns formulae with ∧,∨,−→,¬

into disjunctive normal form
(= disjunction of conjunctions with negation only directly on variables)

➜ prove those rules in Isabelle

➜ use simp only with these rules on (¬B −→ C) −→ A −→ B

4

ISAR

A L ANGUAGE FOR STRUCTURED PROOFS

5

ISAR

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!

6

A TYPICAL ISAR PROOF

proof

assume formula0

have formula1 by simp
...

have formulan by blast

show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes /shows in lemma statements)

7

ISAR CORE SYNTAX

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

8

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

9

HOW DO I KNOW WHAT TO ASSUME AND SHOW?

Look at the proof state!

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to
1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

10

THE THREE MODES OF ISAR

➜ [prove] :

goal has been stated, proof needs to follow.

➜ [state] :

proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain] :

from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

11

HAVE

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -

have A: ”x + 1 = Suc x” by simp

have B: ”1 + x = Suc x” by simp

show ”x + 1 = 1 + x” by (simp only: A B)

qed

12

DEMO: ISAR PROOFS

13

BACK TO TERM REWRITING ...

14

APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

15

CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if

➜ σ l = s and

➜ σ P1, . . . , σ Pn are provable by rewriting.

16

REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions

(simp (no asm)) ignore assumptions

(simp (no asm use)) simplify , but do not use assumptions

(simp (no asm simp)) use , but do not simplify assumptions

17

PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧B 7→ A, B

∀x. A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True r = False s = True

18

DEMO

19

CASE SPLITTING WITH SIMP

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

20

CONGRUENCE RULES

congruence rules are about using context

Example : in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example : [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

21

MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conj cong : [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong : [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong : b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

22

ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

23

AC RULES

Example for associative-commutative rules:

Associative : (x⊙ y)⊙ z = x⊙ (y ⊙ z)

Commutative : x⊙ y = y ⊙ x

These 2 rules alone get stuck too early (not confluent).

Example: (z ⊙ x)⊙ (y ⊙ v)

We want: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (x⊙ (y ⊙ z))

We get: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (y ⊙ (x⊙ z))

We need: AC rule x⊙ (y ⊙ z) = y ⊙ (x⊙ z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

24

DEMO

25

BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

26

COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

27

DEMO: WALDMEISTER

28

WE HAVE LEARNED TODAY ...

➜ Isar

➜ Conditional term rewriting

➜ Congruence rules

➜ AC rules

➜ More on confluence

29

