

COMP 4161NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin KleinFormal Methods

−→

CONTENT

→ Intro & motivation, getting started with Isabelle

➜ **Foundations & Principles**

- Lambda Calculus
- Higher Order Logic, natural deduction

• **Term rewriting**

- **→** Proof & Specification Techniques
	- Inductively defined sets, rule induction
	- Datatypes, recursion, induction
	- Calculational reasoning, mathematics style proofs
	- Hoare logic, proofs about programs

LAST ^TIME

- **→** Introducing new Types
- **→** Equations and Term Rewriting
- **→** Confluence and Termination of reduction systems
- \rightarrow Term Rewriting in Isabelle

EXERCISES

- \rightarrow use **typedef** to define a new type v with exactly one element.
- \rightarrow define a constant u of type v
- \rightarrow show that every element of v is equal to u
- \rightarrow design a set of rules that turns formulae with $\land, \lor, \longrightarrow, \neg$ into disjunctive normal form(= disjunction of conjunctions with negation only directly on variables)
- **→** prove those rules in Isabelle
- \rightarrow use **simp only** with these rules on $(\neg B \longrightarrow C) \longrightarrow A \longrightarrow B$

ISAR

A LANGUAGE FOR STRUCTURED PROOFS

apply scripts What about..

- ➜unreadable \rightarrow Elegance?
hard to maintain \rightarrow Explaining
- ➜
- ➜
-
-
- hard to maintain \rightarrow Explaining deeper insights?
do not scale \rightarrow Large developments?
	- \rightarrow Large developments?

No structure. Isar!

A TYPICAL ^ISAR PROOF

proofassume $formula_{0}$ h ave $formula_1$ **by** simp ...**have** $formula_n$ **by** blast **show** $formula_{n+1}$ **by** \dots **qed**

proves $formula_0 \Longrightarrow formula_{n+1}$

(analogous to **assumes**/**shows** in lemma statements)


```
proof = proof [method] statement∗ qed| by method
```

```
\mathsf{method} = (\mathsf{simp} \dots) \mid (\mathsf{blast} \dots) \mid (\mathsf{rule} \dots) \mid \dots)
```

```
statement = fix variables (\wedge)assume proposition (⇒)
          [from name+] (have | show) proposition proof
           next (separates subgoals)
```

```
proposition = [name:] formula
```


proof [method] statement[∗] **qed**

```
\textbf{lemma} "\llbracket A; B \rrbracket \Longrightarrow A \land B"proof (rule conjI)
    assume A: "A"
    from A show "A" by assumption
nextassume B: "B"
    from B show "B" by assumption
qed
```
- ➜**proof** (<method>) applies method to the stated goal
- ➜**proof** applies a single rule that fits
 proof - **compared a** does nothing to the goal
- ➜**proof -** does nothing to the goal

Look at the proof state!

```
\textbf{lemma} "\llbracket A; B \rrbracket \Longrightarrow A \land B"proof (rule conjI)
```
- **→ proof** (rule conjl) changes proof state to
	- $\begin{array}{l} \P. \; [A; B] \Longrightarrow A \ \blacksquare \; \blacksquare \; \blacksquare \; \end{array}$ 2. $[A; B] \Longrightarrow B$
- ➜ so we need ² shows: **show** "A" and **show** "B"
- ➜ We are allowed to **assume** ^A, because A is in the assumptions of the proof state.

THE ^THREE ^MODES OF ^ISAR

➜ **[prove]**:

goal has been stated, proof needs to follow.

➜ **[state]**:

proof block has openend or subgoal has been proved,

new *from* statement, goal statement or assumptions can follow.

➜ **[chain]**:

f*rom* statement has been made, goal statement needs to follow.

```
{\sf lemma}~^{\sf \! \! \cdot \!}[\![A;B]\!]\Longrightarrow A\wedge B^{\sf \! \! \cdot \!}[\![\mathsf{prove}]\!]\!proof (rule conjI) [state]
    assume A: "A" [state]
    from A [chain] show "A" [prove] by assumption [state]
next [state] . . .
```


Can be used to make intermediate steps.

NI (

Example:

```
lemma "(x:: nat) + 1 = 1 + x"
proof - have A: "x + 1 = Suc x" by simp
   have B: "1 + x = Suc x" by simp
   show "x + 1 = 1 + x" by (simp only: A B)
qed
```


DEMO: ISAR PROOFS

BACK TO TERM REWRITING ...

APPLYING ^A ^REWRITE ^RULE

- → $l \longrightarrow r$ **applicable** to term $t[s]$
if there is substitution and the if there is substitution σ such that σ $l=s$
- ➜ **Result:** ^t[^σ ^r]
- \rightarrow Equationally: $t[s] = t[\sigma r]$

Example:

- **Rule:** $0 + n \longrightarrow n$
- **Term:** $a + (0 + (b + c))$
- **Substitution:** $\sigma = \{n \mapsto b + c\}$
- **Result:** $a + (b + c)$

Rewrite rules can be conditional:

$$
[\![P_1 \ldots P_n]\!] \Longrightarrow l = r
$$

 $\overline{\mathbf{R}}$

is **applicable** to term $t[s]$ with σ if

$$
\rightarrow \sigma l = s \text{ and}
$$

 $\rightarrow \sigma \, P_1, \, \ldots, \, \sigma \, P_n$ are provable by rewriting.

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \wedge g x = f x \Longrightarrow f x = 2$ "

simp **use and simplify** assumptions (simp (no asm)) **ignore**ignore assumptions (simp (no₋asm **simplify, but do not use assumptions** (simp (no₋asm simp)) **use**, but do **not simplify** assumptions

PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

$$
\neg A \rightarrow A = False
$$

\n
$$
A \rightarrow B \rightarrow A \Longrightarrow B
$$

\n
$$
A \land B \rightarrow A, B
$$

\n
$$
\forall x. A \ x \rightarrow A?x
$$

\n
$$
A \rightarrow A = True
$$

Example: $(p \longrightarrow q \land \neg r) \land s$

$$
\quad \longmapsto \quad
$$

 $p \Longrightarrow q = True \qquad r = False \qquad s = True$

DEMO

CASE SPLITTING WITH SIMP

$$
P \text{ (if } A \text{ then } s \text{ else } t)
$$

=

$$
(A \longrightarrow P s) \land (\neg A \longrightarrow P t)
$$

Automatic

$$
P \text{ (case } e \text{ of } 0 \implies a \mid \text{Suc } n \implies b)
$$

=

$$
(e = 0 \longrightarrow P \ a) \land (\forall n. \ e = \text{Suc } n \longrightarrow P \ b)
$$

Manually: apply (simp split: nat.split)

Similar for any data type t: **t.split**

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: $[P = P'; P' \Longrightarrow Q = Q'] \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption
- \rightarrow the result is $P' \longrightarrow Q'$

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $[P = P' ; P' \Longrightarrow Q = Q'] \Longrightarrow (P \wedge Q) = (P' \wedge Q')$

Context for if-then-else:

if_cong: $\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$ $(\textsf{if }b \textsf{ then } x \textsf{ else } y) = (\textsf{if }c \textsf{ then } u \textsf{ else } v)$

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if b then x else y) $=$ (if c then x else y)

- ➜ declare own congruence rules with **[cong]** attribute
- ➜ delete with **[cong del]**

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomeslexicographically smaller.

Example: $b + a \leadsto a + b$ but not $a + b \leadsto b + a$.

For types nat, int etc:

- lemmas **add ac** sort any sum (+)
- lemmas **times ac** sort any product (∗)

```
Example: apply (simp add: add ac) yields
              (b + c) + a \leadsto \cdots \leadsto a + (b + c)
```
AC RULES

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ **Commutative**: $x \odot y = y \odot x$

These ² rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: \bullet **AC** rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operatorIsabelle will order terms correctly

DEMO

Last time: confluence in general is undecidable. **But:** confluence for terminating systems is decidable! **Problem:** overlapping lhs of rules.

Definition:

Let l¹ −→ ^r¹ and ^l² −→ ^r² be two rules with disjoint variables.

They form a $\textbf{critical pair}$ if a non-variable subterm of l_1 unifies with $l_2.$

Example:

Rules: (1) f $x \longrightarrow a$ (2) g $y \longrightarrow b$ (3) f $(g$ $z) \longrightarrow b$ Critical pairs:

(1)+(3)
$$
\{x \mapsto g z\}
$$
 $a \stackrel{(1)}{\longleftarrow} f g t \stackrel{(3)}{\longrightarrow} b$
(3)+(2) $\{z \mapsto y\}$ $b \stackrel{(3)}{\longleftarrow} f g t \stackrel{(2)}{\longrightarrow} b$

(1)
$$
f x \longrightarrow a
$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) { $x \mapsto$ $\mapsto g \ z \} \qquad a \stackrel{(1)}{\longleftarrow} f \ g \ t \stackrel{(3)}{\longrightarrow} b$ shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

WE HAVE LEARNED TODAY ...

- \rightarrow Isar
- → Conditional term rewriting
- \rightarrow Congruence rules
- \rightarrow AC rules
- \rightarrow More on confluence