

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein Formal Methods

1

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- ➔ Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

LAST TIME ON HOL

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **defs** inj_def: "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ "

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING TYPES

→ typedecl: by name only

Example: **typedecl** names

Introduces new type names without any further assumptions

→ types: by abbreviation

Example:types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ "Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediatly expanded internally

→ typedef: by definiton as a set

Example:typdef new_type = "{some set}" <proof>Introduces a new type as a subset of an existing type.The proof shows that the set on the rhs in non-empty.

HOW TYPEDEF WORKS

HOW TYPEDEF WORKS

7

EXAMPLE: PAIRS

- (α,β) Prod
- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

 $(\alpha,\beta) \operatorname{\mathsf{Prod}} = \{f. \ \exists a \ b. \ f = \lambda(x::\alpha) \ (y::\beta). \ x = a \land y = b\}$

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- ④ We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

DEMO: INTRODUCTING NEW TYPES

TERM REWRITING

THE PROBLEM

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → **Theorem Proving** (dealing with equations, simplifying statements)

TERM REWRITING: THE IDEA

use equations as reduction rules

NICTA

 $l_1 \longrightarrow r_1$ $l_2 \longrightarrow r_2$ \vdots $l_n \longrightarrow r_n$

decide l = r by deciding $l \stackrel{*}{\longleftrightarrow} r$

ARROW CHEAT SHEET

		$ \begin{array}{c} \{(x,y) x=y\} \\ \xrightarrow{n} \circ \longrightarrow \end{array} \end{array} $	identity n+1 fold composition
$\xrightarrow{+}$	=	$\bigcup_{i>0} \stackrel{i}{\longrightarrow}$	transitive closure
$\overset{*}{\longrightarrow}$	=	$\stackrel{+}{\longrightarrow} \bigcup \stackrel{0}{\longrightarrow}$	reflexive transitive closure
$\xrightarrow{=}$	=	$\longrightarrow \bigcup \stackrel{0}{\longrightarrow}$	reflexive closure
$\xrightarrow{-1}$	=	$\{(y,x) x\longrightarrow y\}$	inverse
$\xrightarrow{-1}$ \longleftarrow			inverse inverse
<u> </u>	=		
< <>	=	$\xrightarrow{-1}$	inverse

How TO DECIDE $l \xleftarrow{*} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

Example:

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$
 $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$
But: $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

CONFLUENCE

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination \implies confluence

TERMINATION

- \longrightarrow is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

Basic Idea: when the r_i are in some way simpler then the l_i

More formally: \longrightarrow is terminating when there is a well founded order < in which $r_i < l_i$ for all rules. (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x$$
, $g(f x) \longrightarrow f x$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with size(s) = numer of function symbols in s

① $g \ x <_r f \ (g \ x)$ and $f \ x <_r g \ (f \ x)$ ② $<_r$ is well founded, because < is well founded on \mathbb{N}

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.
 - termination: not guaranteed (may loop)
 - **confluence:** not guaranteed (result may depend on which rule is used first)

CONTROL

- → Equations turned into simplifaction rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations: apply (simp only: <rules>)

Dемо