
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

−→
1



CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

2



LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

3



THE THREE BASIC WAYS OF INTRODUCING THEOREMS

➜ Axioms :

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: defs inj def: ”inj f ≡ ∀x y. f x = f y −→ x = y”

➜ Proofs:

Example: lemma ”inj (λx. x + 1)”

The harder, but safe choice.

4



THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl : by name only

Example: typedecl names
Introduces new type names without any further assumptions

➜ types : by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”
Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef : by definiton as a set

Example: typdef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

5



HOW TYPEDEF WORKS

'

&

$

%

new type

existing type

�
Abs

-
Rep

6



HOW TYPEDEF WORKS

'

&

$

%

new type

existing type

�
Abs

-
Rep

7



EXAMPLE : PAIRS

(α, β) Prod

➀ Pick existing type: α ⇒ β ⇒ bool

➁ Identify subset:
(α, β) Prod = {f. ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:

• define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead

8



DEMO: INTRODUCTING NEW TYPES

9



TERM REWRITING

10



THE PROBLEM

Given a set of equations

l1 = r1

l2 = r2

...

ln = rn

does equation l = r hold?

Applications in:

➜ Mathematics (algebra, group theory, etc)

➜ Functional Programming (model of execution)

➜ Theorem Proving (dealing with equations, simplifying statements)

11



TERM REWRITING: THE IDEA

use equations as reduction rules

l1 −→ r1

l2 −→ r2

...

ln −→ rn

decide l = r by deciding l
∗

←→ r

12



ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

13



HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l

∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

14



CONFLUENCE

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence
s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

15



TERMINATION

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

16



WHEN IS −→ TERMINATING?

Basic Idea : when the ri are in some way simpler then the li

More formally : −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

17



TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

18



CONTROL

➜ Equations turned into simplifaction rules with [simp] attribute

➜ Adding/deleting equations locally:

apply (simp add: <rules>) and apply (simp del: <rules>)

➜ Using only the specified set of equations:

apply (simp only: <rules>)

19



DEMO

20


