

COMP 4161NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin KleinFormal Methods

−→

1

CONTENT

- **→** Intro & motivation, getting started with Isabelle
- ➜ **Foundations & Principles**
	- Lambda Calculus
	- **Higher Order Logic, natural deduction**
	- **Term rewriting**
- **→** Proof & Specification Techniques
	- Inductively defined sets, rule induction
	- Datatypes, recursion, induction
	- Calculational reasoning, mathematics style proofs
	- Hoare logic, proofs about programs

LAST ^TIME ON HOL

- **→** Defining HOL
- **→** Higher Order Abstract Syntax
- **→** Deriving proof rules
- **→** More automation

THE ^THREE ^BASIC ^WAYS OF ^INTRODUCING ^THEOREMS

➜ **Axioms**:

Expample:**axioms** refl: " $t = t$ "

Do not use. Evil. Can make your logic inconsistent.

➜ **Definitions:**

Example: **defs** inj_def: "inj $f \equiv \forall x \ y$. $f \ x = f \ y \longrightarrow x = y$ "

➜ **Proofs:**

Example:**lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

THE ^THREE ^BASIC ^WAYS OF ^INTRODUCING ^TYPES

➜ **typedecl**: by name only

Example:**typedecl** names

Introduces new type *names* without any further assumptions

➜ **types**: by abbreviation

Example:**types** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ "
 types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ **Type abbreviations are immediatly expanded internally**

➜ **typedef**: by definiton as ^a set

Example:**typdef** new_type = "{some set}" <proof> Introduces ^a new type as ^a subset of an existing type. The proof shows that the set on the rhs in non-empty.

HOW TYPEDEF WORKS

HOW TYPEDEF WORKS

 $\overline{7}$

EXAMPLE: PAIRS

- (α,β) Prod
- \odot $\begin{array}{ccc} \text{\textcircled{1}} & \text{\textsf{Pick}} \text{ existing type: } \alpha \Rightarrow \beta \Rightarrow \text{bool} \end{array}$
- $\circled{2}$ Identify subset:

 (α, β) Prod $= \{f \in \exists a \ b \in f = \lambda(x :: \alpha) \ (y :: \beta) \in x = a \land y = b\}$

- ➂ We get from Isabelle:
	- functions Abs Prod, Rep Prod
	- both injective
	- Abs_Prod (Rep_Prod x) = x
- ➃ We now can:
	- define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
	- derive all characteristic theorems
	- forget about Rep/Abs, use characteristic theorems instead

DEMO: INTRODUCTING NEW TYPES

TERM REWRITING

THE ^PROBLEM

Given ^a set of equations

 $l_1 = r_1$ $l_2 = r_2$. .. $l_n = r_n$

does equation $l = r$ <code>hold?</code>

Applications in:

- **→ Mathematics** (algebra, group theory, etc)
- ➜ **Functional Programming** (model of execution)
- ➜ **Theorem Proving** (dealing with equations, simplifying statements)

TERM ^REWRITING: ^THE ^IDEA

NICTA

decide $l = r$ **by deciding** $l \stackrel{*}{\longleftrightarrow} r$

ARROW ^CHEAT ^SHEET

HOW TO ^DECIDE ^l [∗] ←→ $\rightarrow r$

Same idea as for β : look for n such that $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.
If $l \stackrel{*}{\longrightarrow} r$ and there always be a suitable If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ? **No!**

Example:

Rules:
$$
f x \rightarrow a
$$
, $g x \rightarrow b$, $f (g x) \rightarrow b$
\n $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \rightarrow a \stackrel{*}{\longleftarrow} f (g x) \rightarrow b \stackrel{*}{\longleftarrow} g x$
\n**But:** $f x \rightarrow a$ and $g x \rightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. l \stackrel{*}{\longrightarrow} n \wedge r \stackrel{*}{\longrightarrow} n$

Fact: −→ is Church-Rosser iff it is confluent.

CONFLUENCE

Problem:

is ^a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination ⁼[⇒] confluence

- −→ is **terminating** if there are no infinite reduction chains
- −→ is **normalizing** if each element has ^a normal form
- −→ is **convergent** if it is terminating and confluent

Example:

- \longrightarrow_β in λ is not terminating, but confluent
- \longrightarrow_β in λ^\rightarrow is terminating and confluent, i.e. convergent

Problem: is ^a given set of reduction rules terminating?

undecidable

Basic Idea: when the r_i are in some way simpler then the l_i

More formally: → is terminating when
there is a well founded erder. < in wh there is a well founded order $<$ in which $r_i < l_i$ for all rules. (well founded = no infinite decreasing chains $a_1 > a_2 > \ldots$)

Example:
$$
f(gx) \rightarrow gx, g(fx) \rightarrow fx
$$

This system always terminates. Reduction order:

 $s <_r t$ iff $size(s) < size(t)$ with $size(s) =$ numer of function symbols in s

- ① $g \ x <_r f \ (g \ x)$ and $f \ x <_r g \ (f \ x)$
- $@<_{r}$ is well founded, because $<$ is well founded on $\mathbb N$

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

- **→** uses simplification rules
- **→** (almost) blindly from left to right
- \rightarrow until no rule is applicable.
	- **termination:** not guaranteed(may loop)
	- **confluence:** not guaranteed(result may depend on which rule is used first)

CONTROL

- ➜ Equations turned into simplifaction rules with **[simp]** attribute
- **→** Adding/deleting equations locally: **apply** (simp add: $\langle \text{rules>}\rangle$ and **apply** (simp del: $\langle \text{rules>}\rangle$)
- → Using only the specified set of equations: **apply** (simp only: <rules>)

DEMO

20