COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

—>

[0 Intro & motivation, getting started with Isabelle

[1 Foundations & Principles

Lambda Calculus
Higher Order Logic, natural deduction

e Term rewriting

[0 Proof & Specification Techniques

Inductively defined sets, rule induction

Datatypes, recursion, induction

Calculational reasoning, mathematics style proofs
Hoare logic, proofs about programs

LAST TIME ON HOL

[]
[]
[
[]

Defining HOL
Higher Order Abstract Syntax
Deriving proof rules

More automation

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

[1 Axioms :
Expample: axioms refl: "t = t”

Do not use. Evil. Can make your logic inconsistent.

[1 Definitions:

Example: defs injdef. "inj f=Vey. fe=fy—ax=19y"

[1 Proofs:
Example: lemma "inj (Az. x + 1)”

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING TYPES

[typedecl : by name only

Example: typedecl names
Introduces new type names without any further assumptions

[types: by abbreviation

Example: types a rel ="a = a = bool”
Introduces abbreviation rel for existing type a = a = bool
Type abbreviations are immediatly expanded internally

[typedef : by definiton as a set

Example: typdef new_type = "{some set}” <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

‘:,CDIVH:TA
How TYPEDEF WORKS |

existing type

[new type

Rep

Abs

‘::ﬁl NICTA
How TYPEDEF WORKS

existing type

[new type

Rep

Abs

EXAMPLE: PAIRS

(a, B) Prod

[J Pick existing type: o = (6 = bool
[1 Identify subset:
(a,B) Prod ={f.Jdab. f=Azx:a)(y:B).x=aAAy=>b}
[1 We get from Isabelle:
e functions Abs_Prod, Rep_Prod

e Dboth injective
e Abs_Prod (Rep_Prod x) = x

1 We now can:

e define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
e derive all characteristic theorems
e forget about Rep/Abs, use characteristic theorems instead

G

DEMO: INTRODUCTING NEW TYPES

G

TERM REWRITING

THE PROBLEM

Given a set of equations

llz?“l
ZQI?“Q
l, =1,

does equation [= r hold?

Applications in:

[Mathematics (algebra, group theory, etc)
[J Functional Programming (model of execution)
[Theorem Proving (dealing with equations, simplifying statements)

o. NICTA
TERM REWRITING: THE IDEA

use eqguations as reduction rules

l1 — T

12 — T2

lpy, — Ty

decide [= r by deciding [«— r

ARROW CHEAT SHEET

= = {@ylz=y} identty
1 .
nrL = o n+1 fold composition
+ 1 -
— = Uisg— transitive closure
0 . "
S, = Syl reflexive transitive closure
= 0 .
5 = > U — reflexive closure
—1 .
— — {(y’ gj)|gj — y} Inverse
—1 .
— = = inverse
— = — U— symmetric closure
+ i " :
— = Ujsg— transitive symmetric closure
0 . .y .
S = LU reflexive transitive symmetric closure

How TO DECIDE [«+—— r

Same idea as for 3: look for n such that ! —— n and r — n

Does this always work?
If | = nand r — nthen | —— r. Ok.
If | < r, will there always be a suitable n? No!

Example:
Rules: fz—a, gx—0b, [f(gx)—Db
fr——gx because fz—a— f(ga)—be—gux

But: fx—aandgxz — banda,binnormal form

Works only for systems with Church-Rosser property:

| s r=—3n.l s nAr —n

Fact: — Is Church-Rosser iff it is confluent.

Oe nicTa

S
5 * Problem:
7N,

IS a given set of reduction rules confluent?

\\ t l/
undecidable

Local Confluence

S
RN
33\ //y

x> %
N, ¥
t

Fact: local confluence and termination —> confluence

e nicTa

— IS terminating if there are no infinite reduction chains

— Is normalizing if each element has a normal form

— IS convergent if it is terminating and confluent

Example:
— 3 IN A\ Is not terminating, but confluent
— 3 IN A7 Is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

e nicta

Basic Idea : when the r; are in some way simpler then the [,

More formally : — is terminating when
there is a well founded order < in which r»; < [; for all rules.
(well founded = no infinite decreasing chains a; > as > ...)
Example: f(gz) — gz, g(fz) — fx
This system always terminates. Reduction order:
s <, tiff size(s) < size(t) with

size(s) = numer of function symbols in s

O gz <rf(gz)and fz <, g(fz)
[1 <, 1s well founded, because < is well founded on IN

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp
[1 uses simplification rules
[1 (almost) blindly from left to right
[until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

Equations turned into simplifaction rules with [simp] attribute

Adding/deleting equations locally:
apply (simp add: <rules>) and apply (simp del: <rules>)

Using only the specified set of equations:
apply (simp only: <rules>)

DEMO

