o. NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

HOL

o. NICTA

O Intro & motivation, getting started with Isabelle
O Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting
O Proof & Specification Techniques
e Datatypes, recursion, induction
e Inductively defined sets, rule induction
e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs

H ‘
M ‘

o. NICTA

QUANTIFIERS

o. NICTA

e Scope of parameters: whole subgoal

e Scope of V, 3,...: ends with ; or =

Example:
ANey [Vy.Py—Qzy; Quy] = 3. Quy

means

Azy [(V- Py — Qzwy); Quy] = (3. Qa1 y)

". NICTA o. NICTA
NATURAL DEDUCTION FOR QUANTIFIERS TwO SUCCESSFUL PROOFS

. P ? =
Az Pua all Ve.Px P77z = R allE 1LVae. dy.a=y
V. Px R
apply (rule alll)
? Jz. P .Pz= R =
P2 x z. Pz Nz Pz oxE L Az.Jy.xz=y
Jz. Px R . .
best practice exploration
apply (rule_tac x ="X" in exl) apply (rule exl)
e alll and exE introduce new parameters (A z). LAzz=z LAz.z="yz
o allE and exl introduce new unknowns (?z). apply (rule refl) apply (rule refl)
2y — Auu
simpler & clearer shorter & trickier

‘» NICTA o NICTA
INSTANTIATING RULES Two UNSUCCESSFUL PROOFS

apply (rule_tac x = "term” in rule)

1. 3y.Ve.xo=y
Like rule, but ?z in rule is instantiated by term before application. apply (rule-tac x =227 in ex|) apply (rule exI)
1.Ve.z =7y
Similar: erule _tac apply (rule alll)
L Az.z="7

apply (rule refl)

I zisin rule, notin goal | 7y z yields Aa'a’ = x

Principle:

?f xy...2z, can only be replaced by term ¢
if params(t) C z1,..., 2,

". NICTA o. NICTA
SAFE AND UNSAFE RULES PARAMETER NAMES

Safe alll, exE Parameter names are chosen by Isabelle

Unsafe allg, ex! 1.Ve. Iy z=y

apply (rule alll)
1L Az.Jy.xz=y

apply (rule_tac x ="x"in exl)

Create parameters first, unknowns later

Brittle!

‘» NICTA o NICTA
RENAMING PARAMETERS

1.Ve. Jy.z=y

apply (rule alll)
1. Az.Jy.z=y
apply (rename_tac N)
1.AN.Jy.N=y
DEMO: QUANTIFIER PROOFS apply (rule_tac x = "N” in exl)

In general:
(rename _tac z; ...z,) renames the rightmost (inner) n
parametersto z; ...z,

". NICTA o. NICTA
FORWARD PROOF: FRULE AND DRULE FORWARD PROOF: OF

apply (frule < rule >) r [OF ry...1p]

Rule: Ay ARl = A . .
[Ai;.. .5 An] Prove assumption 1 of theorem r with theorem r;, and

Subgoal: L [Bi..;B]=C assumption 2 with theorem 75, and

Substitution: o(B;) =0(Ar)

New subgoals: 1. o([By;...; B,] = A») Rule r [y An] = 4
. Rule r; [By;...;B,] = B
m-1. o([By;...: B,] = A) Substitution o(B) = o(41)

m. o([By;...; B; Al = C
(L =9 PIOF] o[Bus... Bui Asi.. . A] = A)

Like frule but also deletes B;: apply (drule < rule >)

‘» NICTA o NICTA
EXAMPLES FOR FORWARD RULES FORWARD PROOFS: THEN

ry [THEN r means ry [OF r
NG conjunctl PAQ conjunct2 3 2 2 1
p Q
P—Q P mp

V. P x
——— = spec
Pz P

‘,. NICTA o. NICTA
MORE EPSILON

€ implies Axiom of Choice:

Vo, Jy. Qry = 3f.Vz.Qx (f z)
Existential and universal quantification can be defined with .

Isabelle also knows the definite description operator THE (aka ¢):
DEMO: FORWARD PROOFS

——— the_eq_trivial
(THEz. 2 =a) =a q

‘,. NICTA o. NICTA
HILBERT'S EPSILON OPERATOR SOME AUTOMATION

(David Hilbert, 1862-1943) More Proof Methods:

e z. Pz is a value that satisfies P (if such a value exists) apply (intro <intro-rules>) - repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules
¢ also known as description operator

In Isabelle the e-operator is written SOME z. P z apply clarify applies all safe rules

that do not split the goal

Pz

P (SOME z. P z) somel apply safe applies all safe rules

apply blast an automatic tableaux prover
(works well on predicate logic)

apply fast another automatic search tactic

o. NICTA

EPSILON AND AUTOMATION DEMO

o. NICTA

WE HAVE LEARNED SO FAR. ...

Proof rules for negation and contradiction
Proof rules for predicate calculus

Safe and unsafe rules

Forward Proof

The Epsilon Operator

Some automation

OO0 o0ooOddo™d

11

