o. NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

HOL

o. NICTA

O Intro & motivation, getting started with Isabelle
O Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting
O Proof & Specification Techniques
e Datatypes, recursion, induction
e Inductively defined sets, rule induction
e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs
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QUANTIFIERS

o. NICTA

e Scope of parameters: whole subgoal

e Scope of V, 3,...: ends with ; or =

Example:
ANey [Vy.Py—Qzy; Quy] = 3. Quy

means

Azy [ (V- Py — Qzwy); Quy] = (3. Qa1 y)
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NATURAL DEDUCTION FOR QUANTIFIERS TwO SUCCESSFUL PROOFS

. P ? =
Az Pua all Ve.Px P77z = R allE 1LVae. dy.a=y
V. Px R
apply (rule alll)
? Jz. P .Pz= R =
P2 x z. Pz Nz Pz oxE L Az.Jy.xz=y
Jz. Px R . .
best practice exploration
apply (rule_tac x ="X" in exl) apply (rule exl)
e alll and exE introduce new parameters (A z). LAzz=z LAz.z="yz
o allE and exl introduce new unknowns (?z). apply (rule refl) apply (rule refl)
2y — Auu
simpler & clearer shorter & trickier
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INSTANTIATING RULES Two UNSUCCESSFUL PROOFS

apply (rule_tac x = "term” in rule)

1. 3y.Ve.xo=y
Like rule, but ?z in rule is instantiated by term before application. apply (rule-tac x =227 in ex|) apply (rule exI)
1.Ve.z =7y
Similar: erule _tac apply (rule alll)
L Az.z="7

apply (rule refl)

I zisin rule, notin goal | 7y z yields Aa'a’ = x

Principle:

?f xy...2z, can only be replaced by term ¢
if params(t) C z1,..., 2,
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SAFE AND UNSAFE RULES PARAMETER NAMES

Safe alll, exE Parameter names are chosen by Isabelle

Unsafe allg, ex! 1.Ve. Iy z=y

apply (rule alll)
1L Az.Jy.xz=y

apply (rule_tac x ="x"in exl)

Create parameters first, unknowns later

Brittle!
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RENAMING PARAMETERS

1.Ve. Jy.z=y

apply (rule alll)
1. Az.Jy.z=y
apply (rename_tac N)
1.AN.Jy.N=y
DEMO: QUANTIFIER PROOFS apply (rule_tac x = "N” in exl)

In general:
(rename _tac z; ...z,) renames the rightmost (inner) n
parametersto z; ...z,
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FORWARD PROOF: FRULE AND DRULE FORWARD PROOF: OF

apply (frule < rule >) r [OF ry...1p]

Rule: Ay ARl = A . .
[Ai;.. .5 An] Prove assumption 1 of theorem r with theorem r;, and

Subgoal: L [Bi..;B]=C assumption 2 with theorem 75, and . ...

Substitution: o(B;) =0(Ar)

New subgoals: 1. o([By;...; B,] = A») Rule r [y An] = 4
. Rule r; [By;...;B,] = B
m-1. o([By;...: B,] = A) Substitution o(B) = o(41)

m. o([By;...; B; Al = C
(L =9 PIOF ] o[Bus... Bui Asi.. . A] = A)

Like frule but also deletes B;: apply (drule < rule >)
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EXAMPLES FOR FORWARD RULES FORWARD PROOFS: THEN

ry [THEN r means ry [OF r
NG conjunctl PAQ conjunct2 3 2 2 1
p Q
P—Q P mp

V. P x
——— = spec
Pz P
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MORE EPSILON

€ implies Axiom of Choice:

Vo, Jy. Qry = 3f.Vz.Qx (f z)
Existential and universal quantification can be defined with .

Isabelle also knows the definite description operator THE (aka ¢):
DEMO: FORWARD PROOFS

———  the_eq_trivial
(THEz. 2 =a) =a q
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HILBERT'S EPSILON OPERATOR SOME AUTOMATION

(David Hilbert, 1862-1943) More Proof Methods:

e z. Pz is a value that satisfies P (if such a value exists) apply (intro <intro-rules>) - repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules
¢ also known as description operator

In Isabelle the e-operator is written SOME z. P z apply clarify applies all safe rules

that do not split the goal

Pz

P (SOME z. P z) somel apply safe applies all safe rules

apply blast an automatic tableaux prover
(works well on predicate logic)

apply fast another automatic search tactic



o. NICTA

EPSILON AND AUTOMATION DEMO
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WE HAVE LEARNED SO FAR. ...

Proof rules for negation and contradiction
Proof rules for predicate calculus

Safe and unsafe rules

Forward Proof

The Epsilon Operator

Some automation
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