‘,. NICTA o. NICTA
MORE GENERAL TYPES

A term can have more than one type.

COMP 4161
NICTA Advanced Course Example: [J+ Az. 2z :: bool = bool

JFXz.z:a=a
Advanced Topics in Software Verification

Some types are more general than others:
Gerwin Klein
Formal Methods 7 <o ifthere is a substitution S such that 7 = S(o)

Examples:

A int =bool < a=03 < f=a £ a=a
and HOL - -

<» NICTA o NICTA
MORE COMPLEX EXAMPLE MOST GENERAL TYPES

Fact: each type correct term has a most general type

Trfra=(a=p) TFaz:a

TFfera=p T'Fata Formally:
I'fax:p Trtur = 3Jo.TttuoANo . THtuo =o' So)
[fea=a=plF e feoza=f
IFXMa feo:(a=a=0)=a=p It can be found by executing the typing rules backwards.

O type checking: checkingif I' ¢ :: 7 for given T" and 7

F=[f—a=a=fz—a 0 typeinference: computing " and 7 such that ' ¢ :: 7

Type checking and type inference on A\~ are decidable.

WHAT ABOUT [REDUCTION? WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Definition of /3 reduction stays the same. Not all computable functions can be expressed in AL

How can typed functional languages then be turing complete?
Fact: Well typed terms stay well typed during 5 reduction

Fact:
Formally: Fksur As—pgt=TkFtuT Each computable function can be encoded as closed, type correct
A7 termusingY i (r=7) =T withY t — 4t (Y t) as only
This property is called subject reduction constant.

0 Y is called fix point operator
O used for recursion

WHAT ABOUT TERMINATION ? TYPES AND TERMS IN ISABELLE

[reduction in A\~ always terminates. Types: 7 s= b | | wiC T =1 | (rer) K
b € {bool ,int,...} base types
v € {a,B3,...} type variables
K e {set,list,...}type constructors
(Alan Turing, 1942) C € {order,linord,...} type classes
Terms: &t == v | c| | (tt) | (M. 1)

0 =g is decidable
v,z €V, ceC, V,C setsofnames

To decide if s =g t, reduce s and ¢ to normal form (always exists,

because — 4 terminates), and compare result. 0 type constructors : construct a new type out of a parameter type.
0 =apy is decidable Example:int |ist

This is why Isabelle can automatically reduce each term to 37 normal O type classes : restrict type variables to a class defined by axioms.

form. Example: a :: order

O schematic variables : variables that can be instantiated.

0O similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: 7z < 2”7
order_trans: "z < y;y < 2] = o < 27

O theorems can be proved in the abstract
lemma order_less_trans: 7 Az :a :: order. [v < y;y < 2] = x < 2"
O can be used for subtyping
axclass linorder < order
linorder_linear: "z <y vy < z”
O can be instantiated
instance nat :: ”{order, linorder}” by ...

SCHEMATIC VARIABLES

X Y
XANY
0 X and Y must be instantiated to apply the rule
But: lemma "z +0=0+ 2"
O zisfree
O convention: lemma must be true for all =

O during the proof , z must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

HIGHER ORDER UNIFICATION

Unification:
Find substitution ¢ on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =.s, o(t)

Examples:
PXNY =apy T A [?7X «— 2,77 «—q]
Pz =apn TAT [?P — Az.z N x|
P(?fx) =apy Yz [2f — Az. 2,7V «— P]

Higher Order: schematic variables can be functions.

HIGHER ORDER UNIFICATION

0O Unification modulo o3 (Higher Order Unification) is semi-decidable
O Unification modulo 37 is undecidable
O Higher Order Unification has possibly infinitely many solutions

But:
0 Most cases are well-behaved
O Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
0 isatermin 8 normal form where
0O each occurrence of a schematic variable is of the from ?f ¢, ... ¢,
O andthet; ... t, are n-convertible into n distinct bound variables

". NICTA o. NICTA
WE HAVE LEARNED SO FAR ... PROOFS IN ISABELLE

General schema:
Simply typed lambda calculus: A\~

Typing rules for A, type variables, type contexts
[B-reduction in A~ satisfies subject reduction
[B-reduction in A~ always terminates

Types and terms in Isabelle

lemma name: "<goal>"
apply <method>
apply <method>

[s [s [|

done

0 Sequential application of methods until
all subgoals are solved.

". NICTA o. NICTA
THE PROOF STATE

LAz 2[4 A =B
2. Nyr--yg [Crs . C] =

>}

Ty...Tp Parameters

A;...A, Local assumptions

PREVIEW: PROOFS IN ISABELLE B Actual (sub)goal

ISABELLE THEORIES

Syntax:

theory MyTh=ImpThy + ...+ ImpTh,:
(declarations, definitions, theorems, proofs, ...)*

end

O MyTh: name of theory. Must live in file MyTh. t hy
O ImpTh;: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

NATURAL DEDUCTION RULES

Qe

Qe

A B . AANB [A;B]=C .
AnB conjl —c conje

A B i AVB A=C B=C 4
avEB AdeIS]”./Z c disjE
A= B . A—B A B=—C .
a—p M ¢ meE

For each connective (A, V, etc):
introduction and elemination rules

NICTA

NICTA

o. NICTA

PROOF BY ASSUMPTION

apply assumption
proves
1. [Bi;...;Bp] = C
by unifying C' with one of the B;
There may be more than one matching B; and multiple unifiers.
Backtracking!

Explicit backtracking command: back

o. NICTA

Intro rules decompose formulae to the right of —=-.

apply (rule <intro-rule>)

Introrule [A;...;A,] = A means
O To prove A it suffices to show A, ... A,

Applying rule [A;;...;A,] = A to subgoal C:
O unify Aand C
O replace C with n new subgoals A; ... 4,

10

o. NICTA

Elim rules decompose formulae on the left of —-.

apply (erule <elim-rule>)

Elimrule [A4;;...;A4,] = A means
O If I know A; and want to prove A it suffices to show A, ... A4,

Applying rule [A;;...;A,] = A to subgoal C:
Like rule but also

O unifies first premise of rule with an assumption

O eliminates that assumption

o. NICTA

DEMO

11

