
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

λ→and HOL

Slide 1

MORE COMPLEX EXAMPLE

Γ ⊢ f :: α⇒ (α⇒ β) Γ ⊢ x :: α

Γ ⊢ f x :: α⇒ β Γ ⊢ x :: α

Γ ⊢ f x x :: β

[f ← α⇒ α⇒ β] ⊢ λx. f x x :: α⇒ β

[] ⊢ λf x. f x x :: (α⇒ α⇒ β)⇒ α⇒ β

Γ = [f ← α⇒ α⇒ β, x← α]

Slide 2

1

MORE GENERAL TYPES

A term can have more than one type.

Example: [] ⊢ λx. x :: bool⇒ bool

[] ⊢ λx. x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

Slide 3

MOST GENERAL TYPES

Fact: each type correct term has a most general type

Formally:
Γ ⊢ t :: τ =⇒ ∃σ. Γ ⊢ t :: σ ∧ (∀σ′. Γ ⊢ t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

➜ type checking: checking if Γ ⊢ t :: τ for given Γ and τ

➜ type inference: computing Γ and τ such that Γ ⊢ t :: τ

Type checking and type inference on λ→ are decidable.

Slide 4

2

WHAT ABOUT β REDUCTION?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ⊢ s :: τ ∧ s −→β t =⇒ Γ ⊢ t :: τ

This property is called subject reduction

Slide 5

WHAT ABOUT TERMINATION ?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

➜ =β is decidable
To decide if s =β t, reduce s and t to normal form (always exists,

because −→β terminates), and compare result.

➜ =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal

form.

Slide 6

3

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in λ→!

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct
λ→ term using Y :: (τ ⇒ τ)⇒ τ with Y t −→β t (Y t) as only
constant.

➜ Y is called fix point operator

➜ used for recursion

Slide 7

TYPES AND TERMS IN ISABELLE

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors
C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

➜ type constructors : construct a new type out of a parameter type.

Example: int list

➜ type classes : restrict type variables to a class defined by axioms.
Example: α :: order

➜ schematic variables : variables that can be instantiated.

Slide 8

4

TYPE CLASSES

➜ similar to Haskell’s type classes, but with semantic properties

axclass order < ord

order refl: ”x ≤ x”

order trans: ”[[x ≤ y; y ≤ z]] =⇒ x ≤ z”

. . .

➜ theorems can be proved in the abstract

lemma order less trans: ”
V

x ::′a :: order. [[x < y; y < z]] =⇒ x < z”

➜ can be used for subtyping

axclass linorder < order
linorder linear: ”x ≤ y ∨ y ≤ x”

➜ can be instantiated

instance nat :: ”{order, linorder}” by . . .

Slide 9

SCHEMATIC VARIABLES

X Y
X ∧ Y

➜ X and Y must be instantiated to apply the rule

But: lemma ”x + 0 = 0 + x”

➜ x is free

➜ convention: lemma must be true for all x

➜ during the proof , x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Slide 10

5

HIGHER ORDER UNIFICATION

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

?X∧?Y =αβη x ∧ x [?X ← x, ?Y ← x]

?P x =αβη x ∧ x [?P ← λx. x ∧ x]

P (?f x) =αβη ?Y x [?f ← λx. x, ?Y ← P]

Higher Order: schematic variables can be functions.

Slide 11

HIGHER ORDER UNIFICATION

➜ Unification modulo αβ (Higher Order Unification) is semi-decidable

➜ Unification modulo αβη is undecidable

➜ Higher Order Unification has possibly infinitely many solutions

But:

➜ Most cases are well-behaved

➜ Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

➜ is a term in β normal form where

➜ each occurrence of a schematic variable is of the from ?f t1 . . . tn

➜ and the t1 . . . tn are η-convertible into n distinct bound variables

Slide 12

6

WE HAVE LEARNED SO FAR ...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts

➜ β-reduction in λ→ satisfies subject reduction

➜ β-reduction in λ→ always terminates

➜ Types and terms in Isabelle

Slide 13

PREVIEW: PROOFS IN ISABELLE

Slide 14

7

PROOFS IN ISABELLE

General schema:

lemma name: ”<goal>”
apply <method>

apply <method>

. . .

done

➜ Sequential application of methods until
all subgoals are solved.

Slide 15

THE PROOF STATE

1.
∧

x1 . . . xp.[[A1; . . . ; An]] =⇒ B

2.
∧

y1 . . . yq .[[C1; . . . ; Cm]] =⇒ D

x1 . . . xp Parameters

A1 . . . An Local assumptions

B Actual (sub)goal

Slide 16

8

ISABELLE THEORIES

Syntax:

theory MyTh = ImpTh1 + . . .+ ImpThn:

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpThi: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

Slide 17

NATURAL DEDUCTION RULES

A B
A ∧ B

conjI
A ∧B [[A; B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

For each connective (∧,∨, etc):
introduction and elemination rules

Slide 18

9

PROOF BY ASSUMPTION

apply assumption

proves

1. [[B1; . . . ; Bm]] =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Slide 19

INTRO RULES

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ; An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:

➜ unify A and C

➜ replace C with n new subgoals A1 . . .An

Slide 20

10

ELIM RULES

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ; An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . .An

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
Like rule but also

➜ unifies first premise of rule with an assumption

➜ eliminates that assumption

Slide 21

DEMO

Slide 22

11

