



What about β reduction? Definition of β reduction stays the same. **Fact:** Well typed terms stay well typed during β reduction **Formally:** $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$ This property is called subject reduction

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t (Y t)$ as only constant.

- → Y is called fix point operator
- → used for recursion

TYPE CLASSES

→ similar to Haskell's type classes, but with semantic properties
axclass order < ord
order_refl: "x ≤ x"
order_trans: "[x ≤ y; y ≤ z] ⇒ x ≤ z"
...
→ theorems can be proved in the abstract

 $\textbf{lemma order_less_trans: "} \land x :::'a :: order. [[x < y; y < z]] \Longrightarrow x < z"$

 \rightarrow can be used for subtyping

axclass linorder < order

linorder_linear: " $x \le y \lor y \le x$ " \Rightarrow can be instantiated

instance nat :: "{order, linorder}" by ...

HIGHER ORDER UNIFICATION

Unification: Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

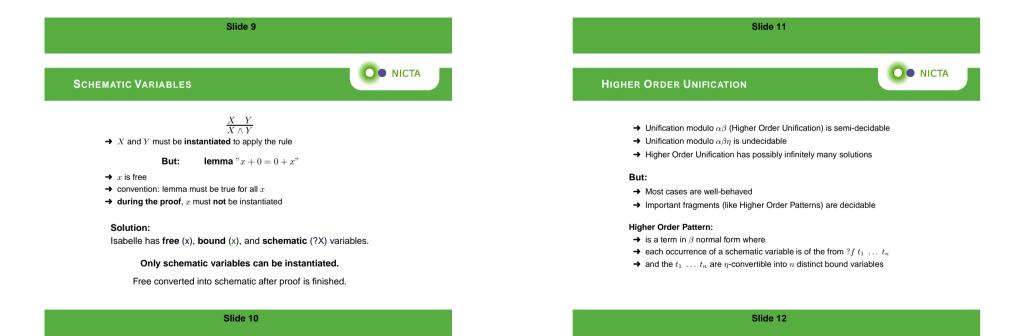
In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$?X \land ?Y$	$=_{\alpha\beta\eta}$	$x \wedge x$	$[?X \leftarrow x, ?Y \leftarrow x]$
?P x	$=_{\alpha\beta\eta}$	$x \wedge x$	$[?P \leftarrow \lambda x. \ x \wedge x]$
P(?f x)	$=_{\alpha\beta\eta}$?Y x	$[?f \leftarrow \lambda x. \ x, ?Y \leftarrow P]$

Higher Order: schematic variables can be functions.



WE HAVE LEARNED SO FAR...

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ^{\rightarrow} satisfies subject reduction
- → β -reduction in λ^{\rightarrow} always terminates
- ➔ Types and terms in Isabelle

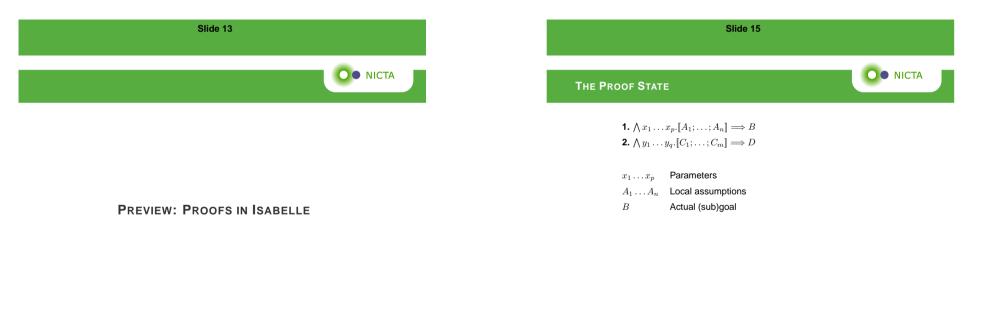
PROOFS IN **I**SABELLE

General schema:

lemma name: "<goal>" apply <method> apply <method> ... done

uone

→ Sequential application of methods until all **subgoals** are solved.



ISABELLE THEORIES

Syntax:

theory $MyTh = ImpTh_1 + \ldots + ImpTh_n$: (declarations, definitions, theorems, proofs, ...)* end

→ MyTh: name of theory. Must live in file MyTh. thy

→ $ImpTh_i$: name of *imported* theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

PROOF BY ASSUMPTION

apply assumption

proves

 $1. \llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$

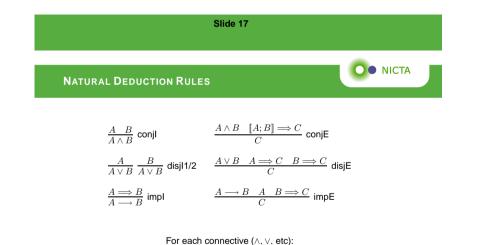
by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

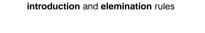
Backtracking!

Explicit backtracking command: back

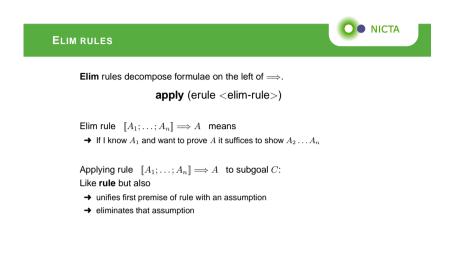
Slide 19



INTRO RULES Intro rules decompose formulae to the right of \Rightarrow . apply (rule < intro-rule >)Intro rule $[A_1; ...; A_n] \Rightarrow A$ means $a ext{ To prove } A ext{ it suffices to show } A_1 ... A_n$ Applying rule $[A_1; ...; A_n] \Rightarrow A$ to subgoal C: $a ext{ unify } A ext{ and } C$ $a ext{ replace } C ext{ with } n ext{ new subgoals } A_1 ... A_n$



Slide 20



Slide 21	
	NICTA
Dемо	
Slide 22	