
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

HOL
Slide 1

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

Slide 2

1

LAST TIME ON HOL

➜ natural deduction rules for ∧, ∨ and −→

➜ proof by assumption

➜ proof by intro rule

➜ proof by elim rule

Slide 3

MORE PROOF RULES

Slide 4

2

IFF, NEGATION , TRUE AND FALSE

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B; B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B

B =⇒ A
iffD2

A =⇒ False
¬A

notI
¬A A

P
notE

True TrueI False
P

FalseE

Slide 5

EQUALITY

t = t refl
s = t
t = s

sym r = s s = t
r = t

trans

s = t P s
P t

subst

Rarely needed explicitly — used implicitly by term rewriting

Slide 6

3

CLASSICAL

P = True ∨ P = False
True-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr ¬A =⇒ A
A

classical

➜ excluded-middle , ccontr and classical
not derivable from the other rules.

➜ if we include True-False, they are derivable

They make the logic “classical”, “non-constructive”

Slide 7

CASES

P ∨ ¬P
excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case tac term)

Slide 8

4

SAFE AND NOT SO SAFE

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧ B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE

A
A ∨ B

disjI1

Apply safe rules before unsafe ones

Slide 9

DEMO

Slide 10

5

QUANTIFIERS

Slide 11

SCOPE

• Scope of parameters: whole subgoal

• Scope of ∀, ∃, . . .: ends with ; or =⇒

Example:
∧

x y. [[∀y. P y −→ Q z y; Q x y]] =⇒ ∃x. Q x y

means

∧
x y. [[(∀y1. P y1 −→ Q z y1); Q x y]] =⇒ (∃x1. Q x1 y)

Slide 12

6

NATURAL DEDUCTION FOR QUANTIFIERS

∧
x. P x

∀x. P x
allI ∀x. P x P ?x =⇒ R

R
allE

P ?x
∃x. P x

exI
∃x. P x

∧
x. P x =⇒ R

R
exE

• allI and exE introduce new parameters (
∧

x).

• allE and exI introduce new unknowns (?x).

Slide 13

INSTANTIATING RULES

apply (rule tac x = ”term” in rule)

Like rule , but ?x in rule is instantiated by term before application.

Similar: erule tac

! x is in rule, not in goal !

Slide 14

7

TWO SUCCESSFUL PROOFS

1. ∀x. ∃y. x = y

apply (rule allI)

1.
∧

x. ∃y. x = y

best practice exploration

apply (rule tac x = ”x” in exI) apply (rule exI)

1.
∧

x. x = x 1.
∧

x. x = ?y x

apply (rule refl) apply (rule refl)

?y 7→ λu.u

simpler & clearer shorter & trickier

Slide 15

TWO UNSUCCESSFUL PROOFS

1. ∃y. ∀x. x = y

apply (rule tac x = ??? in exI) apply (rule exI)

1. ∀x. x = ?y

apply (rule allI)

1.
∧

x. x = ?y

apply (rule refl)

?y 7→ x yields
∧

x′.x′ = x

Principle:

?f x1 . . . xn can only be replaced by term t

if params(t) ⊆ x1, . . . , xn

Slide 16

8

SAFE AND UNSAFE RULES

Safe allI, exE

Unsafe allE, exI

Create parameters first, unknowns later

Slide 17

DEMO: QUANTIFIER PROOFS

Slide 18

9

PARAMETER NAMES

Parameter names are chosen by Isabelle

1. ∀ x. ∃y. x = y

apply (rule allI)
1.

∧
x. ∃y. x = y

apply (rule tac x = ”x” in exI)

Brittle!

Slide 19

RENAMING PARAMETERS

1. ∀x. ∃y. x = y

apply (rule allI)
1.

∧
x. ∃y. x = y

apply (rename tac N)
1.

∧
N. ∃y. N = y

apply (rule tac x = ”N” in exI)

In general:
(rename tac x1 . . . xn) renames the rightmost (inner) n

parameters to x1 . . . xn

Slide 20

10

FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [[A1; . . . ; Am]] =⇒ A

Subgoal: 1. [[B1; . . . ; Bn]] =⇒ C

Substitution: σ(Bi) ≡ σ(A1)

New subgoals: 1. σ([[B1; . . . ; Bn]] =⇒ A2)
...
m-1. σ([[B1; . . . ; Bn]] =⇒ Am)

m. σ([[B1; . . . ; Bn; A]] =⇒ C)

Like frule but also deletes Bi: apply (drule < rule >)

Slide 21

EXAMPLES FOR FORWARD RULES

P ∧ Q

P
conjunct1

P ∧ Q

Q
conjunct2

P −→ Q P

Q
mp

∀x. P x
P ?x

spec

Slide 22

11

FORWARD PROOF: OF

r [OF r1 . . . rn]

Prove assumption 1 of theorem r with theorem r1, and
assumption 2 with theorem r2, and . . .

Rule r [[A1; . . . ; Am]] =⇒ A

Rule r1 [[B1; . . . ; Bn]] =⇒ B

Substitution σ(B) ≡ σ(A1)

r [OF r1] σ([[B1; . . . ; Bn; A2; . . . ; Am]] =⇒ A)

Slide 23

FORWARD PROOFS : THEN

r1 [THEN r2] means r2 [OF r1]

Slide 24

12

DEMO: FORWARD PROOFS

Slide 25

HILBERT ’S EPSILON OPERATOR

(David Hilbert, 1862-1943)

ε x. Px is a value that satisfies P (if such a value exists)

ε also known as description operator .
In Isabelle the ε-operator is written SOME x. P x

P ?x
P (SOME x. P x)

someI

Slide 26

13

MORE EPSILON

ε implies Axiom of Choice:

∀x. ∃y. Q x y =⇒ ∃f. ∀x. Q x (f x)

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator THE (aka ι):

(THE x. x = a) = a
the eq trivial

Slide 27

SOME AUTOMATION

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules
that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover
(works well on predicate logic)

apply fast another automatic search tactic

Slide 28

14

EPSILON AND AUTOMATION DEMO

Slide 29

WE HAVE LEARNED SO FAR ...

➜ Proof rules for negation and contradiction

➜ Proof rules for predicate calculus

➜ Safe and unsafe rules

➜ Forward Proof

➜ The Epsilon Operator

➜ Some automation

Slide 30

15

