

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein Formal Methods

HOL

Slide 1

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Datatypes, recursion, induction
 - Inductively defined sets, rule induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

Slide 2

LAST TIME ON HOL

→ natural deduction rules for ∧, ∨ and →

→ proof by assumption

→ proof by intro rule

→ proof by elim rule

Slide 3

More Proof Rules

2

IFF, NEGATION, TRUE AND FALSE

$$\underbrace{A \Longrightarrow B \quad B \Longrightarrow A}_{A = B} \text{ iffl } \qquad \underbrace{A = B \quad [A \longrightarrow B; B \longrightarrow A] \Longrightarrow C}_{C} \text{ iffE}$$

$$\cfrac{A=B}{A\Longrightarrow B}$$
 iffD1 $\cfrac{A=B}{B\Longrightarrow A}$ iffD2

$$A = B$$
 $B \Longrightarrow A$ iffD2

$$\frac{A-A}{P}$$
 notE

$$\frac{\textit{False}}{P}$$
 FalseE

Slide 5

EQUALITY

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

$$\frac{s=t \quad P \ s}{P \ t}$$
 subst

Rarely needed explicitly — used implicitly by term rewriting

Slide 6

CLASSICAL

$$\overline{P = True \lor P = False}$$
 True-False

$$\overline{P \vee \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-False, they are derivable

They make the logic "classical", "non-constructive"

Slide 7

CASES

 $\frac{}{P \vee \neg P}$ excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

SAFE AND NOT SO SAFE

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE
$$\frac{A \quad B}{A \wedge B} \text{ conjl}$$

Unsafe rules can turn a provable goal into an unprovable one

$$\frac{A}{A \vee B}$$
 disjl1

Apply safe rules before unsafe ones

Slide 9

DEMO

Slide 10

○ ■ NICTA

QUANTIFIERS

Slide 11

SCOPE

- Scope of parameters: whole subgoal
- $\bullet \;$ Scope of \forall,\exists,\ldots ends with ; or \Longrightarrow

Example:

$$\bigwedge x \; y. \; \llbracket \; \forall y. \; P \; y \longrightarrow Q \; z \; y; \; \; Q \; x \; y \; \rrbracket \implies \exists x. \; Q \; x \; y$$

means

 $\bigwedge x \ y. \ \llbracket \ (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \ x \ y \ \rrbracket \implies (\exists x_1. \ Q \ x_1 \ y)$

Natural deduction for quantifiers

$$\frac{\bigwedge x.\ P\ x}{\forall x.\ P\ x} \ \text{all} \qquad \frac{\forall x.\ P\ x}{R} \ \frac{P\ ?x \Longrightarrow R}{R} \ \text{allE}$$

$$\frac{P\,?x}{\exists x.\,P\,x} \text{ exl } \qquad \frac{\exists x.\,P\,x \quad \bigwedge x.\,P\,x \Longrightarrow R}{R} \text{ exE}$$

- **allI** and **exE** introduce new parameters $(\bigwedge x)$.
- allE and exl introduce new unknowns (?x).

Slide 13

● NICTA

INSTANTIATING RULES

apply (rule_tac x = "term" in rule)

Like **rule**, but ?x in rule is instantiated by term before application.

Similar: erule_tac

 $\int x$ is in rule, not in goal

Slide 14

Two Successful Proofs

1. $\forall x. \exists y. \ x = y$

apply (rule allI)

1. $\bigwedge x$. $\exists y$. x = y

best practice

exploration

apply (rule_tac x = "x" in exl)

apply (rule exl) 1. $\bigwedge x$. x = ?y x

1. $\bigwedge x$. x = x

 $/\langle x. x - . y .$

apply (rule refl)

apply (rule refl) $?y \mapsto \lambda u.u$

simpler & clearer

shorter & trickier

Slide 15

Two Unsuccessful Proofs

1. $\exists y. \ \forall x. \ x = y$

apply (rule_tac x = ??? in exl)

apply (rule exl)

1. $\forall x. \ x = ?y$

apply (rule allI)

1. $\bigwedge x. \ x = ?y$

apply (rule refl)

 $?y \mapsto x \text{ yields } \bigwedge x'.x' = x$

Principle:

 $?f x_1 \dots x_n$ can only be replaced by term t

if $params(t) \subseteq x_1, \ldots, x_n$

SAFE AND UNSAFE RULES

Safe alll, exE

Unsafe allE, exl

Create parameters first, unknowns later

Slide 17

DEMO: QUANTIFIER PROOFS

Slide 18

PARAMETER NAMES

Parameter names are chosen by Isabelle

1.
$$\forall x. \exists y. \ x=y$$
 apply (rule alli)
1. $\bigwedge x. \exists y. \ x=y$ apply (rule_tac x = "x" in exl)

Brittle!

Slide 19

O NICTA

RENAMING PARAMETERS

```
1. \forall x. \exists y. \ x = y
```

apply (rule allI)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

apply (rename_tac N)

1.
$$\bigwedge N$$
. $\exists y$. $N = y$

apply (rule_tac x = "N" in exl)

In general:

(rename_tac $x_1 \dots x_n$) renames the rightmost (inner) n parameters to $x_1 \dots x_n$

FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule:
$$[\![A_1;\ldots;A_m]\!]\Longrightarrow A$$

Subgoal: $[\![B_1;\ldots;B_n]\!]\Longrightarrow C$

Substitution:
$$\sigma(B_i) \equiv \sigma(A_1)$$

New subgoals: 1.
$$\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_2)$$

÷

m-1.
$$\sigma(\llbracket B_1; \dots; B_n \rrbracket \Longrightarrow A_m)$$

m. $\sigma(\llbracket B_1; \dots; B_n; A \rrbracket \Longrightarrow C)$

Like frule but also deletes B_i : apply (drule < rule >)

Slide 21

○ ■ NICTA

EXAMPLES FOR FORWARD RULES

$$\frac{P \wedge Q}{P}$$
 conjunct1 $\frac{P \wedge Q}{Q}$ conjunct2

$$\frac{P \longrightarrow Q \quad P}{Q} \ \, \mathsf{mp}$$

$$\frac{\forall x. P x}{P ? x}$$
 spec

Slide 22

FORWARD PROOF: OF

$$r$$
 [OF $r_1 \dots r_n$]

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and \dots

$$\mathsf{Rule}\ r \qquad \quad [\![A_1;\ldots;A_m]\!] \Longrightarrow A$$

Rule
$$r_1$$
 $[B_1; \ldots; B_n] \Longrightarrow B$

Substitution
$$\sigma(B) \equiv \sigma(A_1)$$

$$r [\mathsf{OF} \ r_1] \qquad \sigma(\llbracket B_1; \dots; B_n; A_2; \dots; A_m \rrbracket \Longrightarrow A)$$

Slide 23

FORWARD PROOFS: THEN

$$r_1$$
 [THEN r_2] means r_2 [OF r_1]

○ NICTA

DEMO: FORWARD PROOFS

Slide 25

HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)

 εx . Px is a value that satisfies P (if such a value exists)

arepsilon also known as **description operator**. In Isabelle the arepsilon-operator is written SOME $x.\ P\ x$

$$\frac{P \, ?x}{P \, (\mathsf{SOME} \, x. \, P \, x)} \, \, \mathsf{somel}$$

Slide 26

MORE EPSILON

arepsilon implies Axiom of Choice:

$$\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \ \forall x. \ Q \ x \ (f \ x)$$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

$$\overline{(\mathsf{THE}\; x.\; x=a)=a}\;\;\mathsf{the_eq_trivial}$$

Slide 27

SOME AUTOMATION

More Proof Methods:

apply (intro <intro-rules>)repeatedly applies intro rulesapply (elim <elim-rules>)repeatedly applies elim rules

apply clarify applies all safe rules

that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover

(works well on predicate logic)

apply fast another automatic search tactic

EPSILON AND AUTOMATION DEMO

Slide 29

WE HAVE LEARNED SO FAR...

- → Proof rules for negation and contradiction
- → Proof rules for predicate calculus
- → Safe and unsafe rules
- → Forward Proof
- → The Epsilon Operator
- → Some automation