

#### **COMP 4161**

**NICTA Advanced Course** 

#### **Advanced Topics in Software Verification**

Gerwin Klein Formal Methods

# locales

#### CONTENT



- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
  - Lambda Calculus
  - Higher Order Logic, natural deduction
  - Term rewriting

#### → Proof & Specification Techniques

- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation

# O NIC

## **LAST TIME**

- → Hoare logic rules
- → Soundness of Hoare logic
- → Verification conditions
- → Example program proofs



### ISAR IS BASED ON CONTEXTS

```
theorem \bigwedge x. \ A \Longrightarrow C

proof -

fix x

assume Ass: A

\vdots

from \ Ass \ show \ C \dots

inside this context

qed
```



#### **BEYOND ISAR CONTEXTS**

#### Locales are extended contexts

- → Locales are named
- → Fixed variables may have **syntax**
- → It is possible to **add** and **export** theorems
- → It is possible to **instantiate** locales
- → Locale expression: **combine** and **modify** locales



## **CONTEXT ELEMENTS**

Locales consist of **context elements**.

**fixes** Parameter, with syntax

assumes Assumption

**defines** Definition

**notes** Record a theorem



## **DECLARING LOCALES**

Declaring **locale** (named context) *loc*:

locale loc =

loc1 + Import

fixes ... Context elements

assumes ...



#### **DECLARING LOCALES**

Theorems may be stated relative to a named locale.

lemma (in 
$$loc$$
)  $P$  [simp]:  $proposition$   $proof$ 

- $\rightarrow$  Adds theorem P to context loc.
- $\rightarrow$  Theorem P is in the simpset in context loc.
- $\rightarrow$  Exported theorem loc.P visible in the entire theory.



**DEMO: LOCALES 1** 



#### PARAMETERS MUST BE CONSISTENT!

- → Parameters in **fixes** are distinct.
- → Free variables in **defines** occur in preceding **fixes**.
- → Defined parameters cannot occur in preceding assumes nor defines.





Locale name: *n* 

Rename:  $e q_1 \dots q_n$ 

Change names of parameters in e.

Merge:  $e_1 + e_2$ 

Context elements of  $e_1$ , then  $e_2$ .

→ Syntax is lost after rename (currently).



DEMO: LOCALES 2



#### NORMAL FORM OF LOCALE EXPRESSIONS

Locale expressions are converted to flattened lists of locale names.

- → With full parameter lists
- → Duplicates removed

Allows for multiple inheritance!





Move from abstract to concrete.

interpretation label: loc [ "parameter 1" . . . "parameter n" ]

- → Instantiates locale **loc** with provided parameters.
- → Imports all theorems of **loc** into current context.
  - Instantiates theorems with provided parameters.
  - Interprets attributes of theorems.
  - Prefixes theorem names with label
- → version for local Isar proof: **interpret**



**DEMO: LOCALES 3** 



# **PRESENTATION**



#### ISABELLE'S BATCH MODE

- → used to process and check larger number of theories
- → no interactive niceties (no sorry, no quick\_and\_dirty)
- → controlled by file ROOT.ML and script set isatool
- → can save state for later use (images)
- → can generate HTML and LaTEX documentation

#### **I**SATOOL



#### Get help with:

isatool shows available tools

isatool <tool> -? shows options for <tool>

#### Interesting tools:

isatool mkdir create session directory

make/makeall run make for directory/all logics

usedir batch session

(documents, HTML, session graph)

document/latex run Latex r

# O NIC

## GENERATING LATEX FROM ISABELLE

```
<...>/isatool usedir -d pdf HOL <session>
         <..>/<session>/ROOT.ML
         <...>/<session>/MyTheory.thy
         <..>/<session>/document/root.tex
→ In ROOT. MI.:
    no_document use_thy "MyLibrary";
     use thy "MyTheory";
→ In document/root.tex:

    include Isabelle style packages (isabelle.sty, isabellesym.sty)

    include generated files

     session.tex (for all theories) or
     MyTheory.tex
```



**DEMO: EXAMPLE** 



#### LARGE DEVELOPMENTS

#### **Creating Images:**

```
<...>/<session>/isatool usedir -b HOL <session>
<...>/<session>/ROOT.ML
<...>/<session>/MyLibrary.thy
```

- → Processes ROOT.ML
- → Makes <session> available as logic in menu Isabelle → Logics
- → Direct start of Isabelle with new logic: Isabelle -1 <session>





→ document structure commands:

#### header section subsection subsubsection

(meaning defined in isabelle.sty)

→ normal text

→ text inside proofs

→ formal comments

→ make text invisible:

$$(* < *) \dots (* > *)$$





Inside LaTEX you can go back to Isabelle commands and syntax.

Useful Antiquotations:

| $@\{	exttt{typ} \ 	au\}$                                           | print type $	au$                                                                                             |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $@\{{\sf term}\ t\}$                                               | print term $t$                                                                                               |
| @{prop $\phi$ } @{prop [display] $\phi$ } @{prop [source] $\phi$ } | print proposition $\phi$ print proposition $\phi$ with linebreaks check proposition $\phi$ , print its input |
|                                                                    | print fact $a$ print fact $a$ , fixing schematic variables check availability of $a$ , print its name        |
| $@\{	ext{text} s\}$                                                | print uninterpreted text $s$                                                                                 |



#### WRITING ABOUT ISABELLE THEORIES

#### To document definitions and proofs:

- → put comments explanations directly in original theory
- → keep explanations short and to the point

#### To write a paper/thesis **about** a formal development

- → use a separate theory/document on top of the development
- → only talk about the interesting parts
- → use antiquoations for theorems and definitions
- → use extra locales, definitions, syntax for polish
- → make full proof document available separately



#### Know your audience. Use the right notation.

→ Change LaTEX symbol interpretations

→ Declare special LaTEX output syntax:

```
syntax (latex) Cons :: "'a \Rightarrow 'a list \Rightarrow 'a list" ("_ ·/ _" [66,65] 65)
```

→ Use translations to change output syntax:

```
syntax (latex) notEx :: "('a \Rightarrow bool) \Rightarrow bool" (binder "\<notex>" 10) translations "\<notex>x. P" <= "¬(\existsx. P)"
```

in document/root.tex:

\newcommand{\isasymnotex}{\isamath{\neg\exists}}





#### making large developments more accessible

#### Math textbook:

Let  $(A, \cdot, 0)$  in the following be a group with  $x \cdot y = y \cdot x$ 

#### Isabelle:

- → Use locales to formalize contexts
- → Antiquotations are sensitive to current locale context
- **→** Example:

```
locale agroup = group + assumes com: "x \cdot y = y \cdot x" ... text (in agroup) \{* \dots *\}
```

→ More Examples: http://afp.sf.net



# **DEMO**



#### WE HAVE SEEN TODAY ...

- → Locale Declarations + Theorems in Locales
- → Locale Expressions + Inheritance
- → Locale Instantiation
- → Generating LATEX
- → Writing a thesis/paper in Isabelle