COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

1Py 1Q;
e

CONTENT

[0 Intro & motivation, getting started with Isabelle
[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction
e Datatypes, recursion, induction

e More recursion, Calculational reasoning
Hoare logic, proofs about programs
Locales, Presentation

LAST TIME

[1 Code generation
[1 Syntax of a simple imperative language
[1 Operational semantics

[1 Program proof on operational semantics

PROOFS ABOUT PROGRAMS

Now we know:

[1 What programs are: Syntax
[J On what they work: State
[J How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from last lecture implements the

factorial.

lemma (factorial,c) — ¢’ = ¢’B = fac (d A)

(where fac0 =0, fac(Sucn)= (Sucn)xfacn)

TOO TEDIOUS

Induction needed for each loop

Is there something easier?

De nic
FLOYD/HOARE

ldea: describe meaning of program by pre/post conditions

Examples:
{True} x:=2 {x=2}
{y=2} z:=21xy {z=42}

{r=n} IFy<OTHENz:=2+yELSEx:=2—y {z=n—y[}

{A=n} factorial {B =facn}

Proofs: have rules that directly work on such triples

MEANING OF A HOARE-TRIPLE

{P} ¢ {Q}
What are the assertions P and Q7

[1 Here: again functions from state to bool
(shallow embedding of assertions)

[1 Other choice: syntax and semantics for assertions (deep embedding)

What does {P} ¢ {Q} mean?

Partial Correctness:

={P}c{Q} = (oo .PoA{co) —dc = Q0d)
Total Correctness:
={P}c{Q} = (o Po= 3Jo'.{c,0) — " NQ)

This lecture: partial correctness only (easier)

De nic
HOARE RULES

{P} SKIP {P} {Plx —e]} xz:=e {P}

{Pya{R; {R}c{Q]
Py e {Q}

{PAb} e {QF {PA—b}eo {Q}
{P} IFbTHEN ¢; ELSEcy {Q}

{PAb}c{P} PA-b=Q
(P} WHILEbDO cOD {Q}

P— P {P}ci{Q} Q@ =0Q
Py ¢ {Q}

De nic
HOARE RULES

-{P} SKIP {P} {\o. P (o(x:=e€e0))} x:=e {P}

{Pla iR} PR} {Q]
P} ase {Q)

F{do. PoAbo}lci{R} F{do. PoA-bo}c {Q}
~{P} IFbTHEN ¢; ELSEc {Q)

F{Xo. PoAbo}c{P} No. PoAN-bo=— Qo
— (P} WHILELDO cOD {Q}

No.Po=— P o F{P'}c{Q'} No Qo= Qo
—{P; ¢ {Q}

De ni

Soundness: + {P} ¢ {Q} =k {P} c{Q}

Proof: by rule induction on - {P} ¢ {Q}

Demo: Hoare Logic in Isabelle

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While — need creativity to find right (invariant) P

Solution:

[J annotate program with invariants
[1 then, Hoare rules can be applied automatically

Example:

{M =0AN =0}

WHILE M #aINV{N =M xb} DON :=N+b;M :=M+10D
{N =a b}

De nic
WEAKEST PRECONDITIONS

pre ¢ Q = weakest P suchthat {P} c{Q}

With annotated invariants, easy to get:

pre SKIP @ = @

pre (r:=a) Q = Mo. Q(o(x :=ao))

pre (c1;c2) Q = prec; (pre cx Q)

pre (IF b THEN ¢y ELSE ¢3) @ = M. (b—preci Qo)A
(b — pre c2 Q o)

pre WHILELINVIDOcOD)Q = I

De nic
VERIFICATION CONDITIONS

{pre c Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q-

vc SKIP @ = True
Ve (z:=a) Q = True
Ve (c15¢2) Q = VCca QA (VCey (prece Q))
vc (IF b THEN ¢ ELSE ¢2) @ = VCcy Q ANVCco @
ve (WHILEHBINVIDOc¢OD)Q = (Vo.loANbo— precl o)A
(Vo. Io N —bo — Q o)A
vCcc [

vec QAN (prec Q@ = P) = {P} c{Q}

SYNTAX TRICKS

[0 z:=MXo.1 Instead of x:=1 sucks
0 {Xo.cx=n} Iinstead of {z = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:
[1 declare program variables with each Hoare triple

e nNice, usual syntax
e works well if you state full program and only use vcg

[1 separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

e Mmore syntactic overhead
e program pieces compose nicely

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A= a:: nat
b ::int
[1 Selectors: a::A=nat, b::A=int, ar=SucO
[0 Constructors: (a=Suc0, b=-1)
[Update: (| a:=SucO)

Records are extensible:

record B=A +
c :: nat list

qa:SUCO, b:_la C:[OaO] D

ARRAYS

Depending on language, model arrays as functions:
[1 Array access = function application:
afifj = ai

[1 Array update = function update:
afij.==v = a:==a(i=v)

Use lists to express length:

[J Array access = nth:
afij = ali

[1 Array update = list update:
afil .==v = a:==alii=V]

[Array length = list length:
a.length = length a

POINTERS

Choice 1
datatype ref = Ref int | Null
types heap =int= val
datatype val = Intint | Bool bool | Struct x int int bool | . ..

(I hp :: heap, p :: ref

[J Pointer access: *p = the_Int (hp (the_addr p))

[J Pointer update: *p:==v = hp == hp ((the_addr p) :=v)
[a bit klunky

[] gets even worse with structs

[1 lots of value extraction (the_Int) in spec and program

POINTERS

Choice 2 (Burstall ‘72, Bornat '00)

struct with next pointer and element

datatype ref = Ref int | Null
types next_hp =int = ref
types elem_hp =int=int

[J next:: next_hp, elem :: elem_hp, p :: ref
[1 Pointer access: p—hnext = next (the_addr p)
[] Pointer update: p—next :==v = next == next ((the_addr p) :=v)

[1 a separate heap for each struct field
buys you p—next # p—elem automatically (aliasing)

L]

[] still assumes type safe language

DEMO

WE HAVE SEEN TODAY ...

[]
[]
[
[]
[

Hoare logic rules
Soundness of Hoare logic
Verification conditions
Example program proofs

Arrays, pointers

