
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

{P} . . . {Q}

1

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• More recursion, Calculational reasoning

• Hoare logic, proofs about programs

• Locales, Presentation

2

LAST TIME

➜ Code generation

➜ Syntax of a simple imperative language

➜ Operational semantics

➜ Program proof on operational semantics

3

PROOFS ABOUT PROGRAMS

Now we know:

➜ What programs are: Syntax

➜ On what they work: State

➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from last lecture implements the
factorial.

lemma 〈factorial, σ〉 −→ σ′ =⇒ σ′B = fac (σA)

(where fac 0 = 0, fac (Suc n) = (Suc n) ∗ fac n)

4

TOO TEDIOUS

Induction needed for each loop

Is there something easier?

5

FLOYD /HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

6

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

7

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

8

HOARE RULES

⊢ {P} SKIP {P} ⊢ {λσ. P (σ(x := e σ))} x := e {P}

⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1; c2 {Q}

⊢ {λσ. P σ ∧ b σ} c1 {R} ⊢ {λσ. P σ ∧ ¬b σ} c2 {Q}

⊢ {P} IF b THEN c1 ELSE c2 {Q}

⊢ {λσ. P σ ∧ b σ} c {P}
∧

σ. P σ ∧ ¬b σ =⇒ Q σ

⊢ {P} WHILE b DO c OD {Q}

∧
σ. P σ =⇒ P ′ σ ⊢ {P ′} c {Q′}

∧
σ. Q′ σ =⇒ Q σ

⊢ {P} c {Q}

9

ARE THE RULES CORRECT?

Soundness: ⊢ {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ⊢ {P} c {Q}

Demo: Hoare Logic in Isabelle

10

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧ N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b; M := M + 1 OD
{N = a ∗ b}

11

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

12

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

13

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

14

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

15

ARRAYS

Depending on language, model arrays as functions:

➜ Array access = function application:
a[i] = a i

➜ Array update = function update:

a[i] :== v = a :== a(i:= v)

Use lists to express length:

➜ Array access = nth:
a[i] = a ! i

➜ Array update = list update:
a[i] :== v = a :== a[i:= v]

➜ Array length = list length:
a.length = length a

16

POINTERS

Choice 1

datatype ref = Ref int | Null

types heap = int ⇒ val

datatype val = Int int | Bool bool | Struct x int int bool | . . .

➜ hp :: heap, p :: ref

➜ Pointer access: *p = the Int (hp (the addr p))

➜ Pointer update: *p :== v = hp :== hp ((the addr p) := v)

➜ a bit klunky

➜ gets even worse with structs

➜ lots of value extraction (the Int) in spec and program

17

POINTERS

Choice 2 (Burstall ’72, Bornat ’00)

struct with next pointer and element

datatype ref = Ref int | Null

types next hp = int ⇒ ref

types elem hp = int ⇒ int

➜ next :: next hp, elem :: elem hp, p :: ref

➜ Pointer access: p→next = next (the addr p)

➜ Pointer update: p→next :== v = next :== next ((the addr p) := v)

➜ a separate heap for each struct field

➜ buys you p→next 6= p→elem automatically (aliasing)

➜ still assumes type safe language

18

DEMO

19

WE HAVE SEEN TODAY ...

➜ Hoare logic rules

➜ Soundness of Hoare logic

➜ Verification conditions

➜ Example program proofs

➜ Arrays, pointers

20

