

COMP 4161NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin KleinFormal Methods

 $\{P\}$... $\{Q\}$

CONTENT

- **→** Intro & motivation, getting started with Isabelle
- **→** Foundations & Principles
	- Lambda Calculus
	- Higher Order Logic, natural deduction
	- **•** Term rewriting

➜ **Proof & Specification Techniques**

- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- **Hoare logic, proofs about programs**
- Locales, Presentation

LAST ^TIME

- **→ Code generation**
- **→** Syntax of a simple imperative language
- **→** Operational semantics
- \rightarrow Program proof on operational semantics

PROOFS ABOUT ^PROGRAMS

Now we know:

- **→** What programs are: Syntax
- **→** On what they work: State
- **→** How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from last lecture implements thefactorial.

lemma
$$
\langle
$$
 factorial, $\sigma \rangle \longrightarrow \sigma' \Longrightarrow \sigma' B = \text{fac} (\sigma A)$
(where $\text{fac } 0 = 0$, $\text{fac } (\text{Suc } n) = (\text{Suc } n) * \text{fac } n)$

Induction needed for each loop

Is there something easier?

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
\n{True}
$$
x := 2
$$
 { $x = 2$ }
\n{ $y = 2$ } $x := 21 * y$ { $x = 42$ }
\n{ $x = n$ } IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y$ { $x = n - |y|$ }
\n{ $A = n$ } factorial { $B = \text{fac } n$ }

Proofs: have rules that directly work on such triples

MEANING OF ^A ^HOARE-TRIPLE

$$
\{P\}\quad c\quad \{Q\}
$$

What are the assertions P and Q ?

- → Here: again functions from state to bool (shallow embedding of assertions)
- \rightarrow Other choice: syntax and semantics for assertions (deep embedding)

 $\textbf{What does } \{P\} \; c \; \{Q\} \; \textbf{mean?}$

Partial Correctness:

 $= \{P\} c \{Q\} = (\forall \sigma \sigma'. P \sigma \wedge \langle c, \sigma \rangle \longrightarrow \sigma' \Longrightarrow Q \sigma')$

Total Correctness:

 $\models \{P\} \ c \ \{Q\} \equiv (\forall \sigma. \ P \ \sigma \Longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \longrightarrow \sigma' \land Q \ \sigma')$

This lecture: partial correctness only (easier)

$$
\frac{\{P\} \quad \text{SKIP} \quad \{P\}}{\{P\} \quad c_1 \{R\} \quad \{R\} \quad c_2 \{Q\}}}{\{P\} \quad c_1; c_2 \quad \{Q\}}
$$
\n
$$
\frac{\{P \land b\} \quad c_1 \{Q\} \quad \{P \land \neg b\} \quad c_2 \{Q\}}}{\{P\} \quad \text{IF } b \text{ THEN } c_1 \text{ ELSE } c_2 \quad \{Q\}}
$$
\n
$$
\frac{\{P \land b\} \quad c \{P\} \quad P \land \neg b \implies Q}{\{P\} \quad \text{WHILE } b \text{ DO } c \text{ OD } \{Q\}}
$$
\n
$$
\frac{P \implies P' \quad \{P'\} \quad c \{Q'\} \quad Q' \implies Q}{\{P\} \quad c \quad \{Q\}}
$$

$$
+ {P} \text{ SKIP} \{P\} + \{\lambda \sigma. P (\sigma(x := e \sigma))\} \quad x := e \{P\}
$$
\n
$$
+ {P} c_1 \{R\} + \{R\} c_2 \{Q\}
$$
\n
$$
+ {P} c_1; c_2 \{Q\}
$$
\n
$$
+ \{\lambda \sigma. P \sigma \wedge b \sigma\} c_1 \{R\} + \{\lambda \sigma. P \sigma \wedge \neg b \sigma\} c_2 \{Q\}
$$
\n
$$
+ {P} \text{ IF } b \text{ THEN } c_1 \text{ ELSE } c_2 \{Q\}
$$
\n
$$
+ \{\lambda \sigma. P \sigma \wedge b \sigma\} c \{P\} \wedge \sigma. P \sigma \wedge \neg b \sigma \Longrightarrow Q \sigma
$$
\n
$$
+ {P} \text{WHLE } b \text{ DO } c \text{ OD } \{Q\}
$$
\n
$$
\Delta \sigma. P \sigma \Longrightarrow P' \sigma + {P'} c \{Q'\} \wedge \sigma. Q' \sigma \Longrightarrow Q \sigma
$$
\n
$$
+ {P} \ c \{Q\}
$$

NI

 $\begin{array}{ccc} \end{array}$

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\}$ $c \; \{Q\}$

Demo: Hoare Logic in Isabelle

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) ^P

Solution:

- **→** annotate program with invariants
- \rightarrow then, Hoare rules can be applied automatically

Example:

 ${M = 0 \wedge N = 0}$ WHILE $M \neq a$ INV $\{N = M * b\}$ DO $N := N + b; M := M + 1$ OD $\{N = a * b\}$

pre
$$
cQ
$$
 = weakest P such that $\{P\} c \{Q\}$

With annotated invariants, easy to get: pre SKIP Q $= Q$ pre $(x := a) Q$ $= \lambda \sigma$. $Q(\sigma(x := a\sigma))$ pre $(c_1;c_2)\ Q$ $=$ pre c_1 (pre c_2 Q) $\mathsf{pre} \ (\mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2) \ Q \qquad \ = \quad \lambda \sigma. \ (b \longrightarrow \mathsf{pre} \ c_1 \ Q \ \sigma) \ \wedge$ $(\neg b \longrightarrow \textsf{pre} \ c_2 \ Q \ \sigma)$

 $\mathsf{pre}\;(\mathsf{WHILE}\;b\;\mathsf{INV}\;I\;\mathsf{DO}\;c\;\mathsf{OD})\;Q\quad=\quad I$

{pre ^c Q} ^c {Q} **only true under certain conditions**

These are called **verification conditions** vc ^c ^Q:

vc SKIP Q $Q = True$ vc $(x := a) Q$ $=$ True vc $(c_1;c_2)\ Q$ $=$ vc $c_2 Q \wedge ($ vc c_1 (pre $c_2 Q$) vc (IF b THEN c_1 ELSE c_2) Q $=$ vc c_1 $Q \wedge$ vc c_2 Q vc (WHILE ^b INV ^I DO ^c OD) ^Q ⁼ (∀σ. Iσ [∧] bσ −→ pre ^c ^I ^σ)[∧] $(\forall \sigma. \; I \sigma \wedge \neg b \sigma \longrightarrow Q \; \sigma) \wedge$ VC $c I$

$$
\text{vc } c \ Q \land (\text{pre } c \ Q \Longrightarrow P) \Longrightarrow \{P\} \ c \ \{Q\}
$$

SYNTAX ^TRICKS

- $\rightarrow x := \lambda \sigma.$ 1 instead of $x := 1$ sucks
- $\rightarrow \{\lambda \sigma. \ \sigma \ x = n\}$ instead of $\{x = n\}$ sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

- \rightarrow declare program variables with each Hoare triple
	- nice, usual syntax
	- works well if you state full program and only use vcg
- → separate program variables from Hoare triple (use extensible records), indicate usage as function syntactically
	- more syntactic overhead
	- program pieces compose nicely

Records are ^a tuples with named components

Example:

$$
\begin{array}{ll}\text{record A} = & a :: \text{nat} \\ & b :: \text{int}\end{array}
$$

- → Selectors: $a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Succ 0$
- → Constructors: $\langle \; | \; a = {\sf Suc} \; 0, \; b = -1 \; | \; \rangle$
- \rightarrow Update: $r($ | a := Suc 0 $)$

Records are extensible:

 $\textsf{record } \mathsf{B} = \mathsf{A} + \mathsf{C}$ ^c :: nat list

$$
(\!| \mathsf{a} = \mathsf{Suc} \ 0, \ \mathsf{b} = -1, \ \mathsf{c} = [0,0] \]\!)
$$

ARRAYS

Depending on language, model arrays as functions:

 \rightarrow Array access = function application:

$$
a[i] = ai
$$

→ Array update = function update: $a[i] := v = a := a(i = v)$

Use lists to express length:

 \rightarrow Array access = nth: a[i] ⁼ ^a ! ⁱ

→ Array update = list update:

a[i] :== v = a :== a[i:= v]

 \rightarrow Array length = list length:

a.length $=$ length a

POINTERS

Choice ¹

- **datatype** ref = Ref int | Null
- **typess** heap = int \Rightarrow val
- **datatype** $v =$ Int int | Bool bool | Struct x int int bool $| \ldots$
- \rightarrow hp :: heap, p :: ref
- \rightarrow Pointer access: *p = the Int (hp (the addr p))
- **→** Pointer update: *p :== v = hp :== hp ((the_addr p) := v)

\rightarrow a bit klunky

- **→** gets even worse with structs
- \rightarrow lots of value extraction (the_Int) in spec and program

POINTERS

Choice ² (Burstall '72, Bornat '00)

struct with next pointer and element

- **datatype** ref = Ref int | Null
- **types** next_hp = int ⇒ ref
- **types** elem_hp = int \Rightarrow int
- **→** next :: next_hp, elem :: elem_hp, p :: ref
- → Pointer access: p→next = next (the_addr p)
- **→** Pointer update: $p \rightarrow$ next :== v = next :== next ((the_addr p) := v)
- **→** a separate heap for each struct field
- → buys you p \rightarrow next \neq p \rightarrow elem automatically (aliasing)
- \rightarrow still assumes type safe language

DEMO

W^E HAVE SEEN TODAY ...

- **→** Hoare logic rules
- **→** Soundness of Hoare logic
- **→** Verification conditions
- **→** Example program proofs
- \rightarrow Arrays, pointers