COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

P} ...1Qj

[0 Intro & motivation, getting started with Isabelle

[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction
e Datatypes, recursion, induction

e More recursion, Calculational reasoning
e Hoare logic, proofs about programs

e Locales, Presentation

[1 Calculations: also/finally

[0 [trans]-rules

[1 Code generation

FINDING THEOREMS

Command find _theorems (C-c C-f) finds combinations of:
[1 pattern: "_+ _+ "

lhs of simp rules: simp: ” _*(_+)"

intro/elim/dest on current goal

lemma name: name: assoc

O O O

exclusions thereof: -name: "HOL."

Example:
find _theorems dest -’"hd” name: "List.”

finds all theorems in the current context that

[J match the goal as dest rule,
[1 do not contain the constant "hd”
[] are in the List theory (name starts with "List.”)

ISAR. DEFINE AND DEFINES

Can define local constant in Isar proof context:

proof

défine "f = big term”
have "g=fx"...

like definition, not automatically unfolded (f_def)
different to let ?f = "big term”

Also available in lemma statement:

lemma ...
fixes ...
assumes ...
defines ...
shows ...

G

A CRASH COURSE IN SEMANTICS

o. NICTA
IMP - A SMALL IMPERATIVE LANGUAGE |

Commands:
datatype com = SKIP
Assign loc aexp (L =)
Semi com com (5 2)
Cond bexp comcom (IF _THEN _ELSE)
While bexp com (WHILE _ DO _0OD)
types loc = string
types state = loc = nat
types aexp = state = nat
types bexp = state = bool

o. NICTA
EXAMPLE PROGRAM

Usual syntax:
B :=1;
WHILE A # 0 DO
B := B x A;
A=A-1
OD

Expressions are functions from state to bool or nat:
B := (Mo. 1);
WHILE (MAo. o A #£ 0) DO
B:=(Ao.oc Bxog A);
A:=(No.c A-1)
OD

WHAT DOES IT DO?

So far we have defined:

[1 Syntax of commands and expressions
[1 State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

[1 A wide field of its own
[Some choices:

e Operational (inductive relations, big step, small step)
e Denotational (programs as functions on states, state transformers)
e Axiomatic (pre-/post conditions, Hoare logic)

STRUCTURAL OPERATIONAL SEMANTICS

(SKIP,0) — o

eo=uv
(x:=e,0) — olx — V]

(c1,0) — 0’ (cg,0") — o

(c1;c9,0) — o

bo=True (c1,0) — 0o
(IF b THEN ¢; ELSE ¢5,0) — o’

bo = False {(c3,0) — o’
(IF b THEN ¢; ELSE ¢9,0) — o’

Oe nicra
STRUCTURAL OPERATIONAL SEMANTICS ’

b o = False
(WHILE b DO ¢ OD,0) — o

bo=True {(c,0) — o (WHILEbDO ¢OD,o’) — o”

(WHILE b DO ¢ OD, o) — o”

G4

DEMO: THE DEFINITIONS IN ISABELLE

PROOFS ABOUT PROGRAMS

Now we know:

[1 What programs are: Syntax
[J On what they work: State
[J How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 8 implements the factorial.

lemma (factorial,c) — ¢’ = ¢’ B = fac (d A)

(where fac0 =0, fac(Sucn)= (Sucn)xfacn)

G

DEMO: EXAMPLE PROOF

o. NICTA
ToO TEDIOUS

Induction needed for each loop

Is there something easier?

o. NICTA
FLOYD/HOARE

ldea: describe meaning of program by pre/post conditions

Examples:
{True} x:=2 {x=2}
{y=2} z:=21xy {z=42}

{r=n} IFy<OTHENz:=2+yELSEx:=2—y {z=n—y[}

{A=n} factorial {B =facn}

Proofs: have rules that directly work on such triples

MEANING OF A HOARE-TRIPLE

{P} ¢ {Q}
What are the assertions P and Q7

[1 Here: again functions from state to bool
(shallow embedding of assertions)

[1 Other choice: syntax and semantics for assertions (deep embedding)

What does {P} ¢ {Q} mean?

Partial Correctness:

={P}c{Q} = oo .PoN{co) — o = Q0d)
Total Correctness:
={P}c{Q} = (o Po= 3Jo'.{c,0) — " NQ)

This lecture: partial correctness only (easier)

o. NICTA
HOARE RULES

{P} SKIP {P} {Plx —e]} xz:=e {P}

{Pya{R) {R}c{Q]
(P} e {Q}

{PAb} e {Q} {PA—b} e {Q}
{P} IFbTHEN ¢; ELSE o {Q}

{PAb}c{P} PAN-b=Q
(P} WHILEbDO cOD {Q}

P— P {P}ci{Q} Q@ =0Q
Py ¢ {Q}

o. NICTA
HOARE RULES |

-{P} SKIP {P} F{)o. P (o(x:=e€e0))} x:=e {P}

= {P} C1 {R} - {R} C2 {Q}
F{P} cie2 {Q}

F{do. PoAbo}lci{R} F{do. PoA-bo}c{Q}
~{P} IFbTHEN ¢; ELSEc {Q)

F{Xo. PoAbo}c{P} No. PoAN-bo=— Qo
— (P} WHILEbDO cOD {Q}

No.Po=— P o F{P'}c{Q'} No Qo= Qo
—{P; ¢ {Q}

Oe nicra

Soundness: + {P} ¢ {Q} =k {P} ¢ {Q}

Proof: by rule induction on - {P} ¢ {Q}

Demo: Hoare Logic in Isabelle

