
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

a = b = c = . . .

1



CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning

• Hoare logic, proofs about programs

• Locales, Presentation

2



LAST TIME ...

➜ fun, function

➜ Well founded recursion

3



DEMO
MORE FUN

4



CALCULATIONAL REASONING

5



THE GOAL

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1
· x−1

· x · x−1

. . . = (x−1)−1
· (x−1

· x) · x−1

. . . = (x−1)−1
· 1 · x−1

. . . = (x−1)−1
· (1 · x−1)

. . . = (x−1)−1
· x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply style

➜ Isar: with the methods we know, too verbose

6



CHAINS OF EQUATIONS

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

7



ALSO /FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

8



MORE ABOUT ALSO

➜ Works for all combinations of =, ≤ and <.

➜ Uses all rules declared as [trans].

➜ To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

9



DESIGNING [TRANS ] RULES

calculation = ”l1 ⊙ r1”

have ”. . . ⊙ r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

10



DEMO

11



HOL AS PROGRAMMING LANGUAGE

We have

➜ numbers, arithmetic

➜ recursive datatypes

➜ constant definitions, recursive functions

➜ = a functional programming language

➜ can be used to get fully verified programs

Executed using the simplifier. But:

➜ slow, heavy-weight

➜ does not run stand-alone (without Isabelle)

12



GENERATING ML CODE

Generate stand-alone ML code for

➜ datatypes

➜ function definitions

➜ inductive definitions (sets)

Syntax (simplified):

code module <structure-name> [file <name>]

contains

<ML-name> = <term>
...

<ML-name> = <term>

Generates ML stucture, puts it in own file or includes in current
context

13



VALUE AND QUICKCHECK

Evaluate big terms quickly:

value ”<term>”

➜ generates ML code

➜ runs ML

➜ converts back into Isabelle term

Try some values on current proof state:

quickcheck

➜ generates ML code

➜ runs ML on random values for numbers and datatypes

➜ increasing size of data set until limit reached

14



CUSTOMISATION

➜ lemma instead of definition: [code] attribute

lemma [code]: ”(0 < Suc n) = True” by simp

➜ provide own code for types: types code

types code ”×” (”( */ )”)

➜ provide own code for consts: consts code

consts code ”Pair” (”( ,/ )”)

➜ complex code template: patterns + attach

consts code ”wfrec” (”\ <module>wfrec?”)
attach {* fun wfrec f x = f (wfrec f) x; *}

15



CODE FOR INDUCTIVE DEFINITIONS

Inductive definitions are Horn clauses:

(0, Suc n) ∈ L

(n,m) ∈ L =⇒ (Suc n, Suc m) ∈ L

Can be evaluated like Prolog

code module T

contains x = ”λx y. (x, y) ∈ L”

y = ”( , 5) ∈ L”

generates

➜ something of type bool for x

➜ a possibly infinite sequence for y, enumerating all suitable in ( , 5) ∈ L

16



DEMO

17



WE HAVE SEEN TODAY ...

➜ More fun

➜ Calculations: also/finally

➜ [trans]-rules

➜ Code generation

18


