
COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

Slide 1

ORGANISATORIALS

When Mon 13:00 – 14:30

Wed 13:00 – 14:30

Where Mon: Webst 250

Wed: Law Th G23

http://www.cse.unsw.edu.au/˜cs4161/

Slide 2

1

WHAT YOU WILL LEARN

➜ how to use a theorem prover

➜ background, how it works

➜ how to prove and specify

➜ how to reason about programs

Health Warning

Theorem Proving is addictive

Slide 3

CONTENT — USING THEOREM PROVERS

➜ Intro & motivation, getting started (today)

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

Slide 4

2

CREDITS

some material (in using-theorem-provers part) shamelessly stolen
from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don’t blame them, errors are mine

Slide 5

WHAT IS A PROOF ?

to prove (Marriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of

(by evidence or logic)

prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)

Slide 6

3

WHAT IS A MATHEMATICAL PROOF ?

In mathematics, a proof is a demonstration that, given certa in
axioms, some statement of interest is necessarily true.
(Wikipedia)

Example:
√

2 is not rational.

Proof: assume there is r ∈ Q such that r2 = 2.

Hence there are mutually prime p and q with r = p

q
.

Thus 2q2 = p2, i.e. p2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2.
Hence, q is also divisible by 2. Contradiction. Qed.

Slide 7

NICE, BUT..

➜ still not rigorous enough for some

• what are the rules?

• what are the axioms?

• how big can the steps be?

• what is obvious or trivial?

➜ informal language, easy to get wrong

➜ easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than
no cat, it must have nine tails.

Slide 8

4

WHAT IS A FORMAL PROOF ?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S

S ⊢ X
(assumption)

S ∪ {X} ⊢ Y

S ⊢ X −→ Y
(impI)

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

(conjI)
S ∪ {X, Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z
(conjE)

Proof:

1. {A, B} ⊢ B (by assumption)

2. {A, B} ⊢ A (by assumption)

3. {A, B} ⊢ B ∧ A (by conjI with 1 and 2)

4. {A ∧ B} ⊢ B ∧ A (by conjE with 3)

5. {} ⊢ A ∧ B −→ B ∧ A (by impI with 4)

Slide 9

WHAT IS A THEOREM PROVER ?

Implementation of a formal logic on a computer.

➜ fully automated (propositional logic)

➜ automated, but not necessarily terminating (first order logic)

➜ with automation, but mainly interactive (higher order logic)

➜ based on rules and axioms

➜ can deliver proofs

There are other (algorithmic) verification tools:

➜ model checking, static analysis, ...

➜ usually do not deliver proofs

Slide 10

5

WHY THEOREM PROVING?

➜ Analysing systems/programs thoroughly

➜ Finding design and specification errors early

➜ High assurance (mathematical, machine checked proof)

➜ it’s not always easy

➜ it’s fun

Slide 11

MAIN THEOREM PROVING SYSTEM FOR THIS COURSE

λ →

∀
=Is

ab
el

le

β
α

Isabelle

➜ used here for applications, learning how to prove

Slide 12

6

WHAT IS ISABELLE ?

A generic interactive proof assistant

➜ generic:
not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)

➜ interactive:
more than just yes/no, you can interactively guide the system

➜ proof assistant:
helps to explore, find, and maintain proofs

Slide 13

WHY ISABELLE ?

➜ free

➜ widely used systems

➜ active development

➜ high expressiveness and automation

➜ reasonably easy to use

➜ (and because I know it best ;-))

Slide 14

7

If I prove it on the computer, it is correct, right?

Slide 15

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

Slide 16

8

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual
proof

Slide 17

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle

HOL4

Slide 18

9

META LOGIC

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

Slide 19

META LOGIC – EXAMPLE

Syntax:

Formulae: F ::= V | F −→ F | F ∧ F | False

V ::= [A − Z]

Derivable: S ⊢ X X a formula, S a set of formulae

logic / meta logic

X ∈ S

S ⊢ X

S ∪ {X} ⊢ Y

S ⊢ X −→ Y

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

S ∪ {X, Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z

Slide 20

10

ISABELLE ’S META LOGIC

∧
=⇒ λ

Slide 21

∧

Syntax:
∧

x. F (F another meta level formula)

in ASCII: !!x. F

➜ universal quantifier on the meta level

➜ used to denote parameters

➜ example and more later

Slide 22

11

=⇒

Syntax: A =⇒ B (A, B other meta level formulae)

in ASCII: A ==> B

Binds to the right:

A =⇒ B =⇒ C = A =⇒ (B =⇒ C)

Abbreviation:

[[A; B]] =⇒ C = A =⇒ B =⇒ C

➜ read: A and B implies C

➜ used to write down rules, theorems, and proof states

Slide 23

EXAMPLE : A THEOREM

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ⊢ x < 0 ∧ y < 0 −→ x + y < 0

variation: x < 0; y < 0 ⊢ x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”

variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”

variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

Slide 24

12

EXAMPLE : A RULE

logic:
X Y
X ∧ Y

variation:
S ⊢ X S ⊢ Y

S ⊢ X ∧ Y

Isabelle: [[X ; Y]] =⇒ X ∧ Y

Slide 25

EXAMPLE : A RULE WITH NESTED IMPLICATION

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:
S ∪ {X} ⊢ Z S ∪ {Y } ⊢ Z

S ∪ {X ∨ Y } ⊢ Z

Isabelle: [[X ∨ Y ; X =⇒ Z; Y =⇒ Z]] =⇒ Z

Slide 26

13

λ

Syntax: λx. F (F another meta level formula)

in ASCII: %x. F

➜ lambda abstraction

➜ used for functions in object logics

➜ used to encode bound variables in object logics

➜ more about this in the next lecture

Slide 27

ENOUGH THEORY!

GETTING STARTED WITH ISABELLE

Slide 28

14

