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WHAT YOU WILL LEARN

O how to use a theorem prover

O background, how it works

O how to prove and specify
COMP 4161 O how to reason about programs

NICTA Advanced Course
Advanced Topics in Software Verification Health Waming

Gerwin Klein Theorem Proving is addictive
Formal Methods
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ORGANISATORIALS CONTENT — USING THEOREM PROVERS

When Mon  13:00 — 14:30 O Intro & motivation, getting started (today)

Wed  13:00 — 14:30 0 Foundations & Principles

e Lambda Calculus
Where  Mon:  Webst 250 o Higher Order Logic, natural deduction
Wed: Law Th G23 o Term rewriting

O Proof & Specification Techniques
http://www.cse.unsw.edu.au/"cs4161/ o Datatypes, recursion, induction
e Inductively defined sets, rule induction
e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs
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some material (in using-theorem-provers part) shamelessly stolen

-

Tobias Nipkow, Larry Paulson, Markus Wenzel

Don't blame them, errors are mine

WHAT IS A PROOF ?

to prove (Marriam-Webster)
O from Latin probare (test, approve, prove)
O to learn or find out by experience (archaic)
O to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere
O politics (weapons of mass destruction)
O courts (beyond reasonable doubt)
O religion (god exists)
O science (cold fusion works)

WHAT IS A MATHEMATICAL PROOF ?

In mathematics, a proof is a demonstration that, given certa in
axioms, some statement of interest is necessarily true.
(Wikipedia)

Example: /2 is not rational.

Proof: assume there is r € @ such that r? = 2.

Hence there are mutually prime p and ¢ with r = %.

Thus 2¢* = p?, i.e. p? is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢> = p? and dividing by 2 gives ¢> = 2s°.
Hence, ¢ is also divisible by 2. Contradiction. Qed.

O still not rigorous enough for some

e what are the rules?

e what are the axioms?

e how big can the steps be?

e what is obvious or trivial?
O informal language, easy to get wrong
O easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than
no cat, it must have nine tails.
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WHAT IS A FORMAL PROOF ? WHY THEOREM PROVING?

A derivation in a formal calculus

i i . 0O Analysing systems/programs thoroughly
Example: A A B — B A A derivable in the following system 0 Finding design and specification errors early
. Xes (assumption) SU{X}FY (impl) 0 High assurance (mathematical, machine checked proof)
Rules: SFX SEX —Y O it's not always easy
Sy (oni SSUU{{;(;\?}'_FZZ (con®) o
Proof:
1. {A,B}+ B (by assumption)
2. {A,B} - A (by assumption)
3. {A,B}-BAA (by conjl with 1 and 2)
4, {ANB}FBAA (by conjE with 3)
5. {}FAAB — BAA (byimplwith 4)
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WHAT IS A THEOREM PROVER ? MAIN THEOREM PROVING SYSTEM FOR THIS COURSE

Implementation of a formal logic on a computer.
O fully automated (propositional logic) W
)
O automated, but not necessarily terminating (first order logic) »

£\
0 with automation, but mainly interactive (higher order logic)
Isabelle
based on rules and axioms

u]
. 0O used here for applications, learning how to prove
O can deliver proofs
There are other (algorithmic) verification tools:
O model checking, static analysis, ...
O usually do not deliver proofs



WHAT IS ISABELLE ?

A generic interactive proof assistant

O generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
O interactive:

more than just yes/no, you can interactively guide the system
O proof assistant:

) . If | prove it on the computer, it is correct, right?
helps to explore, find, and maintain proofs

WHY ISABELLE ? IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGH

No, because:
0 free 0 hardware could be faulty
O widely used systems O operating system could be faulty
O active development 0 implementation runtime system could be faulty
O high expressiveness and automation 0 compiler could be faulty
O reasonably easy to use 0 implementation could be faulty
0 (and because | know it best ;-)) 0 logic could be inconsistent

O theorem could mean something else
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IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGH

No, but: Meta language:
The language used to talk about another language.
probability for Examples:

0 1and 2 reduced by using different systems English in a Spanish class, English in an English class

0 3and 4 reduced by using different compilers
O faulty implementation reduced by right architecture
0 inconsistent logic reduced by implementing and analysing it Meta logic:
O wrong theorem reduced by expressive/intuitive logics The logic used to formalize another logic
Example:
No guarantees, but assurance immensly higher than manual Mathematics used to formalize derivations in formal logic
proof

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGH META LOGIC — EXAMPLE

=
g
>

Soundness architectures Syntax:
Formulae: F:=V | F—F | FAF | False
careful implementation PVS Vi= [A-Z]
LCF approach, small proof kernel HOL4 Derivable: S+ X X aformula, S a set of formulae
Isabelle
logic / meta logic
explicit proofs + proof checker Coq Xes SU{X}FY
Twelf SEX SEFX —Y
Isabelle SEX SkY SU{X.YIFZ
HOL4 SEXAY SU{XAY}+Z



ISABELLE 'S META LoOGIC
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Syntax: Nz. F (F" another meta level formula)
inASCIl:  !Ix. F

O universal quantifier on the meta level
0O used to denote parameters
O example and more later

11

Syntax: A=— B (A, B other meta level formulae)
inASCIl: A ==>B

Binds to the right:
A=B=—C = A= (B=2C)
Abbreviation:

[A;B]—=C = A=B=C

O read: A and B implies C
O used to write down rules, theorems, and proof states

EXAMPLE: A THEOREM

mathematics: ifr<Oandy <0,thenz+y <0
formal logic: Fao<0ANy<0—az4+y<0
variation: r<0y<0F z+y<0

Isabelle: lemma "z <0Ay<0-—z+y<0
variation: lemma "z < 0;y < 0] =z +y <0"
variation: lemma

assumes "z < 0"and "y < 0" shows "z +y < 0"
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EXAMPLE: A RULE

logic: SN Syntax: Ao F (F' another meta level formula)

in ASCIl:  %. F
SEX StY

variation: SEXAY 0 lambda abstraction
O used for functions in object logics
u] t iables i ject logi

Isabelle: [X:Y] — X AY used to encoqe ?ound variables in object logics
O more about this in the next lecture
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EXAMPLE: A RULE WITH NESTED IMPLICATION

XY
Xvy 2z Z
logic: Z

SU{X}+zZ SuU{Y}+rZz
variation: SU{XVY}+rZ ENOUGH THEORY!
GETTING STARTED WITH ISABELLE

Isabelle: [XVY: X = ZY = Z] = Z
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