<» NICTA o NICTA
WHAT YOU WILL LEARN

O how to use a theorem prover

O background, how it works

O how to prove and specify
COMP 4161 O how to reason about programs

NICTA Advanced Course
Advanced Topics in Software Verification Health Waming

Gerwin Klein Theorem Proving is addictive
Formal Methods

‘,. NICTA o. NICTA
ORGANISATORIALS CONTENT — USING THEOREM PROVERS

When Mon 13:00 — 14:30 O Intro & motivation, getting started (today)

Wed 13:00 — 14:30 0 Foundations & Principles

e Lambda Calculus
Where Mon: Webst 250 o Higher Order Logic, natural deduction
Wed: Law Th G23 o Term rewriting

O Proof & Specification Techniques
http://www.cse.unsw.edu.au/"cs4161/ o Datatypes, recursion, induction
e Inductively defined sets, rule induction
e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs

Oe nicra

some material (in using-theorem-provers part) shamelessly stolen

-

Tobias Nipkow, Larry Paulson, Markus Wenzel

Don't blame them, errors are mine

WHAT IS A PROOF ?

to prove (Marriam-Webster)
O from Latin probare (test, approve, prove)
O to learn or find out by experience (archaic)
O to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere
O politics (weapons of mass destruction)
O courts (beyond reasonable doubt)
O religion (god exists)
O science (cold fusion works)

WHAT IS A MATHEMATICAL PROOF ?

In mathematics, a proof is a demonstration that, given certa in
axioms, some statement of interest is necessarily true.
(Wikipedia)

Example: /2 is not rational.

Proof: assume there is r € @ such that r? = 2.

Hence there are mutually prime p and ¢ with r = %.

Thus 2¢* = p?, i.e. p? is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢> = p? and dividing by 2 gives ¢> = 2s°.
Hence, ¢ is also divisible by 2. Contradiction. Qed.

O still not rigorous enough for some

e what are the rules?

e what are the axioms?

e how big can the steps be?

e what is obvious or trivial?
O informal language, easy to get wrong
O easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than
no cat, it must have nine tails.

‘,. NICTA o. NICTA
WHAT IS A FORMAL PROOF ? WHY THEOREM PROVING?

A derivation in a formal calculus

i i . 0O Analysing systems/programs thoroughly
Example: A A B — B A A derivable in the following system 0 Finding design and specification errors early
. Xes (assumption) SU{X}FY (impl) 0 High assurance (mathematical, machine checked proof)
Rules: SFX SEX —Y O it's not always easy
Sy (oni SSUU{{;(;\?}'_FZZ (con®) o
Proof:
1. {A,B}+ B (by assumption)
2. {A,B} - A (by assumption)
3. {A,B}-BAA (by conjl with 1 and 2)
4, {ANB}FBAA (by conjE with 3)
5. {}FAAB — BAA (byimplwith 4)

‘,. NICTA o. NICTA
WHAT IS A THEOREM PROVER ? MAIN THEOREM PROVING SYSTEM FOR THIS COURSE

Implementation of a formal logic on a computer.
O fully automated (propositional logic) W
)
O automated, but not necessarily terminating (first order logic) »

£\
0 with automation, but mainly interactive (higher order logic)
Isabelle
based on rules and axioms

u]
. 0O used here for applications, learning how to prove
O can deliver proofs
There are other (algorithmic) verification tools:
O model checking, static analysis, ...
O usually do not deliver proofs

WHAT IS ISABELLE ?

A generic interactive proof assistant

O generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
O interactive:

more than just yes/no, you can interactively guide the system
O proof assistant:

) . If | prove it on the computer, it is correct, right?
helps to explore, find, and maintain proofs

WHY ISABELLE ? IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGH

No, because:
0 free 0 hardware could be faulty
O widely used systems O operating system could be faulty
O active development 0 implementation runtime system could be faulty
O high expressiveness and automation 0 compiler could be faulty
O reasonably easy to use 0 implementation could be faulty
0 (and because | know it best ;-)) 0 logic could be inconsistent

O theorem could mean something else

o. NICTA

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGH

No, but: Meta language:
The language used to talk about another language.
probability for Examples:

0 1and 2 reduced by using different systems English in a Spanish class, English in an English class

0 3and 4 reduced by using different compilers
O faulty implementation reduced by right architecture
0 inconsistent logic reduced by implementing and analysing it Meta logic:
O wrong theorem reduced by expressive/intuitive logics The logic used to formalize another logic
Example:
No guarantees, but assurance immensly higher than manual Mathematics used to formalize derivations in formal logic
proof

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGH META LOGIC — EXAMPLE

=
g
>

Soundness architectures Syntax:
Formulae: F:=V | F—F | FAF | False
careful implementation PVS Vi= [A-Z]
LCF approach, small proof kernel HOL4 Derivable: S+ X X aformula, S a set of formulae
Isabelle
logic / meta logic
explicit proofs + proof checker Coq Xes SU{X}FY
Twelf SEX SEFX —Y
Isabelle SEX SkY SU{X.YIFZ
HOL4 SEXAY SU{XAY}+Z

ISABELLE 'S META LoOGIC

o. NICTA

Syntax: Nz. F (F" another meta level formula)
inASCIl: !Ix. F

O universal quantifier on the meta level
0O used to denote parameters
O example and more later

11

Syntax: A=— B (A, B other meta level formulae)
inASCIl: A ==>B

Binds to the right:
A=B=—C = A= (B=2C)
Abbreviation:

[A;B]—=C = A=B=C

O read: A and B implies C
O used to write down rules, theorems, and proof states

EXAMPLE: A THEOREM

mathematics: ifr<Oandy <0,thenz+y <0
formal logic: Fao<0ANy<0—az4+y<0
variation: r<0y<0F z+y<0

Isabelle: lemma "z <0Ay<0-—z+y<0
variation: lemma "z < 0;y < 0] =z +y <0"
variation: lemma

assumes "z < 0"and "y < 0" shows "z +y < 0"

". NICTA o. NICTA
EXAMPLE: A RULE

logic: SN Syntax: Ao F (F' another meta level formula)

in ASCIl: %. F
SEX StY

variation: SEXAY 0 lambda abstraction
O used for functions in object logics
u] t iables i ject logi

Isabelle: [X:Y] — X AY used to encoqe ?ound variables in object logics
O more about this in the next lecture

‘» NICTA o NICTA
EXAMPLE: A RULE WITH NESTED IMPLICATION

XY
Xvy 2z Z
logic: Z

SU{X}+zZ SuU{Y}+rZz
variation: SU{XVY}+rZ ENOUGH THEORY!
GETTING STARTED WITH ISABELLE

Isabelle: [XVY: X = ZY = Z] = Z

13 14

