

Introduction to Separation Logic

Rafal Kolanski

October 2008

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

OF QUEENSLAND

NICTA Partners

The University of Sydney

In this talk:

- background on pointers
- separation logic

NICTA

Pointers are everywhere!

- operating system kernels (Linux)
- device drivers
- network code (TCP/IP)
- web servers (Apache)
- anything involving C/C++
- even Java and ML have references

$\{ \text{ valid } p \land \text{ valid } q \}$ *q = 42;*p = 7; $\{ *p = 7 \land *q = ? \}$

$$p q$$
 $\downarrow \downarrow$

 $\Rightarrow *q = 42$

{ valid
$$p \land$$
 valid q }
 $*q = 42;$
 $*p = 7;$
{ $*p = 7 \land *q = ?$ }

Some Simpler Approaches

datatype ref = Ref int | Null

types heap = int \Rightarrow val

datatype val = Int int | Bool bool | Struct_x int int bool | \dots

- hp :: heap, p :: ref
- pointer access: *p = the_Int (hp (the_addr p))
- pointer update: *p :== v = hp :== hp ((the_addr p) := v)
- a bit klunky
- gets worse with structs
- lots of value extraction (the_Int) in spec and program

A linked list struct with next pointer and element:

datatype ref = Ref int | Null types next_hp = int \Rightarrow ref types elem_hp = int \Rightarrow int

- next :: next_hp, elem :: elem_hp, p :: ref
- pointer access: p->next = next (the_addr p)
- pointer update: p->next :== v = next :== next ((the_addr p) := v)
- a separate heap for each struct field
- p->next and p->elem can't alias
- assumes a type-safe language
- p1->next and p2->next can still alias

Separation Logic

The Heap

types heap = "nat \rightarrow nat"

The heap represents computer memory

- partial map: allocated and unallocated regions
- emp: a heap with no allocated regions
- we'll use a simple version based on natural numbers
- and steal 0 to mean the null pointer

- assign resources (e.g. heap) to predicates
- predicates consume resources
- no resource sharing across separating conjunction

 $P \wedge^* Q$ (

 $h_0 \perp h_1 \equiv \operatorname{dom} h_0 \cap \operatorname{dom} h_1 = \{\}$

 $(\mathbf{P} \wedge^* \mathbf{Q}) \mathbf{h} \equiv \exists h_0 \ h_1. \ h = h_0 + h_1 \wedge h_0 \perp h_1 \wedge \mathbf{P} \ h_0 \wedge \mathbf{Q} \ h_1$

$$\frac{\{p \mapsto -\} f p s \{p \mapsto \blacksquare\}}{\{p \mapsto -\wedge^* Q\} f p s \{p \mapsto \blacksquare \wedge^* Q\}}$$

The Frame Rule

 $\{P\} stmt \{P'\}$ $\{P \land ^* Q\} stmt \{P' \land ^* Q\}$

Precise Mapping Predicates

NICTA

$$(p \mapsto v) \ h \equiv (h \ p = \text{Some } v \land \text{dom } h = \{p\})$$

 $(p \mapsto -) \equiv \exists v. \ (p \mapsto v)$

The maps-to predicate defines a heap

- with only one valid pointer
- combine with other mappings to make bigger heaps
- remember to use separating conjunction!

Demo

A Programming Model

What's old:

- local variables used for calculations
- the usual constructs: SKIP, IF, WHILE, ";"
- and local variable assignment
- with identical Hoare rules

What's new:

- a variable representing the heap
- want precise specification of assignment to pointer

NICT

need a way to allocate/free memory

Allocation rule:

$$\{ \text{ emp } \} \text{ alloc } x \ [e_1, e_2, \ldots, e_n] \{ x \mapsto e_1 \land^* \ldots \land^* x + n \mapsto e_n \}$$

Disposal rule:

 $\{ x \mapsto - \} \text{ dispose } x \{ \text{ emp } \}$

The normal, local assignment rule:

 $\{ x \mapsto - \} [x] := v \{ x \mapsto v \}$

Using the magic wand (separating implication):

$$(\mathbf{P} \longrightarrow^* \mathbf{Q}) \mathbf{h} \equiv \forall h' \ . \ h' \perp h \land \mathbf{P} \ h' \longrightarrow \mathbf{Q} \ (h + + h')$$

we can make it a backwards-reasoning rule:

$$\{ x \mapsto - \wedge^* (x \mapsto v \longrightarrow^* \mathbf{P}) \} [x] := v \{ \mathbf{P} \}$$

Reversing a Linked List

Demo

Conclusion

Separation Logic

- is a nice way to reason about pointers
- doesn't need specification of what doesn't change

