Qe

NICTA

Introduction to Separation Logic

Rafal Kolanski

October 2008

S Australian Government
i 4 S U N

Tt " Department of Broadband, Communications
and the Digital Economy
Australian Resesrch Council

—

Overview

In this talk:
e background on pointers
e separation logic

Why Reason about Pointers?

Pointers are everywhere!

e operating system kernels (Linux)

e device drivers

e network code (TCP/IP)

e web servers (Apache)

e anything involving C/C++

e even Java and ML have references

The Problem with Pointers

{ valid p A valid ¢ }
*xq = 42;
xp = T;

{*xp=TAxq="7}

The Problem with Pointers

p g
Tl
{ valid p A valid ¢ } — xq = 42
*xq = 42;
*p = T;
{*xp=TAxq="7} b4

Some Simpler Approaches

A Simple Plan

datatype ref = Ref int | Null
types heap = int = val

datatype val = Int int | Bool bool | Struct_x int int bool | ...

e hp :: heap, p :: ref
e pointer access: *p = the_Int (hp (the_addr p))
e pointer update: *p :==v = hp :== hp ((the_addr p) :=v)

e a bit klunky
e gets worse with structs
e |ots of value extraction (the_Int) in spec and program

Burstall /2 / Bornat '00

A linked list struct with next pointer and element:

datatype ref = Ref int | Null
types next_hp = int = ref

types elem_hp = int = int

e next :: next_hp, elem :: elem_hp, p :: ref
e pointer access: p->next = next (the_addr p)
e pointer update: p->next :==v = next :== next ((the_addr p) := v)

e 3 separate heap for each struct field
e p->next and p->elem can't alias

e assumes a type-safe language

e pl->next and p2->next can still alias

Separation Logic

types heap = “nat — nat”

The heap represents computer memory
e partial map: allocated and unallocated regions
e emp: a heap with no allocated regions
e we'll use a simple version based on natural numbers
e and steal 0 to mean the null pointer

Separating Conjunction

P ([I) A Q ()
P A* Q ([I)

Primary mechanism of separation logic
e assign resources (e.g. heap) to predicates
e predicates consume resources
* NO resource sharing across separating conjunction

hOJ_hlzdomhoﬂdomhlz{}
(P/*Q)hEHthl.h:ho—l——l—hl/\hoJ_hl/\Pho/\th

Benefits of Local Reasoning

Benefits of Local Reasoning

Benefits of Local Reasoning

Benefits of Local Reasoning

Benefits of Local Reasoning

{p——A"Q} fps {p— IR N O}

Benefits of Local Reasoning

{p——=1} fprs {p— IR}
{p——=—A*0Q} fps {p—~ HRN O}

Benefits of Local Reasoning

The Frame Rule

{ P} stmt { P}
{ PA*(Q} stmt { P'Ax(O)}

Precise Mapping Predicates

(p+— v) h=(hp=Somewv Adom h = {p})
p =)= (p—0)

The maps-to predicate defines a heap
e with only one valid pointer
e combine with other mappings to make bigger heaps
e remember to use separating conjunction!

R R .

Defining a Linked List

Demo

A Programming Model

What's old:
e |ocal variables used for calculations
e the usual constructs: SKIP, IF, WHILE, ";"
e and local variable assignment
e with identical Hoare rules

What's new:
e 3 variable representing the heap
e want precise specification of assignment to pointer
e need a way to allocate/free memory

Allocation and Disposal

Allocation rule:

{ emp } alloc x |e1, €9, ..., ex]{x— 1 A*Y .. N z+n— e, }

Disposal rule:

{ x+— — } dispose x { emp }

Assignment

The normal, local assignment rule:

{z——-} x| =v{x—0v}

Using the magic wand (separating implication):

(P—*Q h=Vh.H LhAPK — Q (h++ K

we can make it a backwards-reasoning rule:

{z—-N"(x—v—"P)} x| =v{P}

R R .

Reversing a Linked List

Demo

Separation Logic
e |S a nice way to reason about pointers
e doesn't need specification of what doesn't change

