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Partial Order Reduction

Ralf Huuck
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The Problem

Many concurrent components:

Trying to build the product state space ... 

Algorithmic Verification Ralf Huuck 3

State Explosion

Worst case: number of states 
increases exponentially 

with number of processes.

Worst case: number of states 
increases exponentially 

with number of processes.
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What to do?

Worst case: number of states 
increases exponentially 

with number of processes.

Worst case: number of states 
increases exponentially 

with number of processes.

Try minimizing the effect by reduction heuristics, e.g.:
Partial Order Reduction

Try minimizing the effect by reduction heuristics, e.g.:
Partial Order Reduction
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Overview

• Informal explanation
• Framework for partial order reduction (POR)
• POR in SPIN
• Summary
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Introduction
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Motivation

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

consider interleaving execution,
what are the possible runs?
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Expanded Asynchronous Product

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2
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Expanded Asynchronous Product

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

How many 
runs are in
this system?

Algorithmic Verification Ralf Huuck 10

Possible Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

These 3 plus
3 symmetric 
ones, i.e., 6
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Dependencies (1)

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

assume x, y are local variables,
g is a global variable

Which operations are actually dependent 
and which are independent?
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Dependencies (2)

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

Dependent:
g:=g+2, g:=g*2 share same object
x:=1, g:=g+2 ordered in same automaton
y:=1, g:=g*2 ordered in same automaton

Independent:
x:=1, y:=1
x:=1, g:=g*2
y:=1, g:=g+2
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Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

These 3 runs
are equivalent
wrt independencies,
same for other 3 runs
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Idea

• partitioning into equivalent classes
• we have to select one run in each class only
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Necessary Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Eliminating all
independencies.
2 runs left
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Proving Properties

• G(g=0 ∨ g>x)
• F(g≥2)

• (g=0)U(x=1) all hold in reduced graph, i.e.,
considering only 2 necessary runs
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Proving Properties

• G(g=0 ∨ g>x)
• F(g≥2)

• (g=0)U(x=1)

• G(x≥y)

all hold in full and reduced graph,
with states of the 2 necessary runs

holds in reduced graph,
but not full graph

WHY?
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Visibility

• introduces dependency that was not assumed to exist
• dependencies not only from data objects but also formula
• remove x:=1, y:=1 from independencies
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Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 1
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Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 2
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Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 3
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Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 4
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Questions

• Given a set of processes how can we automatically identify 
classes of equivalent runs?

• How to avoid full construction upfront, but
deciding on-the-fly which states and transitions are 
necessary?

Such techniques are addressed as partial
order reduction, which, e.g., SPIN makes use of.
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Theory
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Labeled Transition System

(S,s0,A,τ,Π,L) is labeled transition system
where
• S finite set of states
• s0 initial state
• A finite set of actions
• τ: S× A→ S (partial) transition function
• Π finite set of Boolean propositions
• L:S→ 2Π labeling function

(similar to a Kripke structure with symbols on transitions)
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enabled/reachable

• action a∈A is enabled in state s∈S 
iff τ(a,s) is defined

• enabled(s) denotes set of all actions enabling  in transition 
from state s 

• sate s is deadlock state iff enabled(s)=∅
• execution sequence is sequence of subsequent transitions
• state s is reachable iff there exists an execution sequence 

from s0 to s
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Example

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

enabled actions
in (0,0,0)

deadlock statedeadlock state
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Partial Order Reduction

• avoid construction including “unnecessary” interleavings if 
possible

• decide per state which outgoing transitions to include
• reduction function r:S→ 2A, i.e., which actions have to be 

taken care of in a certain state 
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Reduced LTS

smallest (Sr,s0r,Ar,τr,Πr,Lr) such that

• Sr ⊆ S, 

• s0=s0r, 
• Lr=L∩(Sr× 2Π)

• for any s∈ Sr and a∈r(s) where τ(s,a) is defined, 
τr(s,a) is defined 
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Independence

two actions a,b∈A (a≠b) are independent
iff for all states s∈S where {a,b}⊆enabled(s)

1. b∈enabled(τ(s,a)) and a∈enabled(τ(s,b))

2. τ(τ(s,a),b) = τ(τ(s,b),a) 

This means actions do not disable each other (1) and
their permutation leads to the same state (2).
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Example

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

independent
actions

Other independent
actions?

Other independent
actions?
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Proving Properties
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Properties

POR is typically done with respect to certain classes of 
properties, e.g.:

• absence of deadlock,
• local property, depends on state of a single process 

or state of single shared object
• next-free LTL property, i.e., LTL with until operator only
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Preserving Deadlock

To preserve deadlock states the reduction function must 
satisfy:

C0 r(s)=∅ iff enabled(s)=∅
C1 (persistency) for any execution sequence 

with all ai∉r(s) (0·i<n), an-1 is independent of all ai∈ r(s)
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Example

s
α

α

β3 α

α

β1

β2

β2

β3

This path can be omittedThis path can be omitted

β1

deadlock statedeadlock state
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Theorem

Any reduced system satisfying C0 and C1
preserves deadlocks.

Any reduced system satisfying C0 and C1
preserves deadlocks.
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Local Properties

property φ is local
iff

for all s∈ S and independent actions a,b∈ A
if {a,b}⊆enabled(s) then:
if φ holds in s but not in τ(s,a)
then φ holds in τ(s,b) but not in τ(τ(s,b)a).

Intuition: φ cannot be changed by the combined effect of two 
independent actions, it only depends on local changes.
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Example

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

local
property

x=0
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Preserving Local Properties

To preserve local properties the reduction function must 
satisfy:

C2 (cycle) for any cyclic execution sequence 

where, sn=s0 there is an si (0· i<n) such that r(si)=enabled(si)
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Example

0

1

0

1

1b

a1

a0

a2

p

¬p

q

q

q

Two concurrent processes,
a’s and b are independent
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Full State Graph

0

1

1

a1

a0

a2

p,q

p.q

p,q

0

1

1a1

a0

a2

¬p,q

¬p,q

¬p,q

b

b

b
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Full State Graph

0

1

1

a1

a0

a2

p,q

p.q

p,q

0

1

1a1

a0

a2

¬p,q

¬p,q

¬p,q

b

b

ba’s and b are independent,
whenever having the choice
between them, why not choosing
some a?
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Reduced State Graph?

0

1

1

a1

a0

a2

p,q

p.q

p,q

0

1

1a1

a0

a2

¬p,q

¬p,q

¬p,q

b

b

b

This means, we never see
b and never ¬p.

C2 requires in any cycle
there is an si (0· i<n) such 
that r(si)=enabled(si).

Therfore, cannot hide ¬p completely!
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Theorem

Any reduced system satisfying 
C0, C1, and C2

preserves local properties.

Any reduced system satisfying 
C0, C1, and C2

preserves local properties.
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Next-free LTL

• only allows Until as temporal operator,
• strict subset of LTL
• cannot, e.g., distinguish between the next and the second 

next state
• closed under stuttering
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Invisibility

prop(φ) set of propositions in φ

• action a is φ-invisible in s iff
τ(s,a) is undefined or π∈ L(s) ⇔ π ∈ L(τ(s,a)) for all π∈
prop(φ)

• a is globally φ-invisible iff
it is φ-invisible for all s∈S

This means some action cannot change some truth value.
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Preserving Next-free LTL

C3 (invisibility) for any state s∈S, 
all actions are globally φ-invisible or r(s)=enabled(s)
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Example (1)

s
α

α

β3 α

α

β1

β2

β2

β3

β1

¬p

p

p

p

p

¬p

¬p

¬p

α globally
φ−invisible
α globally
φ−invisible

Which LTL and/or next-free LTL
propertied do (not) hold here?

More sophisticated examples?
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Example (2)

s
α

α

β3 α

α

β1

β2

β2

β3

β1

¬p

p

p

p

p

¬p

¬p

¬p

This path can be omittedThis path can be omitted
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Theorem

Any reduced system satisfying 
C0, C1, C2, and C3

preserves next-free LTL properties.

Any reduced system satisfying 
C0, C1, C2, and C3

preserves next-free LTL properties.
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Well, yes but ...

• We defined constraints such that a reduced system still 
satisfies certain properties.

• But: How to find a suitable reduction?
• Also: building full state graph and then reducing is 

inefficient. 

Challenging!

Let’s have a look at SPIN ... 
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POR in SPIN
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System Construction in SPIN

1. depth first search
2. reduction function based on process structure
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Preliminaries

(S,s0,A,τ,Π,L) full LTS from set of processes P
each process P∈P is set of actions, i.e., P⊆A

we assume: P is a partitioning of A, i.e,
1. P,Q∈P, P≠Q ⇒ P∩Q=∅, and

2. A=∪P∈PP 

Pid:A→P returns process (ID) for a given action
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Restriction of Process Structure

We do not allow concurrency within a process:

for all a,b∈ P, a≠ b, s∈ S:
a,b∈enabled(s) ⇒ b∉enabled(τ(s,a))

This means we still have choice (if-then-else) in a process, 
but no processes within processes.
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Safety

Action a is safe
iff

it is independent from any b where Pid(a)≠Pid(b)
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Safety Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

Which actions are safe in this example?
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Safety Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

safe actions

They are independent of any action in other process.
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Next-free Safety

Action a is safe
iff

it is independent from any b where Pid(a)≠Pid(b)

Action a is next-free safe for some φ∈LTL-X

iff

• it is independent from any b where Pid(a)≠Pid(b), and
• globally φ-invisible
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Next-free Safe Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

Which actions are next-free safe for:

• G (g=2)
• G (x<g) 
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Next-free Safe Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

next-free safe actions
for φ=G (g=2)

Other (counter)examples?Other (counter)examples?
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Reduction Function Ample (part 1)

Let s∈S be a state. Let P∈P be a process such that
1. enabled(s)∩ P ≠∅
2. for all a∈enabled(s)∩P, a is (next-free) safe
3. for all a∈enabled(s)∩P, τ(s,a) is not on DFS stack 
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Reduction Function Ample

Let s∈S be a state. Let P∈P be a process such that
1. enabled(s)∩ P ≠∅
2. for all a∈enabled(s)∩P, a is (next-free) safe
3. for all a∈enabled(s)∩P, τ(s,a) is not on DFS stack 

.

Remember DFS algorithm?
Stack keeps record of states we 
have seen before, but not fully 

explored.
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Reminder: DFS Algorithm

q3

q4

q2

q1

q5

q1  q2 q4

q1

q2

q4

Stack:

Hash table:



17

Algorithmic Verification Ralf Huuck 65

Reduction Function Ample (part 2)

Let s∈S be a state. Let P∈P be a process such that
1. enabled(s)∩ P ≠∅
2. for all a∈enabled(s)∩P, a is (next-free) safe
3. for all a∈enabled(s)∩P, τ(s,a) is not on DFS stack 

We define a reduction function ample as follows:
• if there is no such process then ample(s)=enabled(s).
• otherwise choose arbitrary P satisfying above 

requirements and define ample(s)=enabled(s)∩P.

Algorithmic Verification Ralf Huuck 66

Example (POR deadlock)

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

deadlock

What are the 
ample sets?

Consider simple
safety only.

What are the 
ample sets?

Consider simple
safety only.
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Example (POR deadlock)

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

deadlock

ample sets for
deadlock

ample sets for
deadlock

∅ ∅
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Reduction (POR deadlock)

deadlock 0,0,0 x,y,g

0,1,0

1,1,0

1,1,2 1,1,0

1,1,21,1,4

y:=1

x:=1

g:=g+2

g:=g*2

g:=g*2

g:=g+2
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Example (2)

x,y,gφ = F (g=2)

ample sets for
next free-safe

ample sets for
next free-safe

0,0,0

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

∅ ∅
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Reduction (2)

0,0,0 x,y,g

0,1,0

1,1,0

1,1,2 1,1,0

1,1,21,1,4

y:=1

x:=1

g:=g+2

g:=g*2

g:=g*2

φ = F (g=2)

g:=g+2
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Example (3)

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

φ = F (x<y)

ample sets for
next free-safe

ample sets for
next free-safe

∅ ∅

no reductionno reduction
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On-the-fly Construction

Constructing full state space first and then reducing it is not 
very smart, but:

.

Basically, use DFS algorithm for state space construction and 
only follow the paths in the ample sets.

POR does not always help, but the more independent actions 
the better.

We can do POR while construction the state spaceWe can do POR while construction the state space
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Summary
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Partial Order Reduction

• tackles state explosion
• general framework for reduction
• SPIN example for implementation of reduction function
• other methods out there, e.g., symmetry reduction, 

automata minimizations, abstractions etc.
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Good news ☺

We are done with “standard” model checking.We are done with “standard” model checking.


