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Basics

Basic objects in mathematics
• number (number theory, analysis)
• shapes (geometry)
• sets and transformation on such objects

Basic objects in computer science
• words
• stet of words (language) 

and their transformations
• defining and describing words
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Why words?

• Every IT system is about data and transformation of data

10101010100000101010111110
word from alphabet {0,1}

• program is also just a finite word
• every terminating execution is a finite word
• a programming language is the set of all permissible words

(i.e., accepted programs)

Automata and Grammars are all about accepting/generating 
words and defining a language.
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Automaton

so s1

a

b

b

a

defines language of
all words over alphabet {a,b} with an odd number of b’s.

final/accepting 
state
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Finite Automata
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Words & Languages

An alphabet is a non-empty set of symbols/letters.

Σb = {0,1} Σlat = {a,…z,A,…,Z}

A word is a sequence of symbols from an alphabet

01111010 ∈ Σ*
b hello ∈ Σ*

lat

A language is the set of all possible words

Σ*
b  (all finite Boolean words) Σ*

lat (all finite words of latin characters)

A grammar/automaton restricts  to meaningful languages

all 8-bit words all English words
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Operations on Words

Concatenation of words: u=a1…am and v=b1…bn (m,n≥0)

u · v = a1…amb1…bn

Note: empty word ε, word of length 0, but not ∅

u · ε = u= ε · u 

We often write uv instead of u · v.
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Operations on Languages

Concatenation of languages K and L:

K · L = {uv ∈ Σ* | u∈ K, v∈ L}

Example: K={follow, me} L={follow, you} 
K · L= {followfollow, meyou, followyou}
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Kleene Star

Iterating a language L

L0={ε}
L1=L
L2=L·L
Ln+1=Ln·L

Kleene star: L*=Un≥ 0 Ln

Example: {a,b}* = {ε,a,b,aa,bb,ab,ba, aab, …} 
all finite sequences over {a,b}.
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Deterministic vs Non-Deterministic

Deterministic Finite Automaton 
(DFA)

from every state every symbol leads 
to a unique state

To model algorithms. 

Non-deterministic Finite Automaton 
(NFA)

from a state the same symbol might 
lead t o different states or no 
state

To model a systems or environment.

s0 s1

a

b

b

a

s0 s1

a, b

b

b

b
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Definition DFA

A DFA is of the form

A=(S,Σ,s0,δ,F)

where
• S finite set of states
• Σ alphabet
• s0 initial state
• δ : S×Σ → S transition function
• F⊆ S set of final states

s0 s1

b

b

a
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Accepting Run of DFA

A run over a word w=a0,…,an (n≥0) of an DFA 

is a sequence of states 
q0,…, qn+1

such that 
• q0 = s0 and 
• δ (qi,ai)=qi+1 (0· i · n)

We also write δ (q0,w)=qn+1.

A run is accepting iff qn+1 ∈ F.

s0 s1

b

b

a
a
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Language of DFA

The language accepted by DAF A is

L(A) = {w∈ Σ* | δ (s0,w)∈F }

A language K is called DFA accepting
if there is a DFA such that L(A)=K. 

Two DFAs A and B are equivalent of L(A)=L(B).
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Definition NFA

A NFA is of the form

A=(S,Σ,s0,Δ,F)

where
• S finite set of states
• Σ alphabet
• s0 initial state
• Δ :S×Σ×S transition relation
• F⊆ S set of final states

s0 s1

a, b

b

b

b

no longer
function
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Accepting Run of NFA

A run over a word w=a0,…,an (n≥0) of an NFA 

is a sequence of states 
q0,…, qn+1

such that 
• q0 = s0 and 
• (qi,ai,qi+1)∈ Δ (0· i · n)

We also write q0→
w qn+1.

A run is accepting iff qn+1 ∈ F.

s0 s1

a, b

b

b

b
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Language of NFA

The language accepted by NFA A is

L(A) = {w∈ Σ* | s0→
w s and s∈F }

A language K is called NFA accepting
if there is a NFA such that L(A)=K. 

Two NFAs A and B are equivalent of L(A)=L(B).
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Question

Is there a language that is 
either a DFA or an NFA accepting,

but not both?
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Answer: No

Claim: L DFA accepting ⇔ L NFA accepting

Proof:
L DFA accepting  ⇒ L NFA accepting

easy: every DFA is in particular an NFA, 
just relax δ to be a relation

L NFA accepting ⇒ L DFA accepting

slightly harder, idea see next slide
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Idea: NFA to DFA

s0 s1

a, b

b

b

b

{s0}

{s0,
s1}

a

{}

{s1}

b

a, b

aa

b

b

DFANFA

Power set construction

• state space power set 
• keep initial state
• for every symbol and state have a
transition to the exact reachable subset

• all states which contain a final state are final states
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Definition Power Set Automaton

Given NFA A=(S,Σ,s0,Δ,F). 

Define power set DFA A’=(S’,Σ,s0’,δ,F’) as follows:

• S’ := 2S

• s0’ := {so}
• δ (P,a) ={q∈ S | there is p∈ P : (p,a,q)∈ Δ}
• F’ := {P⊆ S | P ∩ F ≠ ∅}

Session 1 2006 Ralf Huuck 24

Proof NFA ⇒ DFA

Lemma: We show A and A’ are equivalent by showing
A: s0 →

w s iff s∈ δ({s0},w)
Proof: A: s0 →

w s 
iff s∈ ReachA(w) 

iff s∈ δ({s0},w).

This implies: 
A: s0 →

w s with s∈ F 

iff s∈ δ({s0},w) ∩ F ≠ ∅
Hence: A is w accepting iff A’ is w accepting.

reachable 
states for w
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Regular Expression
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Another Way of Defining a Language

Example
• all words starting with 1 or 3 a’s
• followed by a possible sequence of ab’s
• followed by at least 1 b

Regular Expression
(a + aaa) · (a · b)* · b · b*

Brackets and concatenation symbols are sometimes omitted when clear from the context.
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RE Syntax

Definition: The set of regular expressions REΣ over Σ = 
{a1,…,an} is defined inductively by:

Base elements: ∅, ε, a1,…,an

Constructors: if r and s are regular expression so are 
(r+s), (r · s), and r*

Alternatively this can be defined in terms of a BNF grammar.
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RE Semantics

We define a language L(r)⊆ Σ* (set of words) for every regular 
expression r∈ REΣ as follows:

L : REΣ → 2Σ is defined inductively:

1. L(∅)=∅, L(ε)={ε}, L(ai)={ai}
2. L(r+s) = L(r) + L(s)

L(r · s) = L(r) · L(s)
L(r*) =(L(r))*

A language is regular if it is definable by a regular expression. 
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Regular Expressions in UNIX

• [a1, a2, …, an ] instead of a1 + a2 + … + an

• “.” instead of Σ (any letter)
• | instead of +

• r? instead of ε + r
• r+ instead of r*r
• r{4} instead of rrrr
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Question

Is there a language that can be expressed
either by an NFA/DFA  or an RE

but not both?
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Answer

Kleene’s Theorem
who also braught us the Kleene algebra, the Kleene star,
Kleene's recursion theorem and the Kleene fixpoint theorem

For every RE there is an equivalent NFA and  
for every NFA there is an equivalent RE.

We  give the proof (sketch) by 
a) presenting an inductive construction from RE to NFA and 
b) the idea of a transformation algorithm from NFA to RE
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Induction Base

case r=∅: define Ar as

case r=ε: define Ar as

case r=a (a∈ Σ): define Ar as

RE to NFA: Thompson Construction

s0 s1

s0 s1

s0 s1

ε

a
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Induction Step

case r+s:
define Ar +  As as

case r · s:
define Ar · A

s
as

case r*: 
define Ar

*as

RE to NFA: Thompson Construction

Ar

As

ε

ε

ε

ε

Ar As
ε

Ar

ε

ε ε

ε
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Idea: NFA to RE

Claim: For every NFA we can construct an equivalent RE.
Proof (idea): Create RE from transition labels of NFA.

There is a graph transformation algorithm that does exactly 
this. It is know as the elimination algorithm.
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Start

transform

to

Example

a

b

a
a

a

b

b+aa a

b

a

a+ (b+aa) b* a
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Closure Properties, Product Automaton

If K,L∈ Σ* regular then K∩ L, K∪ L and Kcomp := Σ* \ K regular.

E.g.:K∩L can be obtained by synchronous product automaton 
A× : For NFA Ak=(Sk,Σ,s0k,Δk,Fk) for K and 
AL=(SL,Σ,s0L,ΔL

,FL) for L we define:

A× := (Sk× SL,Σ,(s0k,s0L),Δ,F) where
• ((sk,sl),a,(s’k,s’l)) ∈ Δ iff (sk,a,s’k)∈ Δk and (sL,a,s’L)∈ ΔL

• F := Fk × FL

Idea: Run Ak, AL in parallel and only accept if both accept. 
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Example
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Synchronized Product

A synchronized product on NFAs
A1=(S1,Σ0∪Σ1,s01,Δ1,F1), A2=(S2,Σ0∪Σ2,s02,Δ

2
,F2) 

with disjoint Σ0, Σ1, Σ2 is defined by:

Async:= (S1× S2,Σ,(s01,s02),Δ,F) where
• ((s1,s2),a,(s’1,s’2))∈ Δ iff

– a∈Σ1, (s1,a,s’1)∈Δ1, s2=s’2 or
– a∈Σ2, (s2,a,s’2)∈Δ2, s1=s’1 or
– a∈Σ0, (s1,a,s’1)∈Δ1 and (s2,a,s’2)∈Δ2

• F := F1 × F2

Means: A1, A2 can move independently on Σ1, Σ2, but must synchronize on Σ0
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Example
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Good To Knows

For any NFAs A,B:

• emptiness problem: L(A)=∅?

• infinity problem: Is |L(A)| infinite?
• inclusion problem: L(A)⊆ L(B)?

• equivalence problem: L(A)=L(B)?

are all decidable.
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Model Checking as Inclusion Problem

Model Checking Problem:

M ² φ ?

Special case:

Solving by: Transform RE B in NFA and check if L(A)⊆ L(B)

which is checking: L(A)∩(Σ*\ L(B))=∅

System satisfies property ?

NFA A satisfies RE B
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Model Checking as Inclusion Problem

Model Checking Problem:

M ² φ ?

Typical: Model checking is not only concerned about finite 
runs but also infinite, e.g., for non-terminating processes.

This requires more powerful  frameworks:

ω−Automata instead of NFAs, temporal logic instead of RE. 

System satisfies property ?
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Something to Remember

Programmer
• Regular expressions powerful for pattern matching
• Implement regular expressions with finite state machines.
• example: lexer

Theoretician
• Regular expression is a compact description of a set
• DFA is an abstract machine that solves pattern match
• equivalence DFA/NFA and regular expressions
• model checking as inclusion problem
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ω − Automata
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From Finite to Infinite Systems

So far: 
• DFA/NFA and regular expressions define finite systems
• terminating programs, algorithms etc.

Now:
• infinite systems, i.e., systems with infinite runs
• non-terminating programs, operating systems, etc.

Infinite words are called ω words and the automata generating 
them ω automata.
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Buchi Automata

A (non-deterministic) Buchi automaton  〈Σ, S, s0, Δ,F〉
– Σ is a finite alphabet
– S is a finite set of states
– s0 ∈ Q is a subset of initial states
– Δ: Q×Σ ×Q is a transition relation
– F ⊆ S is a subset of accepting states

For an infinite run r let Inf(r) = { s | s=si for infinitely many i }.

A run r of a Buchi automaton is accepting iff Inf(r)∩ F≠ ∅,
i.e., some final state occurs infinitely often.
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Example

s0 s1 s2

r1=s0s1s2s2s2s2…

r2=s0s1s2s1s2s1…

r3=s0s1s2s1s1s1…

ACCEPTED

ACCEPTED

REJECTED

a

b

b

c

a
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ω−regular Languages

An ω word has a finite prefix from s0 to s and then revisits s 
infinitely often. 

For automaton A, if Us is the regular set of all finite words s0 to 
s and Vs the regular set of all finite “revisits”. An ω word is 

α=uv0v1… where u∈ Us, vi∈ Vs, i≥ 0
We write α∈ UsVω

s.

The ω regular language of A is Lω(A)=Us∈ F UsVω
s .

A language is ω regular iff Buchi recognizable.
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Other ω−Automata

There are different types of ω-automata. They typically only 
differ in their acceptance conditions.

Buchi: Inf(r)∩F ≠ ∅,

Muller: ∨F∈ F Inf(r)=F for F⊆ 2S (must match one set)

Rabin: ∨n
i=1 (Inf(r)∩Ei=∅ and Inf(r)∩Fi ≠ ∅) for Ei,Fi⊆ S and 

acceptance set {(E1,F1),…,(En,Fn)}, i.e., all states of Ei only 
visited finitely often, but some states of Fi infinitely

Street: ∧ n
i=1 (Inf(r)∩Ei≠∅ and Inf(r)∩Fi= ∅) for Ei,Fi⊆ S and 

acceptance set {(E1,F1),…,(En,Fn)} (dual to Rabin)
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Equivalence

For non-deterministic ω-automata the following are equivalent
(recognize the same language):

Buchi
⇔ Muller 
⇔ Rabin
⇔ Street
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McNaughton’s Theorem

McNaughton’s Theorem: 
Buchi can be transformed into equivalent deterministic Muller.

From its proof (Safra’s construction) follows:

deterministic Muller, 
⇔ deterministic Rabin, 
⇔ deterministic Street and 
⇔ non-deterministic Buchi
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Conclusion

non-deterministic Buchi
⇔ Muller (deterministic/non-deterministic) 
⇔ Street (deterministic/non-deterministic) 
⇔ Rabin (deterministic/non-deterministic)
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Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product using the same construction as for NFAs: 

(r1,s1)

A1×A2

(r2,s1)

(r1,s2) (r2,s2)

Does not work! As obviously

L(A1× A2)= L(A1)=L(A1)= {aω}
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Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product

(r1,s1)

A1×A2

(r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)(r1,s1)

(r1,s2) (r2,s2)

Copy 0 Copy 1 Copy 2

a

a a

a

a
a
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Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product

(r1,s1)

A1×A2

(r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)(r1,s1)

(r1,s2) (r2,s2)

Copy 0 Copy 1 Copy 2

a

a

a

aaa
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Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product

(r1,s1)

A1×A2

(r2,s2)

(r1,s1)

(r2,s2)

aa

a
a
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Product of  Buchi Automata

Strategy
• “multiply” the product automaton by 3

(S = S1 × S2 × {0,1,2} )

• ‘0’ copy initial states, ‘2’ copy final states
• transition relation like “normal” product automaton, but 

redirect arcs such that
– transition to the ‘1’ copy if in ‘0’ copy and visiting  final state from A1

– transition to the ‘2’ copy if in ‘1’ copy and  visiting final state from A2, 
– all transitions from ‘2’ copy lead to ‘0’ copy

The product of A1, A2 gives us the intersection of their two languages.
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Lessons Learned

• DFA vs NFA
• regular vs DFA/NFA
• product of NFAs (intersection of languages)

• ω automata
• product of ω automata
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Next Lecture

Model Checking Problem:

M ² φ ?

Have a nice language to specify φ: use temporal logic.

System satisfies property ?


