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Introduction

What is Static Analysis?

Static analysis is the term applied to the analysis of computer 
software that is performed without actually executing programs.

- wikipedia

Static Analysis subsumes all methods which derive 
information from programs without actually executing  
them.

Static Analysis subsumes all methods which derive 
information from programs without actually executing  
them.
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The Trouble with Software

The state space of programs is in theory infinite. 
Computation depends on
• integers
• reals
• etc.

In reality it is finite, e.g., 32-bit representations, which is still
practically infinite when exploring all combinations. 

Decidability

Properties on infinite state spaces are 
typically undecidable, i.e., there is no 
general algorithm to decide if they are 
true or  false. 

Alan Turing
1912-1954

But we can still attempt to give 
useful approximate solutions. 

Rice's theorem: Any nontrivial property 
about the language recognized by a 
Turing machine is undecidable. 

Approximations

program behavior

over
approximation

under
approximation

Approximations

program behavior

over
approximation

under
approximation

specification

false alarm,
violation signaled 
due to over approx.
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Approximations

program behavior

over
approximation

under
approximation

specification

false negative,
no violation detected 
due to under approx.

Definitions

Lattices

partial order: L=(S,v), set S, binary relation v s.t.
• reflexive: ∀ x∈ S : x v x
• transitive: ∀ x,y,z∈ S : x v y ∧ y v z ⇒ x v z
• anti-symmetric: ∀ x,y ∈ S : x v y ∧ y v x ⇒ x=y

y upper bound of X⊆S (Xv y): y∈ S and ∀ x∈ X: x v y 
least upper bound tX: Xv tX and ∀ y∈S: Xv y ⇒ t Xv y

Conversely, define lower bound and greatest lower bound.

Lattice is  partial order where t X and u X exists for all X⊆ S.

Example: Finite Lattices

Lattices:

But not:

Show: every lattice has a unique largest (>) and smallest (⊥) element
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Monotone functions

f monotone: ∀ x,y∈ S: x v y ⇒ f(x) v f(y)

Note: compositions of monotone functions are monotone

Theorem: In lattice L with finite height every monotone 
function has a least fixed-point as:

fix(f) = ti≥ 0 fi(⊥) 

for which f(fix(f))=fix(f).

Closure

If L1,…,Ln lattices of finite height, so is the product
L1 × … × Ln = {(x1,…,xn) | xi∈ Li}

where v is defined pointwise. 

The height of the product is the sum of heights of its components.

Map: finite set A, lattice L with |A|=|L| then with a pointwise order
Aa L ={[a1a x1,…,ana an]|xi∈ L}

is a lattice of height |A|*height(L).

Other compositions: +, lift, flat, are also lattices of finite height again.

Equation System F:Ln→ Ln

where 
xi variables and
Fi : Ln → L collection of monotone functions

has a least fixed point for the function
F(x1,…,xn)=(F1(x1,…,xn),…,Fn(x1,…,xn))

Equation Systems (ES)

x1 = F1 (x1.…,xn)
M

x2 = F2 (x1.…,xn)
xn = Fn (x1.…,xn)

Inequation System F:Ln→ Ln

We can show xv y ⇔ x=xuy.

Thus, IS F equivalent to following ES:

Inequation System (IS)

x1 v F1 (x1.…,xn)
M

x2 v F2 (x1.…,xn)
xn v Fn (x1.…,xn)

x1 = x1 u F1 (x1.…,xn)
M

x2 = x2 u F2 (x1.…,xn)
xn = xn u Fn (x1.…,xn)
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Control Flow Graph (CFG)

A control flow graph is a directed graph where nodes 
are program points and the edges represent the flow 
of control between these points.

Example CFG

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

var f

f=1

n>0

f=f*n

n=n-1

Program CFG

Data Flow Analysis

Terms

Classical Data Flow Analysis is concerned about which data
reaches which program point. The analysis is performed on 
program’s CFG and expressed as an (in)equality system over a
finite lattice. 

Typical examples are:
• liveness
• available expressions
• very busy expressions
• reaching definitions

We will go trough each of them.
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Liveness

A variable is live before a program point if it will be read in the
remaining program execution without being written first.

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

Which variables are live
at which locations? Which
are not?

Liveness

Any analysis must find out the set of live variables for each
location. We model the domain of live variables by the
lattice (2Vars,⊆).

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

How does the lattice (2Vars,⊆)
look like? Why is it a lattice?

Vars is the set of variables 
occurring in a program.

Questions

• Can we approximate (without executing the program) the 
set of live variables algorithmically?

• How does the set depend on our syntax?
• Can we define rules for each construct?
• How can rules lead to something that we can compute?

Question

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let live(v) denote the set of variables
live before location v.

Can we define rules just depending
on the current node and its predecessors
or successors?
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Equation System 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let live(v) denote the set of variables
live before location v.

live(1) = live(2)

live(2) = live(3) \ {f}

live(3) = (live(4) ∪ live(6)) ∪ {n}

live(4) = (live(5) \ {f}) ∪ {f,n}

live(5) = (live(3) \ {n}) ∪ {n}
live(6) = {}

Gen/Kill

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let live(v) denote the set of variables
live before location v.

live(1) = live(2) 

live(2) = live(3) \ {f}

live(3) = (live(4) ∪ live(6)) ∪ {n}

live(4) = (live(5) \ {f}) ∪ {f,n}

live(5) = (live(3) \ {n}) ∪ {n}
live(6) = {}

writing
kills

reading
generates

Join 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let live(v) denote the set of variables
live before location v.

use the abbreviation
join(v) = Uw∈ succ(v) live(w)

Join

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let live(v) denote the set of variables
live before location v.

live(1) = join(1) \ {f}

live(2) = join(2) \ {f}

live(3) = join(3) ∪ {n}

live(4) = (join(4) \ {f}) ∪ {f,n}

live(5) = (join(5) \ {n}) ∪ {n}
live(6) = {}
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Fixed Point

let live(v) denote the set of variables
live before location v.

live(1) = join(1) \ {f}

live(2) = join(2) \ {f}

live(3) = join(3) ∪ {n}

live(4) = (join(4) \ {f}) ∪ {f,n}

live(5) = (join(5) \ {n}) ∪ {n}
live(6) = {}

The right hand-side of
each equation is monotone,
i.e., we can compute the 
fixed point of ES.

We are interested in the 
least fixed point.

Least fixed point: start with {}
greatest start with Vars.

Computing Fixed Point

let live(v) denote the set of variables
live before location v.

live(1) = live(2)

live(2) = live(3) \ {f}

live(3) = (live(4) ∪ live(6)) ∪ {n}

live(4) = (live(5) \ {f}) ∪ {f,n}

live(5) = (live(3) \ {n}) ∪ {n}
live(6) = {}

Computation on the
board.

Least Fixed Point Solution

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let live(v) denote the set of variables
live before location v.

live(1) = {n}

live(2) = {n}

live(3) = {f,n}

live(4) = {f,n}

live(5) = {f,n}
live(6) = {}

How to Compute Fixed Points

How/in which order to we iterate through the equations?

• following equation order
• randomly (requires fairness)
• worklists/priority queues
• strongly connected components (program topology)
• Gaus-Seidl elimination
• etc. etc.

There is no general best way, but some are better than others.
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Intermediate Summary

Seen so far:
• data flow analysis problem can be expressed in terms of 

fixed point over equations
• equations depend on syntax of program points and what is 

coming in/going out
• many ways to compute fixed point

We have seen Join as being union of successors and 
computation of least fixed point. This is not always so …

Available Expressions

An expression is available after a program point if its current
value has been evaluated before and none of its variables 
are overwritten. (Good for optimizations) 

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

Which expressions are available
at which locations? Which are not?

Available Expressions

Our analysis must find out the set of available expressions
for each location. We model the domain of available 
expression by the lattice (2Expr,⊆).

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

How does the lattice (2Expr,⊆)
look like? Why is it a lattice?

Expr is the set of expressions 
occurring in a program.

Equation System 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let avail(v) denote the set of expressions
available after location v.

avail(1) = {}

avail(2) = (avail(1) \ {f*n}) ∪ {1}

avail(3) = (avail(2) ∩ avail(5)) ∪ {n>0}

avail(4) = (avail(3) \ {f*n}) ∪ {f*n}

avail(5) = (avail(4) \ {n-1}) ∪ {n-1}
avail(6) = avail(3)
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Join/Fixed Point 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let avail(v) denote the set of variables
available after location v.

We can use the abbreviation
join(v) =I w∈ pred(v) avail(w)
to see we have again a
monotone framework.

This time we compute the greatest
fixed point, as we like to have the
maximum number of available 
expressions.

Greatest Fixed Point Solution 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let avail(v) denote the set of expressions
available after location v.

avail(1) = {}

avail(2) = {1}

avail(3) = {n>0}

avail(4) = {n>0, f*n}

avail(5) = {f*n ,n-1}
avail(6) = {n>0}

Very Busy Expressions

An expression is very busy before a program point if it
definitely will be evaluated again before its value changes. 

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

Which expressions are very busy
at which locations? Which are not?

Very Busy Expressions

Our analysis must find out the set of very busy expressions
for each location. We model the domain of very busy
expression by the lattice (2Expr,⊆).

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

How does the lattice (2Expr,⊆)
look like? Why is it a lattice?

Expr is the set of expressions 
occurring in a program.
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Equation System 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let busy(v) denote the set of expressions
very busy before location v.

busy(1) = buys(2)

busy(2) = (busy(3) \ {f*n}) ∪ {1}

busy(3) = (busy(2) ∩ busy(5)) ∪ {n>0}

busy(4) = (busy(5) \ {f*n}) ∪ {f*n}

busy(5) = (busy(3) \ {n-1}) ∪ {n-1}
busy(6) = { }

Join/Fixed Point 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let busy(v) denote the set of variables
very busy before location v.

We can use the abbreviation
join(v) =I w∈ succ(v) busy(w)
to see we have again a
monotone framework.

This time we compute the least
fixed point again.

Least Fixed Point Solution 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let busy(v) denote the set of expressions
very busy before location v.

busy(1) = {n>0, 1}

busy(2) = {n>0, 1}

busy(3) = {n>0}

busy(4) = {n>0, n-1, f*n}

busy(5) =  {n>0, n-1}
busy(6) = { }

Reaching Definition

The effect of an assignment is reaching after a program point 
if it might have defined the current values of variables.

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

Which assignments are reaching
at which locations? Which are not?
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Reaching Definitions

Our analysis must find out the set of reaching assignments
for each location. We model the domain of reaching 
definitions by the lattice (2Assign,⊆).

fun(n) {
var f;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

}

How does the lattice (2Assign,⊆)
look like? Why is it a lattice?

Assign is the set of assignments 
occurring in a program.

Equation System 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let reach(v) denote the set of assignments
may define variable values after location v.

reach(1) = {}

reach(2) = (reach(1) \ {f=1}) ∪ {f=1}

reach(3) = reach(2) ∪ reach(5)

reach(4) = (reach(3) \ {f=f*n,f=1}) ∪ {f=f*n}

reach(5) = (reach(4) \ {n=n-1}) ∪ {n=n-1}
reach(6) = reach(3)

Join/Fixed Point 

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

We can use the abbreviation
join(v) =Uw∈ pred(v) reach(w)
to see we have again a
monotone framework.

This time we compute the least
fixed point again.

let reach(v) denote the set of assignments
may define variable values after location v.

Least Fixed Point Solution

var f

f=1

n>0

f=f*n

n=n-1

CFG

1

2

4

5

3

6

let reach(v) denote the set of assignments
may define variable values after location v.

reach(1) = {}

reach(2) = {f=1}

reach(3) = {f=1, f=f*n, n=n-1}

reach(4) = {f=f*n, n=n-1}

reach(5) = {f=f*n, n=n-1}
reach(6) = {f=1, f=f*n, n=n-1}
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Summary Data Flow Analysis

• we have seen how to compute approximate solutions (we 
do not know if all the paths are executed!) to data flow 
problems

• Join can be intersection or union
• analysis has forward or backward nature
• depending on the problem least or greatest fixed point

Rules of Thumb

forward analysis: computes information about past behavior
backward analysis: computes information about future 

behavior
must analysis: information that must be true (on all paths) and 

computes under-approximation
may analysis:  information that may be true (on at least one 

paths) and computes over-approximation

Abstract Interpretation

The Rough Guide

Introduction

The idea

Abstract Interpretation (AI) provides appropriate means to relate 
some concrete world (domain) with an abstract world.

The applications and implications

Far reaching, ranging from comparing program semantics to 
program analysis.

Origin

First developed by Cousot&Cousot (1977/78).
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Abstract Interpretation (simplified)

abstract
world

concrete
world

concconc absabs

AI is more than abstraction
as it relates abstract with 
concrete world and vice versa.

We require:

1. ∀ x: abs(x) v y ⇔ x v conc(y)
(Galois connection)

Operations should be 
safely approximated:

2. abs ◦ c-op ◦ conc v a-op

x

y

Example (Interval AI)

1. Structure

Sets of integers Intervals

{2} [2,2]
{2,3,4} [2,4]
{1,3,9} [1,9]

x∈ 2Int smallest interval comprising x

Intervals over approximate sets.

1. Structure

lattice (non finite) lattice (non finite)

(2Int,⊆) (Intervals(Int),v)

Abstraction: x∈ 2Int [min x, max x]

Example (Interval AI)

Concretization: {lb y,…,ub y} y∈ Intervals(Int)

lb = lower bound, ub = upper bound

smallest ⊥
greatest [-∞,+∞]

2. Operations

lattice (non finite) lattice (non finite)

(2Int,⊆) (Intervals(Int),v)

Concrete world: {2,5,6} + {2,3} = {4,5,7,8,9}

Abstract world:  [2,6] + [2,3] = [4,9]

a) Introduce matching operator in abstract world
for every operator in concrete world.

b) Check it satisfies safe approximation.

Example (Interval AI)
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Application

var f, n;
n=3;
f=1;
while (n>0) {

f=f*n;
n=n-1

}
return f;

We like to compute all the possible values variables can take
(collecting semantics).

Application

2: f: {-∞, …., +∞} n: {-∞, …., +∞}

3: f: {-∞, …., +∞} n: {3}

4: f: {1} n: {3}

5: f: {1,3,6} n: {1,2,3}

6: f: {1,3,6} n: {0,1,2,3}

7: f: {1,3,6} n: {0}

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

before each location the variables might be as follows:

Application

Problems:

1. We might need infinite space to store values.
2. We might not be able to compute them due

to non-termination.

Solution:

1. can be overcome by using interval AI (over-
approximation of values) 

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

Application

2: f: [-∞, +∞] n: [-∞, +∞]

3: f: [-∞, +∞] n: [3,3]

4: f: [1,1] n: [3,3]

5: f: [1,6] n: [1,3]

6: f: [1,6] n: [0,3]

7: f: [1,6] n: [0,0]

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

before each location the variables might be as follows:
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Application

Problems:

1. We might need infinite space to store values.
2. We might not be able to compute them due

to non-termination.

Solution:

1. can be overcome by using interval AI (over-
approximation of all values) 

2. not that easy: interval lattice has infinite width 
(not a problem) and infinite height (problem!). 

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

Acceleration

infinite
height

AI: 

We have relation between abstract 
and concrete domain.

We have relation between abstract and 
concrete operators.

In order to deal with infinite lattices (i.e.
to compute a fixed point in finite time) we
introduce an extra operator that can “jump”
infinitely high.

Δ

Such an acceleration operator is called widening operator. Sometimes
people speak of dynamic approximation operator.

Application

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

put widening
operator here

Idea:

1. if variable value increased
compared to previous iteration
jump to +∞, if decreased
to –∞.

2. goto 2

Since our operations are 
monotone this is safe.

Application

2: f: [-∞, +∞] n: [-∞, +∞]

3: f: [-∞, +∞] n: [3,3]

4: f: [1,1] n: [3,3]

5: f: [1,+∞] n: [-∞,3]

6: f: [1, +∞] n: [-∞,3]

after first acceleration

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

Result:
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Application

2: f: [-∞, +∞] n: [-∞, +∞]

3: f: [-∞, +∞] n: [3,3]

4: f: [1,1] n: [3,3]

5: f: [-∞,+∞] n: [-∞,+∞]

6: f: [-∞, +∞] n: [-∞,+∞]

6: f: [-∞, +∞] n: [-∞,+∞]

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

Result:

after second
acceleration

approximation is
very coarse

can narrow it down
using condition as
constraint

Application

2: f: [-∞, +∞] n: [-∞, +∞]

3: f: [-∞, +∞] n: [3,3]

4: f: [1,1] n: [3,3]

5: f: [-∞,+∞] n: [-∞,+∞]

6: f: [-∞, +∞] n: [-∞,+∞]

6: f: [-∞, +∞] n: [-\infty,0]

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

Result:

We might loose
a lot of information,
but we are still able
to tell that n>0.

Summary

• AI relates abstract and concrete worlds (structure + 
operations)

• termination/safe approximation can be enforced by 
acceleration techniques

There are domains that capture more information, e.g., 
ployhedra.

AI is good for range approximation, i.e., array access, range 
check of operations, general buffer overflows.

Model Checking Syntax

Just some ideas …
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Introduction

Syntax gives us some information:
• when are variable is used
• when a variable is declared
• when a variable is modified
• etc.

Can we make use of it to find bugs in programs?

Syntactical Information

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

declaration_f declaration_n

modified_n

modified_f

used_n

used_n used_f modified_f

used_n modified_n

Syntactical Information

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

declaration_f declaration_n

modified_n

modified_f

used_n

used_n used_f modified_f

used_n modified_n

CFG is a
transition 
system these are just

like atomic 
propositions

Kripke Structure

transition 
system

atomic 
propositions

Kripke Structure

+

So can we model check syntax?
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Model Checking Syntax

var f,n

f=1

n>0

f=f*n

n=n-1

1

3

5

6

4

7

n=32

declaration_f declaration_n

modified_n

modified_f

used_n

used_n used_f modified_f

used_n modified_n

Yes, e.g.:

AG (delclarationf ⇒ EF usedf)

AG (modifiedn ⇒ EF usedn)

also if variables are initialized, 
certain protocols are respected,
locks are released etc.

But: Abstraction is sometimes
neither sound nor complete.

Summary

• model checking syntax is good for finding bugs
• not so good for showing the absence of bugs/verification
• very efficient
• easy to use

Summary

Lessons learnt

• “looking” at programs without executing them can reveal a 
lot of information.

• different static analysis techniques
• application depends on purpose
• combinations with semantic analysis possible (constraint 

solving, model checking semantics) 
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Next Week

Model Checking Real-Time Systems


