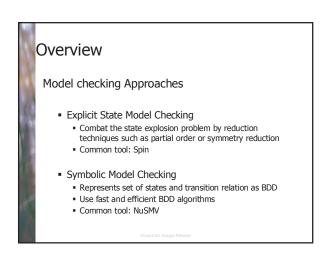
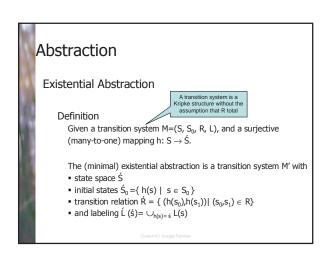
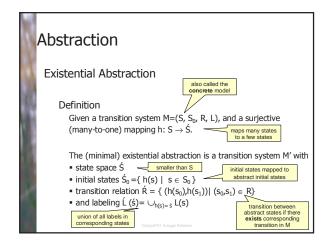
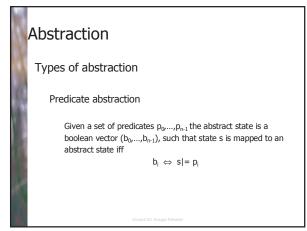
Algorithmic Verification Comp4151 Lecture 9-B Ansgar Fehnker

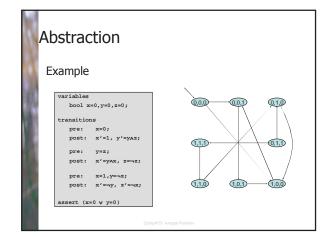


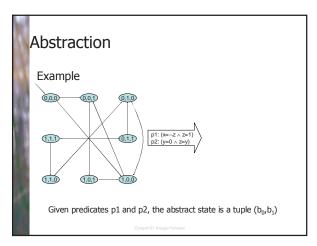
Overview Model checking Approaches (cont) Bounded Model Checking Relies on fast and efficient SAT-solvers Transforms the bounded model checking problem to a satisfiability problem BMC allows for tailored optimizations of SAT procedure Counterexample Guided Abstraction Refinement Model check a small abstraction rather than full model Refine the abstraction, if necessary, automatically

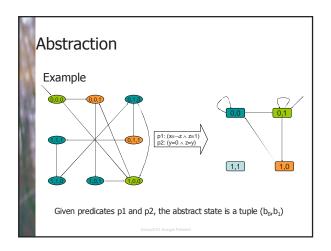


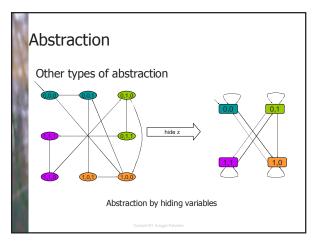


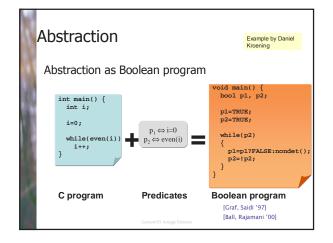


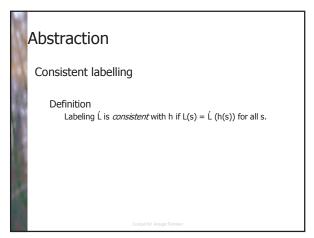


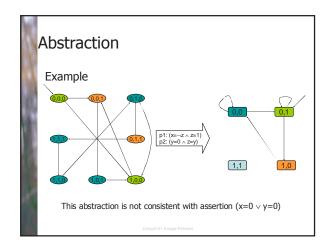


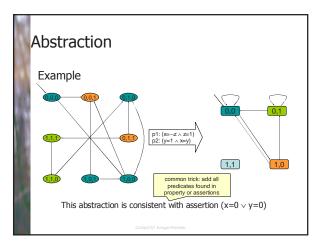


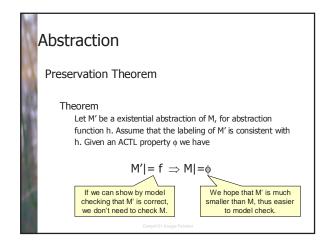


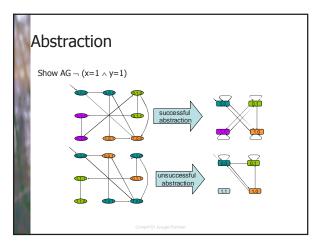


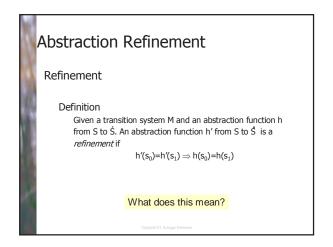


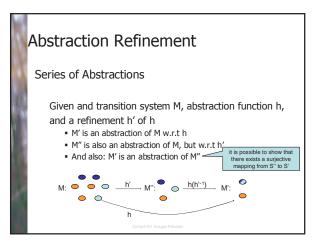


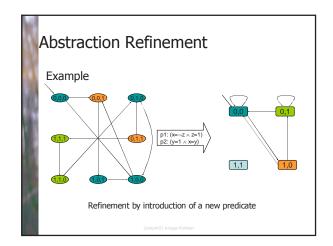


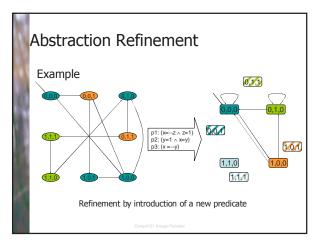


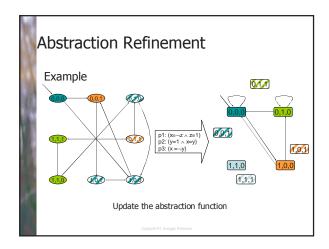


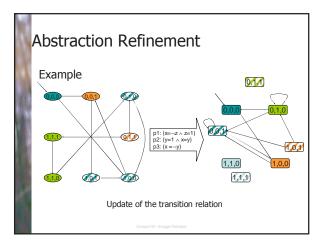




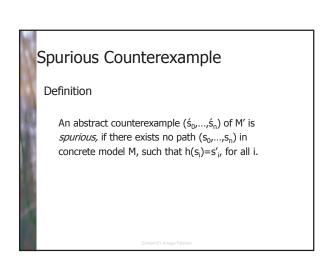


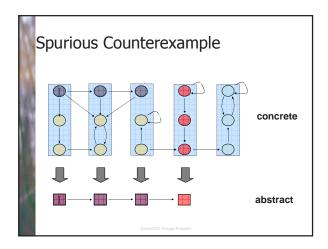


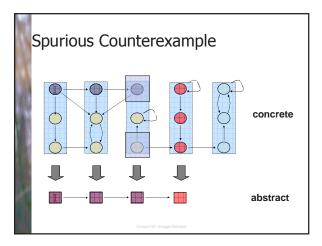


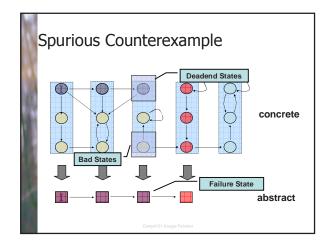


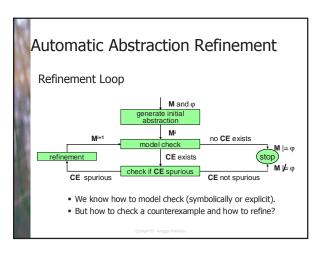
Abstraction Refinement Series of Abstraction 1. Construct automatically a series of abstractions M', M'', M''', ... such that for some η M^η |= φ 2. If Mⁱ |≠ φ use the abstract counterexample to obtain information about how to refine Mⁱ. 3. Check if the abstract counterexample of Mⁱ corresponds to a real one in M. Then M|≠ φ











Automatic Abstraction Refinement Checking Counterexamples

Automatic Theorem Proving

- Given an abstract counterexample (\$\sigma_0,...,\sigma_n\$) of M'
- Use automatic theorem prover to show that there exists no series of states (s₀,...,s_n) such that
 - $\blacksquare \ S_0 \in \, S_0$
 - $(s_{i}, s_{i+1}) \in R \text{ for all } i$
 - h(s₁)= ś₁ for all i

Comp4151 Ansgar Fehnke

Automatic Abstraction Refinement

Checking Counterexamples

SAT solving

- Given an abstract counterexample $(\dot{s}_0,...,\dot{s}_n)$ of M'
- There exists no corresponding concrete path by if the following is unsatisfiable

$$\Omega = I(s_0) \wedge \bigwedge_{i=0}^{n-1} R(s_i, s_{i+1}) \wedge \bigwedge_{i=0}^{n-1} h(s_i) = \acute{s_i}$$

- A satisfying assignment gives a real counterexample.
- \blacksquare If we find a satisfying assignment, then $M|\neq \varphi$

Comp4151 Ansgar Fehnker

Abstraction Refinement

Refining the abstraction

Automatic Theorem Prover

- Use predicates found by the theorem prover
- A lot of effort in finding the right predicates (small and useful)
- Details exceed scope of this lecture

Comp4151 Ansgar Fehnker

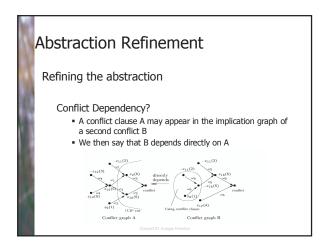
Abstraction Refinement

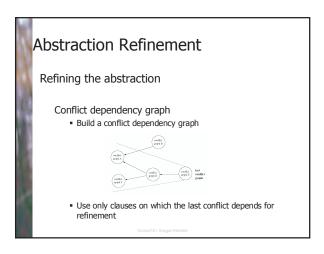
Refining the abstraction

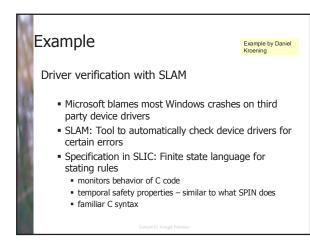
SAT-solving

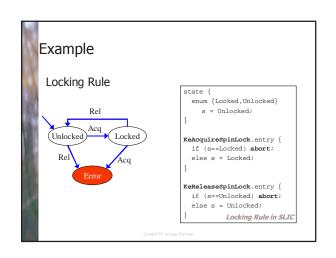
- The conflict clauses show why there exist no counterexample in M
- $\ \ \blacksquare$ Use predicates found in conflict clauses, or
- Make variable visible that appear (a lot) in conflict clauses
- Reducing the set of relevant clauses by analysis of the conflict dependency graph.

Comp4151 Ansgar Fehnke









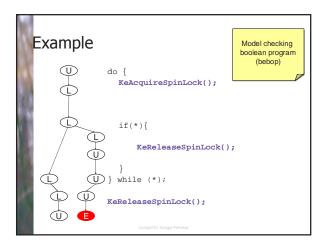
```
Does this code obey the locking rule?

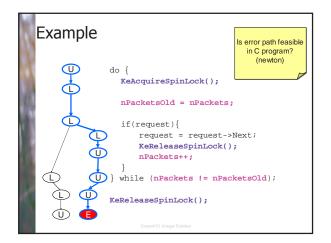
do {
    KeAcquireSpinLock();

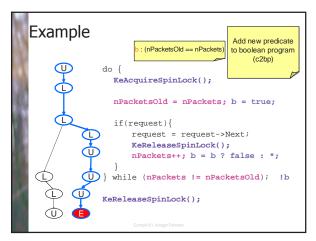
    nPacketsOld = nPackets;

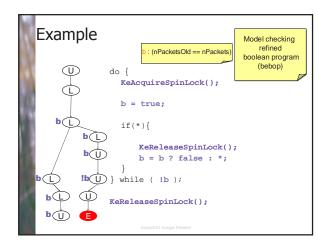
    if(request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++;
    }
    while (nPackets != nPacketsOld);

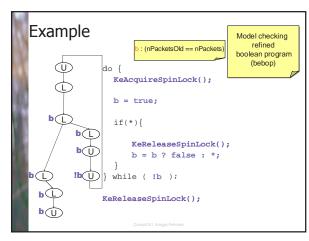
    KeReleaseSpinLock();
```

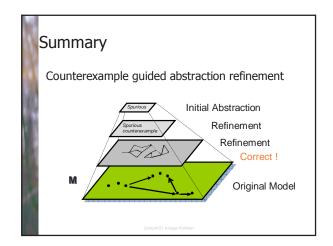


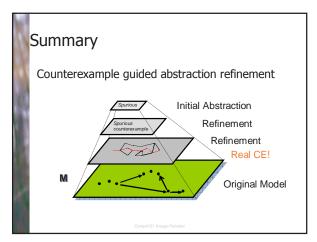












Conclusions

Predicate abstraction and abstraction refinement have become a standard technique in software verification

- (C programs) SLAM '00

 Mircrosoft Research

 Abstract C programs to Boolean programs

 (C programs) BLAST

 Berkeley and Los Angeles

 On-the-fly Predicate Abstraction and proof-based CE analysis

 (C programs) MAGIC

 CMU

 SAT-based CE analysis

- (Java programs) ESC/Java, Bandera, ...

Conclusion

Next week

Static Analysis

What else can you do to check the correctness of software?