Algorithmic Verification

Comp4151
Lecture 9-B
Ansgar Fehnker

= Explicit State Model Checking

= Combat the state explosion problem by reduction
techniques such as partial order or symmetry reduction

= Common tool: Spin

= Symbolic Model Checking
= Represents set of states and transition relation as BDD
= Use fast and efficient BDD algorithms
= Common tool: NuSMV

= Bounded Model Checking
= Relies on fast and efficient SAT-solvers

= Transforms the bounded model checking problem to a
satisfiability problem
= BMC allows for tailored optimizations of SAT procedure

= Counterexample Guided Abstraction Refinement
= Model check a small abstraction rather than full model
= Refine the abstraction, if necessary, automatically

'a\ Abstraction

)
~ Existential Abstraction

] Atransition system is a
Kripke structure without the
assumption that R total

Definition
Given a transition system M=(S, S;, R, L), and a surjective
(many-to-one) mapping h: S - $.

The (minimal) existential abstraction is a transition system M’ with
= state space $

= initial states S, ={ h(s) | s O S,}

= transition relation R = { (h(sg),h(sy))| (sos1) O R}

= and labeling L (§)= Cye)-¢ L(S)




“\ Abstraction

. Existential Abstraction

also called the
concrete model

Definition
Given a transition system M=(S, S;, R, L), and a surjective

(many-to-one) mapping h: S - .
to a few states
The (minimal) existential abstraction is a transition system M’ with
= initial states So ={ h(S) I sO SO} abstract initial states
= transition relation R = { (h(sg),h(sy))| (sos1) DR}
= and labeling L (§)= Oy)- ¢ L(s)

union of all labels in
corresponding states

transition between
abstract states if there
exists corresponding
transition in M

“\ Abstraction

. Types of abstraction

Predicate abstraction

Given a set of predicates py,...,p,.; the abstract state is a
boolean vector (b,...,b,.), such that state s is mapped to an
abstract state iff

b~ s|=p

“\ Abstraction

| Example

variables
bool x=0,y=0,z=0;

transitions
pre:
post:

pre: y=z;
post:  x=y [K z= =z

pre: X=1y= =z
post:  X'=  ay, Z= =X

assert (x=0 0 y=0)

“\ Abstraction

| Example

pl: (x=—~z0z=1)

p2: (y=0 Oz=y)

@o  Q@wd—@w

Given predicates p1 and p2, the abstract state is a tuple (by,b,)




Abstraction

. Example

.
Com—
L (=z 0z=1)
P2 (=0 U2=y) ;

Given predicates p1 and p2, the abstract state is a tuple (b,b,)

Abstraction

. Other types of abstraction

Abstraction by hiding variables

Abstraction Example by Daniel

Kroening

. Abstraction as Boolean program

int main() {
inti;

i=0;

p, = i=0 —
+ e =

while(even(i))
i+

{
pl=p1?FALSE:nondet();
p2=p2;
}

}
}

C program Predicates

Boolean program
[Graf, Saidi '97]
[Ball, Rajamani '00]

Abstraction

. Consistent labelling

Definition
Labeling L is consistent with h if L(s) = L (h(s)) for all .




: .
‘*\. Abstraction

pl: (x=—~z0z=1)
p2: (y=0 Lz=y) .

11

This abstraction is not consistent with assertion (x=0 0y=0)

: .
‘*\. Abstraction

pl: (x=—~z0z=1)
p2: (y=1 0x=y)

— common trick: add all
predicates found in
property or assertions

This abstraction is consistent with assertion (x=0 0y=0)

11

: .
‘*\. Abstraction

. Preservation Theorem

Theorem
Let M’ be a existential abstraction of M, for abstraction
function h. Assume that the labeling of M" is consistent with
h. Given an ACTL property ¢ we have

M|=f = M|=g

If we can show by model
checking that M is correct,
we don't need to check M.

We hope that M’ is much
smaller than M, thus easier
to model check.

: .
‘*\. Abstraction

Show AG - (x=1 Oy=1)

N
—
successful
abstraction
Lo>—

N

N
AN unsuccessful
abstraction
QD—




“\‘ Abstraction Refinement

_ Refinement

Definition
Given a transition system M and an abstraction function h
from S to S. An abstraction function h’from Sto S isa
refinement if
h"(se)=h'(s1) = h(s,)=h(s)

What does this mean?

“\‘ Abstraction Refinement

~ Series of Abstractions

Given and transition system M, abstraction function h,
and a refinement h’ of h
= M’is an abstraction of M w.r.t h
= M”is also an abstraction of M, but w.r.t h’
= And also: M’ is an abstraction of M”

itis possible to show that
there exists a surjective

mapping fromS" to S’

e e
me © o N M":. o ) e e
@ o &) ©

“\‘ Abstraction Refinement

| Example

Refinement by introduction of a new predicate

“\‘ Abstraction Refinement

pl: (x=—~z0z=1)
p2: (y=1 O x=y)
p3: (x=1y)

Refinement by introduction of a new predicate




“\ Abstraction Refinement

| Example

pl: (x=—~z0z=1)
p2: (y=1 Lx=y)
p3: (x=1y)

Update the abstraction function

“\ Abstraction Refinement

| Example

pl: (x=—~z0z=1)
p2: (y=1 O x=y)
p3: (x=1y)

Update of the transition relation

“\ Abstraction Refinement

~_ Series of Abstraction

1. Construct automatically a series of abstractions M’,
M”, M™,... such that for some nM" |= @

2. If Mi|# @ use the abstract counterexample to
obtain information about how to refine Mi.

3. Check if the abstract counterexample of M
corresponds to a real one in M. Then M| @

“\ Spurious Counterexample

~ Definition

An abstract counterexample (S, ...,$,) of M"is
spurifous, if there exists no path (s,...,s,) in
concrete model M, such that h(s;)=s’,, for all i.




“\ Spurious Counterexample

OQ g O concrete
1
@

“\ Spurious Counterexample

D [@D

to]

‘ 1
g 3 O . concrete
L

o
Fa
W

~

ﬂQ \

1

d '©
g o &
m—E— o

H@O0-—Ce
O

abstract abstract
“\ Spurious Counterexample “\ Automatic Abstraction Refinement
p p
- 3 [[ocadena states ~_ Refinement Loop
o t@ 1o (@D oD
é} \5/ Okl g <()> | concrete
el s L
1O—=0O| O —1@+—O] e
Bad States Mo
CE spurious CE not spurious
¢ s " "
. . . . abstract = We know how to model check (symbolically or explicit).

= But how to check a counterexample and how to refine?




“\ Automatic Abstraction Refinement

Automatic Theorem Proving
= Given an abstract counterexample ($,,...,$,) of M’
= Use automatic theorem prover to show that there exists no
series of states (sq,...,s,) such that
= 5,05,
= (s,5i,1) ORforalli
= h(s)=§ foralli

“\ Automatic Abstraction Refinement

SAT solving
= Given an abstract counterexample ($,,...,$,) of M’

= There exists no corresponding concrete path by if the
following is unsatisfiable

0= |(So) A n/7\ R(Si7 Si+1) A n[\ h(Si) =5
i=0 i=0

= A satisfying assignment gives a real counterexample.
= If we find a satisfying assignment, then M|# @

“\ Abstraction Refinement

Automatic Theorem Prover
= Use predicates found by the theorem prover

= A lot of effort in finding the right predicates (small and
useful)
= Details exceed scope of this lecture

“\ Abstraction Refinement

SAT-solving
= The conflict clauses show why there exist no
counterexample in M
= Use predicates found in conflict clauses, or
= Make variable visible that appear (a lot) in conflict clauses

= Reducing the set of relevant clauses by analysis of the
conflict dependency graph.




'A Abstraction Refinement

| Refining the abstraction

Conflict Dependency?

= A conflict clause A may appear in the implication graph of
a second conflict B

= We then say that B depends directly on A

Conflict graph A Conflict graph B

'A Abstraction Refinement

| Refining the abstraction

Conflict dependency graph
= Build a conflict dependency graph

= Use only clauses on which the last conflict depends for
refinement

Example by Daniel
Kroening

= Microsoft blames most Windows crashes on third
party device drivers
= SLAM: Tool to automatically check device drivers for
certain errors
= Specification in SLIC: Finite state language for
stating rules
= monitors behavior of C code
= temporal safety properties — similar to what SPIN does
= familiar C syntax

state {
enum { Locked, Unl ocked}
s = Unl ocked;

}

KeAcquireSpinLock . entry {
if (s==Locked) abort ;
else s = Locked;

}

KeReleaseSpinLock .entry {
if (s==Unlocked) abort ;
else s = Unl ocked;

} Locking Rule in SLIC




Does this code
obey the
locking rule?

do {
KeAcquireSpinLock();

nPacket sd d = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPacket s++;

Model checking
boolean program
(bebop)

P do {

KeAcquireSpinLock();

@ i)
W

KeReleaseSpinLock();

} }
} while (nPackets != nPacketsd d); ) CUD}Y while (*);
KeReleaseSpinLock(); W W KeReleaseSpinLock();
W €
| Example _ | Example .
[ Is error path feasible [ Add new predicate
(newton) ] ~ (c2bp)
do {

KeAcquireSpinLock();
nPacketsOld = nPackets;

if(request){

D request = request->Next;
KeReleaseSpinLock();
W nPackets++;

} while (nPackets !=nPacketsOld );

KeReleaseSpinLock();

do {
KeAcquireSpinLock();

nPacketsOld = nPackets; b = true;
. if(request){
D request = request->Next;
KeReleaseSpinLock();
W nPackets++; b=Db?false:*
) } while (nPackets !=nPacketsOld ); b
@ KeReleaseSpinLock();

10



Example

Model checking

b : (nPacketsOld == nPackets) bool:;'”;ﬂgram

do { (bebop)

KeAcquireSpinLock();

b = true;
[RAGOR

KeReleaseSpinLock();
b=b7?false:*

Example

Model checking

b : (nPacketsOld == nPackets) bool:;'”;ﬂgram

do { (bebop)

KeAcquireSpinLock();

b = true;
[RAGOR

KeReleaseSpinLock();
b=b7?false:*

}
} while (b );

KeReleaseSpinLock();

Summary

. Counterexample guided abstraction refinement

/[Fs 7~ Initial Abstraction
counterexample
. Refinement

Correct !

Original Model

Summary

. Counterexample guided abstraction refinement

/[>s 7 Initial Abstraction
counterexample
- Refinement

Real CE!

Original Model

11



|
4

i

~|Conclusions " |Conclusion

Predicate abstraction and abstraction refinement have

~ Next week
become a standard technique in software verification

(C programs) SLAM '00
= Mircrosoft Research
= Abstract C programs to Boolean programs
= (C programs) BLAST
= Berkeley and Los Angeles
= On-the-fly Predicate Abstraction and proof-based CE
analysis
= (C programs) MAGIC
= CMU

Static Analysis
What else can you do to check the correctness of software?

= SAT-based CE analysis
= (Java programs) ESC/Java, Bandera, ...




