Algorithmic Verification

Overview

Modelling CY
= Finite automata " 9‘

= Biichi automata

= Kripke structures _’g_@ : :]

Comp4151 Specification
= Linear Time Logic L
Lecture 9-A = Computation Tree Logic
= CTL*
Overview Overview

Model checking
Explicit state model checking
= Bottom-up recursive labelling algorithm for CTL
= LTL tableau or automaton-based algorithms

= Smart enumeration to combat state explosion problem
(e.g. partial order reduction)

Symbolic model checking
= Reformulate model checking problem in terms of sets
= Represent as BDDs
= Efficient algorithm through efficient BDD operations

Today: SAT-based model checking

Basic Idea

Use algorithms that solve (in practice) difficult problems
efficiently.

Transform model checking problem to an problem instance
for that solver.

SAT-solver are such efficient solvers.

Satisfiability

Problem

= Given a propositional formula fover variables X.

= Does there exist an assignment X - {0,1} such
that / becomes true?

= Does there exist a satisfying assignment?
= Does there exist a model for f ?

Satisfiability
Example: A diplomatic problem

= As chief of staff, you are to sent out invitations to
the embassy ball.

= The ambassador instructs you to invite Peru or exclude
Qatar.

= The vice-ambassador wants you to invite Qatar or Romania
or both.

= A recent diplomatic incidents means that you cannot invite
both Romania and Peru

Who do you invite?

Satisfiability

Example: A diplomatic problem

= Given the following constraint over P, Q and R
f=(P 0-Q) O(Q OR) O=(ROP)

= Does there exist an assignment to P, Q, R such that
f=true ?

= Two satisfying assignments
P~ 1,Q~ LR|-0
*P-0,QlI-~0R|-1

Satisfiability
Example: A diplomatic problem

= Given the following constraint over P, Q and R
f=(P 0-Q) O(Q OR) O=(ROP)

= Does there exist an assignment to P, Q, R such that
f=true ?

= Two satisfying assignments
P~ 1,Q- LRI~ 0 £ Q-R
*P-~0,Ql-~0RI-1 -P-Q R

Satisfiability

= Satisfiability of a propositional formula was the first
problem shown to be NP-complete

= Focus typically on formulas in clausal normal form
(| ak.a conjunctive normal form |

= Formula is a conjunction of clauses
cioc2o..
= Each clause is a disjunction of literals
L1 02 0L3 ..
= Each literal is variable or its negation
P, aP,Q-Q ..

Satisfiability
Terminology
= A clause is a unit clause if it only contains one literal
= Each clause is empty (=false) is it contains no literal

= Aliteral is pureif appears if its negation does not
occur in any clause.

= A free literalsis an unassigned literal of a clause

Satisfiability
Conversion to CNF

= Eliminate iff and implies
= replace P = Qby (P=Q)O0(Q = P)
=andP=Qby-POQ

= Push negation down
= replace -~(P0Q)by-P0O-Q
=and -(POQ)by-PO-Q

Satisfiability
Conversion to CNF

= Clausify using De Morgan’s laws
= E.g. replace P 0(Q OR) by (P OQ) O(P OR)

= In worst case, formula grows exponentially in size

= Introduction of auxiliary literals to prevent blow up

Satisfiability

N Solving SAT
= Classic methods
= Truth tables
= Systematic assignment through binary-search

= First practical SAT-solving procedures
= Davis-Putnam procedure

Satisfiability

|, Davis-Putnam procedure
= Introduced by Davis & Putnam in 1960
= Resolution rule required exponential space

= Modified by Davis, Logemann and Loveland in 1962
= Resolution rule replaced by splitting rule
= Trades space for time
= Modified algorithm often inaccurately called Davis Putnam

Davis Putnam procedure

= Consider
(XOY)O(=-X02)0(-YO02)0..

= Davis-Putnam-Logemann-Loveland procedure procedure
(DPLL)
SAT-solving SAT-solving

Davis Putnam procedure

= Consider
(XOY)O(=-X02)0(-YO02)0..
= Basic idea
= Try X=true

SAT-solving
Davis Putnam procedure

= Consider
XOY)O(=-X02)O0(-YO2Z)O...

= Basic idea
= Try X=true
= Remove clauses which must be satisfied

SAT-solving
Davis Putnam procedure

= Consider
(-X02Z2)0(=YOZ)0O...
= Basic idea
= Try X=true
= Remove clauses which must be satisfied

SAT-solving
Davis Putnam procedure

= Consider
(-X02Z2)0(=YOZ)0O...
= Basic idea
= Try X=true
= Remove clauses which must be satisfied
= Simplify clauses containing = X

SAT-solving
Davis Putnam procedure

= Consider
(z)0(-YO2)0O..
= Basic idea
= Try X=true
= Remove clauses which must be satisfied
= Simplify clauses containing = X

SAT-solving
Davis Putnam procedure

= Consider
(z)0(-YO2)0O..
= Basic idea
= Try X=true
= Remove clauses which must be satisfied
= Simplify clauses containing = X
= Deduce from unit clause (Z) that Z must be true

SAT-solving
Davis Putnam procedure

= Consider

= Basic idea
= Try X=true
= Remove clauses which must be satisfied
= Simplify clauses containing = X
= Deduce from unit clause (Z) that Z must be true

SAT-solving
Davis Putnam procedure

= Consider

= Basic idea
= Try X=true
= Remove clauses which must be satisfied
= Simplify clauses containing = X
= Deduce from unit clause (Z) that Z must be true
= Backtrack if necessary

SAT-solving
Procedure DPLL
Given a formula 7, let C be the set of clauses
DPLL(C) is computed as follows
(SAT) if C contains no clauses return SAT
(Split) for any variable x

return SAT, else return UNSAT

(Empty) if C contains an empty clause return UNSAT

if DPLL(C[x/Z])=SAT or DPLL(C[x/0])=SAT

SAT-solving
Procedure DPLL
(continued)

(Unit) if C contains unit clause (/) then
DPLL(C[//1])

(Pure) if / is pure in C then DPLL(C[//1])

(Taut) if x/J-x in Cthen DPLL(C\ (x Z/-x))

= The last 3 rules are characteristic for the DPLL procedure
= Neither is necessary for completeness

= Pure and Taut contribute in practice little to efficiency

= Unit rule improves efficiency greatly

SAT-solving
Procedure DPLL(C)

Space complexity
O(n)

Time complexity
0(1.618"n)

Average and best case often much better than this

SAT-solving

Organize the search in the form of a decision tree

= Each node corresponds to a decision, i.e
application of the rule (Split)

= Apply the (Unit) rule eagerly

= Depth of the node in the decision tree is called
decision level

= Notation: x=v@d
x2{0,1} is assigned to vat decision level ¢

SAT-solving

Example spi
a=0@1

(~aOb Oc)
(aOc Od)
(aOc O~ d)
(a0~ c Od)
(@a0-~cO~d)
(= b0~ ¢ Od)
(~aObO-c)
(-aO-b0Oc)

SAT-solving

Example

(~aObOc)
(2 Oc Od)
(aOc O~ d)
(2 0= cOd)
(a0~ cO-d)
(= b0~ c Od)
(~aOb0O=c)
(~a0O-b0Oc)

a=0@1

split

SAT-solving

Example

(~aObOc)
(a Oc Od)
(aOc O~ d)
(2 0= cOd)
(a0~ cO-d)
(= bO- c Od)
(~aOb0O=c)
(=-a0O-b0Oc)

SAT-solving

Example

(~aObOc)
(aOc Od)
(aOc O~ d)
(a0-c Od)
al-cO-d
-~ bO-cOd
~alb0O-c

(
(
(
(maO-~b0Oc

)
)
)
)

SAT-solving

Example

(~aObOc)
(aOc Od)
(aOc O-d)
(a0~ c Od)
al-cO-d
-~ bO-cOd
~alb0O-c

(
(
(
(maO-~b0Oc

)
)
)
)

SAT-solving

Example

(@aO-cOd

SAT-solving

Example

(~aObOc)
(aOc Od)
(aOc O~ d)
(2 0= cOd)
(a0~ cO-d)
(= b0~ c Od)
(~aOb0O=c)

(=maO-~b0Oc)

SAT-solving

Example

3

similar paths
are repeatedly
explored !

Improvements
Conflict Analysis

Conflict clause
= For each conflict clause that exp/ains the conflict
= Add negation to prevent recurrence of same conflict

Non-chronological backtracking

= During backtrack search backtrack to one of the
causes of the conflict

Conflict Analysis

Implication Graphs

= Nodes are variable assignments to variables

= Predecessors are assignments that responsible for
forcing the value of the assignment

= No predecessors for decision assignments (SPLIT)

= Conflict vertices have assignments to variables in
the unsatisfied clauses

Implication graphs and learning

. Current assignment: {x,=0@1 %,~0@3, x,=0@3, %,=1@2, x=1@2}

Current decision: {x,=1@6}

X,~0@3

= (% %)
= (%, % %)
= (=%, 0% %)
4= (=% 0% 0
W5 = (7%, % L7%q7)
W= (% %)

W= (3 D%y %)
= (7%)

@y = (2% O=% 0 %)

X=1@6

conflict

" x=1@6
X=0@1 %,=0@3

We learned x, [7- X, (7= X, [7= %, implies £ unsat
We add conflict clause (= %, [IXq = Xq; = X10)

Implication graphs and learning

After learning

= (% %)
= (%, % %)

= (=%, % %)
4= (=% 0% i)

@ = (7% 0% %) X083 @,/ x=16
sas(pe i) Duetothe °

@7 = (% % 7% conflict clause X =1@2

= (XsL7%)

Wy = (=% J=%g 0 X19)
@i0= (7 X4 % 7 X417 X40)

Non-chronological backtracking

3 Decision
. . level
Which assignments caused

the conflicts ?
x,= 0@1
X10= 0@3 | These assignments

X, = 0@3 Are sufficient for
X,=1@2 Causing a conflict.

Xp=1@2

K
Backtrack to decision level 3

Backtracking to any level 5, 4
would generate the same conflicts

10

Conflict Analysis

Example splity
a=0@1
split
o b=0@2

(=aOb Oc)

(aOc Od) split
(aOc O-d)

(aO- c Od) c=0@3

= We learn~ a 0= c implies UNSAT

Conflict Analysis

Example splity
a=0@1 a=1@1
split Y etc
o b=0@2 g

(=aOb Oc)

(aOc Od) split
(aOc O-d)

(a0~ c Od) c=0@3

= We add clause a Oc
= Add second clause a O-c
= Assignment to b does not matter

= Clause learning

= Branching heuristics
= 2 literal watching

= Search restarts

= Randomization

= Fast data structures

= 1st generation (1960s)
= DP, DLL

= 2nd generation (1980s/90s)
= POSIT, Tableay, ...

= 3rd generation (mid 1990s)
= SATO, satz, grasp, ...

= 4th generation (2000s)
= Chaff, BerkMin, ...

= 5th generation?

(aOc)
@) = Backtrack to levell
Improvements SAT-solving
= Non-chronological backtracking History

vars

i

—

1
160 197 1980 1990 2000 2010
Year

Number of variables tackled by SAT-solvers

11

SAT Solving and Model Checking
Reminder

Set of initial states and transition relation can be
represented as boolean functions

SAT-solvers for model checking?

= Bounded Model Checking
= SAT-based Abstraction Refinement

Bounded Model Checking

Basic Idea

= Show absence of counterexamples of length k

= Only complete for sufficiently large k

= Bounded model checking problem can be
formulated as SAT problem

= For LTL, ACTL or ECTL

Either Aor E
path quantifiers
ol Based on

presentations Daniel
Kroening and Ofer
Shtrichman

Bounded Model Checking

Formulation as SAT problem

Safety
Is a state reachable within k steps, which satisfies -p ?

p p p
(¢} ® ... @

S S Se1

LNOT
0o

Counterexample for safety properties are finite paths

Bounded Model Checking
Given a Kripke Stucture M=(S, S, R, L)
The reachable states in k steps are captured by:

I(So) A R(S0,S1) A ... A R(Sk—1,5k)

The property p fails in one of the states 1..k if

=P(Sp) V—-P(S1) V...V =P(SE)

12

Bounded Model Checking

Formulation as SAT problem

= The safety property p is valid up to step k iff Q(k) is
unsatisfiable s

k-1 k
Q(k) =1(So) A N\ R(Si, Sig1) A\ —P(s;)
i=0 i=0
p p p “p p
@ @ @ P] @
S St S, Se1 S

Bounded Model Checking

Example: a two bit counter

oog oll Initial state: Ip=-10-r

|

010 ©10 M=-r
Property: G (=l O=r).

The property holds within 2 steps if Q(k) is unsatisfiable

(loATo)V
(A l1 = (lo #ro) ATy = —moA
m = Clorrn(2R Z AR >A(N

Transition: R:I'=(1#r) 0

)

Bounded Model Checking

Formulation as SAT problem

Liveness

For Liveness, add a disjunction of possible loops
p -p “p
9 e ... @
S S S, Se1

@®T

-p
®
S

Counterexamples for liveness properties end in a loop

Bounded Model Checking

Liveness

For Liveness, add a disjunction of possible loops

P p “p “p “p
2] 5] @ ... @ @
S s s Sa S

Counterexamples for liveness properties end in a loop

13

Bounded Model Checking

Liveness

= The liveness property Fpis valid up to cycle k
iff Q(k) is unsatisfiable

k-1 k k
Q(k) = 1(So)A A\ R(S;, Sip1)A \ ~P(S)A
0 0

=

(S; = Sk)
0

i=| i=

Bounded Model Checking

BMC-loop

Resources
exceeded

Bounded Model Checking

‘

1| Completeness Threshold

= For every finite model M and LTL property ¢ there
exists ks.t.

MEr¢—>MEg¢

= The Completeness Threshold (CT) is the minimal
such k

= Clearly if M|# @then CT =0

= Computing CT is @ model checking by itself

Bounded Model Checking

‘

1| Completeness Threshold

= Diameter D(M) = longest shortest path between
any two reachable states.

= Recurrence Diameter RD(M) = longest loop-free
path between any two reachable states.

= The initialized versions: DI(M) and RDI(M)
start from an initial state

14

Bounded Model Checking

Completeness Threshold

= DI(M) is an upper bound for safety properties

RDI(M) +1 is an upper bound for liveness properties

= However, in practice the CT is of little intrest. Too
hard to compute, and too large.

= BMC is good for finding counterexamples fast

Bounded Model Checking
Tuning SAT for BMC

= Variable ordering

= Incremental SAT: reusability of conflict clauses
between different (yet related) SAT instances.

= Replicating Confiict Clauses: generation of conflict
clauses 'for free', based on the unique structure
of BMC invariant properties.

Bounded Model Checking

Outlook

= BMC is available e.g. in NuSMV

= SAT-based BMC can solve instance that BDD
symbolic model checkers cannot.

= Today: BMC with SAT for finding shallow errors.
BDD-based procedures for proving their absence.

= BMC and BDD model checkers used as
complementary methods

Next lecture: Counterexample guided abstraction refinement

15

