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i Overview

Model checking
= Explicit state CTL model checking
= Labelling states with sub-formulas
= Bottom-up along the parse tree of the CTL formula

= Complexity linear in the size of the Kripke structure
and length of the formula.

However
= Size of the Kripke structure exponential in the
number of components.

i Overview

% Modelling 8
il = Finite automata -
W

= Biichi automata

L = Kripke structures - @ 9 e ‘

E Specification
= Linear Time Logic
= Computation Tree Logic
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# Symbolic Model Checking

Basic Idea
= Define model checking in terms of sets of states

= Use a compact symbolic representation for sets of
states

= Use efficient algorithms to operate on this
representation

Today
= The fixpoint characterization of CTL




Preliminaries
Given a Kripke structure M=(S, s;, -, W) and a CTL
formula @ over a set of atomic propositions AP.
[l @] denotes the set of states s with M,s |=(p

lpll={slpOuns)}

= [|true|]] =S

* [lfalse]] = O What about the
[~ ell=S\[lol] temporal
“loeowll=0ellnlwll ORCTAIOSH

o0y ll=llell0lwll

Set of states that satisfies E @ U @

[lEeUuyI] =[lwO(eOEXE@Uy)I]
=[HwloellnlEXE@Uy I])

with
[IEXEQUW [1={s|0(ss) 0 -st.s'O[|E@Uu ]}

= We can compute [|[E U @], given [|[E U @|] ???

Set of states that satisfies EX ¢
[lEX@|l={s|0O(s,s)0 - suchthats'O[| @|]}

= We can compute [| EX @ |], given set[| ¢ |] Vv~

Sets

Exist Globally

Set of states that satisfies EG @

[IEGol] [l oDEXEG @[]
[lolln [IEXEG@[])
[

[elln{s|O(ss)0 -~ st.s’O[EGo|]}

= We can compute [|EG ¢|], given [|EG ¢|] ?2?2?
_—

Feels like circular
reasoning




¥ Monotonic Functions

A short diversion

¥ Monotonic Functions

There exist functions
with fixpoint, but no
least or greatest

fixpoint.

There exist non-
monotonic
functions without
fixpoint.

Examples
Let S:={0,1,2,3}

f(P) := PO {2}
= monotonic with fixpoints {2}, {0,2}, {1,2}, {3,2}, {0,1,2},
{1,2,3},{0,2,3},{0,1,2,3}.
f(P) := P\ {2}
= monotonic with fixpoints 00, {0}, {1}, {3}, {0,1}, {1,3},
{0,3},{0,1,3}.
f(P) :={s+1mod4 |sOP}
= not monotonic, but fixpoints {0,2}, {1,3}

¥ Monotonic Functions
‘:“::m_ Definition

Let S be a set of states S and f: 25 - 25 a function
from sets of states to sets of states.

= Function f is called monotonicif P O Q implies f(P) O f(Q)
= A subset P of Sis called a fixpoint of f if f(P) =P

= A fixpoint P is a /east fixpoint if P O Q for all fixpoints Q

= A fixpoint P is a greatest fixpointif P O Q for all fixpoints Q
= We define fi(P):= f (P) and f**1(P) := f( f(P) )

i Monotonic Functions
:g ' |‘ Knaster-Tarski Theorem

Let S be a finite set with n elements. If f: 25 . 2Sis a
'monotonic function then

= f1(0) is the least fixpoint of f
= fn(S) is the greatest fixpoint of f

Guarantees existence of least and greatest
fixpoints for monotonic functions and tells
even how to compute them.




I Monotonic Functions
i““ ) |‘ Proof for " (0) is the /least fixpoint of f

= Since O O f(O), show by induction f¥((0) O fk+1(0)
= If fi(0) = fk+1(0) for some k, then
fi(0)=f*Y0)forall | > k
= If f(0) ) f+1(0), then f<+1(0) must contain at
least one element more than f*(0)

= f¥0O) O f<+1(0) for at most n ks
= fn(0) = f"*+Y(0) is a fixpoint

¥ Monotonic Functions

|
N |
s Examples
3 Let S:={0,1,2,3}

f(P) := PO {2}
= fixpoints {2}, {0,2}, {1,2}, {3,2}, {0,1,2}, {1,2,3},{0,2,3},
{0,1,2,3}.
= f(0)={2}, f({2})={2} = least fixpoint {2}
= f(S) =S = greatest fixpoint S
f(P) := P\ {2}
= fixpoints O, {0}, {1}, {3}, {0,1}, {1,3}, {0,3}, {0,1,3}.
= f(0)= ...

= f(S) = ...

# Monotonic Functions
|
N |
il Proof for f () is the least fixpoint of f
= Given another fixpoint P, we have 0 0O P
= Hence f(O) Of(P), hence f(O) O P (P is fixpoint)
= By induction f¥(00) O P for all k>0

= In particular f°(0) O P

= fn(0) is the /east fixpoint

‘ Similar proof for greatest fixpoint

il Fixpoint Characterization
f‘g:; We have

= Knaster-Tarski Theorem, which gives us a way to
compute least and greatest fixpoints.

= And the following equalities
"[lEGoll={s|0(ss) 0~ st.s"O[EGo|]}
“[EeUu =y N0 elIn{sl..})

‘ [ EG @]] and[| E @U y |] are fixpoints !!!




il Fixpoint Characterization
e | Exist globally
[ EG ¢ [] is a fixpoint of
feoP) = [ 011 n{s10(s8)0 - st.s 0P}
Theorem:
« f¢ is monotonic

= [| EG @ |] is the greatest fix-point
"[IEG o] =f"g(S)

il Fixpoint Characterization
Proof: [| EG @ |] is the greatest fix-point

Let P be fixpoint of f. Let s, O P. Show s, O [| EG ¢ |].

= We have s, fe(P)=[loll1 n {s|0(s,s) 0 - st.s"OP}

= Hence M, s, |=(g and there exists s, 0 P with (sy, 5,") O -

= By induction, show there exists for all k = 0 a state s, with
M, s F@and (sSce1) O —

= There exists an infinite path sg,s,,... with M,s; |=(pfor alli=0

=M, s, FEG @

=5,0[ EGoll.

il Fixpoint Characterization
i ki‘? Proof: f is monotonic
| Suppose P 0 Q, then
fe =101 {51 0(s8) 0~ st.s' 0P}

Ol elln{s|O(ss)0~st.s’0Q} //POQ
= fee (Q

B Fixpoint Characterization
Proof: [| EG @ |] = g5 (S)

Follows directly from Knaster-Tarski Theorem.




B Fixpoint Characterization
i‘g:; Example: EG p
fecP)=[plln{s|O(s)0-st.s’OP}

P r

S = {SOI S17 S2r S3/ Sar SS}
fec!(S) = {Sor S1/ Sar Sab
fecX(S) = {Sor S14 52}

fee™(S) = {Sor S1/ 52}

= [lEG pl] = {SOI S1/ SZ}

il Fixpoint Characterization

iﬂ‘:? Exist globally

[l EUy |]=is a fixpoint of

() = IWI1 O ([0l 0 {5 10(s,8) O ~ st sTP )
Theorem:

= fgy i monotonic
= [| E@U y |]= is the least fix-point

*[|E@Uy |]=fy" (D)

B Fixpoint Characterization
i‘g:; Example: EG p
fecP)=[plln{s|O(s)0-st.s’OP}

S = {Sos S1/ Sy S3/ Sar Ss) o

fec!(S) = {Sor S1/ o Sab @ e p'r

fec®(S) = {Sor S1/ S} .

fEG3(S) = {sy S3}

fek®) = 0 OmOm©O
P

= [IEGpl]=0

h

B Fixpoint Characterization
i‘g:; Example: Ep U r
feo(P) = [rl1 O ([Ipl] n {s |O(s,s) O ~ st. STP })

fegt(0) = {sy S5}

feeX(0)= {Sy S4, S5t
feg®(0)= {S1, Sy Sa/ S5}
fea™(0) = {Sor S1s Sy Sa, Sst
fee®(0) = {So S/ Sy Sa, Sst

:>[| Epur|]={SOISUSZIS4ISS}




i Summary

Semantic of CTL with fixpoints

Given Kripke structure M=(S, sy, -, 1), with n states,
and @ in ENF over atomic propositions AP.

= [|true|]] =S

= [|false|]] = O
“lpll={slpOus)?
l-oell=sS\llel]
“loeowll=0ellnlwll
[l EoUuy |I=fy"(0)

= [ EG 9] = fes'(S)

|

= Translates to an algorithm
based on sets

= Sets of states as unordered list
lists are inefficient

= We need

= Compact set representation
= Efficient operations on sets

= OBDDs
= Symbolic CTL model checking

= SMV




