Algorithmic Verification

Comp4151
Lecture 4-A
Ansgar Fehnker

Overview

= Modelling

= Deterministic finite automata

= In each state exactly one outgoing transition for every
possible label

= Nondeterministic finite automata

= Any finite number of outgoing transitions for each state
and label permitted

= Biichi automata
= Accepting condition on infinite runs
= Kripke structures
= Set of labels on the states rather than on transitions. No
final states, no acceptance condition.

Comp4151 Ansgar Fehrke

Overview

= Specification
= Linear Time Logic
= Describes behaviour along infinite paths
= Computation Tree Logic
= Describes behavior that is possible starting from a state
= CTL*
= Relaxes CTL, encompasses both LTL and CTL.
= Strictly more expressive than CTL and LTL.

Model Checking

Kripke temporal
strukture logic formula
M Eo
model, | S"’}t'Sf'es' property,
program 'MP ements, specification

refines

M statisfies @iff all initial states satisfy @

Comp4151 Ansgar Fehrke




CTL model checking

= A straightforward labelling algorithm for CTL
= Given a Kripke structure M=(S, sy, -, 1)

CTL model checking

//process 1
0 [
1 While(le2){} //busy wait| 1
2 critical section | 2
3 ¢l := True} 3

//process 2

//busy wait
critical section 2

2= True}

Mutual exclusion example:

Safety: None of the two processes should be in the critical

section at the same time.

Fairness: Each process should be able to enter the critical section.

Comp4151 Ansgar Fehrke

CTL model checking

process_1 process_2

/c2=False
v

Mutual exclusion example:

Safety: None of the two processes should be in the critical
section at the same time.

Comp4151 Ansgar Fehrke

Fairness: Each process should be able to enter the critical section.

CTL model checking

While(True){ / /process 1
0 e
1 2){} //busy wait
2 critical section |
3 ol = True}

Atomic propositions:

= pc,=0
=pc,=1
= pc,=2
=pc,=3
.c,




CTL model checking

Kripke structure

CTL model checking

= A labelling algorithm of CTL
= Given a Kripke structure M=(S, sy, -, [)
= Given a CTL specification

CTL model checking

Syntax

@:=p|-0| ¢ 0 | AXQ| EXQ| AF@| EFQ|
AGO| EGo| A(@U®) | E(p, U @)

Every CTL formula can be translated into
Existential Normal Form (ENF)

@:=p|-0| ¢ 0 | EXQ| E(¢, U )| EGo

Comp4151 Ansgar Fehrke

CTL model checking

= A labelling algorithm of CTL
= Given a Kripke structure M=(S, sy, -, [)
= Given a CTL specification
= Convert it to ENF




CTL model checking

Example

AG AF =(pc, =1 0pc, = 1) ‘

is equivalent to

‘—-E[trueUEG(pq:l qu:l)]‘

CTL model checking

= A labelling algorithm of CTL
= Given a Kripke structure M=(S, sy, -, [)
= Given a CTL specification
= Convert it to ENF
= For all sub-formulas label states that satisfy them

CTL model checking
For all sub-formulas label states that satisfy them

= Recursive bottom-up computation:

= consider the parse-tree of @
= start with atomic propositions pin the leafs of the tree
= for all states sif p 0 u(s) add pto the labels of s
\ = go one level up in the tree and check sub-formula
= if subformula is true in s, add it to /abels(s)
= proceed until the root of the tree is checked

= M |= @if the initial state is labelled ¢

Comp4151 Ansgar Fehrke

CTL model checking

Example

‘—.E[trueUEG(pq:l 0 pe=1)]

Consider the parse tree




CTL Model checking

= Let label(s) the set of labels of state s

= |nitially label(s)={true}

= Given a sub-formula @in ENF there are six cases to
consider

@:=p|-¢|¢, 09, | EXQ| E(¢, U @) | EG @

Labelling algorithm

Case 1: O AP

Add @to labels of s if @ O p(s)

Labelling algorithm

Case 2: @is of the form = ¢

Add @to labels of s if ¢ O /abels(s)

Labelling algorithm

Case 3: ¢is of the form ¢, O¢,

Add oto labels of s if @, , @, O /abels(s)




Labelling algorithm
Case 4: @is of the form EX ¢

Add @to labels of s if

0(s,s") O - such that ¢ O /abels (s7)

Labelling algorithm
Case 5: @is of the form E @,U o,

1. Add @to labels to s if @, /abels (s)
2. Add gto labels to s if
= o0 /abels(s”)
" (ss)0 -
p = @0 /abels(s)
3. Repeat step 2 aslong as new labels can be added

Labelling algorithm
Case 5: @is of the form E @,U o,

1. Add @to labels to s if @, /abels (s)
2. Add gto labels to s if
= o0 /abels(s”)
" (ss)0 -
p = @0 /abels(s)
3. Repeat step 2 aslong as new labels can be added

Explore state space from states that satisfy ¢, backwards,
as long as states satisfy @,

Comp4151 Ansgar Fehrke

Labelling algorithm

Case 6: @is of the form EG ¢

Basic idea
= look for loops on which ¢ holds.
= look for paths on which ¢ holds to those loops




Labelling algorithm

Case 6: @is of the form EG ¢

This is a graph,
not a Kripke
structure

Step 1: find loops on which ¢ holds

Create graph M' = (S, -, i’ Y from M with
= S’ are all states s with by removing all states s 0 S in
which ¢ O labels (s)

= update -’, p" accordingly

Labelling algorithm

Case 6: @is of the form EG ¢

Find nontrivial strongly connected components of M’
= A strongly connected component (SCC) C is
= a maximal subgraph such that every node in C is reachable
by every other node in C on a directed path that is contained
entirely within C.
= Cis nontrivial iff either
= it has more than one node or
= it contains one node with a self loop

Use Tarjan's
algorithm to
compute SCCs

Labelling algorithm
Case 6: @is of the form EG ¢

Step 2: find paths on which ¢ holds to SCCs

1. Add @to labelsto s S if s isin a SCC
2. Add @tolabelsto s S” if
= o0 /abels(s”)
= (ss)D0 -7
= o0 /abels(s)
3. Repeat step 2 aslong as new labels can be added

Labelling algorithm

Case 6: @is of the form EG ¢

Lemma: M,s k EG ¢ iff
1. s S’

2. There exists a path in M' that leads from s to a nontrivial
strongly connected component of M'.

Intuition behind proof

= If there exists a path from sto a cycle and ¢ holds in
every state (by construction), then there exists an infinite
path on which ¢ holds

= If there exists an infinite path over finite states, then it
must end in a cycle, i.e. a sub-graph of a SCC.

Comp4151 Ansgar Fehrke




Labelling algorithm

Summary

= Start with the atomic propositions, and proceed
with sub-formulae as follows

1.

If @ [JAP label s if @ O p(s)

2. If =~ ¢ label all states not labelled ¢

vl AW

. If o=@, O, label all states labelled @, and @,
. If o= EX ¢, if it has successor labelled ¢
. If = E @,U @, explore state space from states that

satisfy @, backwards, as long as states satisfy @,

. If = EG ¢ label states in SCCs of the graph, restricted to

the states that satisfy ¢. Backtrack from those states.

“True” is trivially in each set of labels

Comp4151 Ansgar Fehrke

Start with the atomic propositions

Comp4151 Ansgar Fehrke




Start with the atomic propositions Go up one level

Go up one level Find nontrivial SCCs




Backtrack

Label states labelled EG pc,=10pc,~1

Backtrack

Backtrack

10



Backtrack

Backtrack

Backtrack

Example

Label all states not labelled E[ true U EG (pc; =1 O pc,=1)]
= M does not satisfy AG AF - (pc, =1 0pc, = 1)
Compa151 Ansgar Fefker

11



CTL Model checking

Complexity

partitioning the states into strongly connected
components is O(|S|+]| - ]))

Exploring the transition relation has complexity
O(ISI+1-1))

| = n sub-formulas of the CTL formula ¢

=> complexity is O(|o| * (IS|+]| - 1))

Fairness and Model Checking

Reminder

weak fairness
if an event is continuously enabled, it will occur infinitely often
» inLTL: GF (~enabled Ooccurs)

strong fairness
if a event is infinitely often enabled it will occur infinitely often
» inLTL: GF enabled = GF occurs

Fairness and Model Checking

Reminder

Weak/strong fairness can be expressed in LTL,
however, not in CTL

in LTL model checking fairness can be added directly
as an assumption

in CTL model checking fairness has to be build into
the model checking algorithm

Fair CTL model checking

Weak fairness
Given a strong CTL fairness constraint analogously

Yeir = GF W, = GF W,

with W, and W,CTL formulas.

| The behaviour of M is restricted to paths that are fair.

Fairness constraint is LTL formula over CTL state formulas!




Fair CTL model checking
Fair semantics for CTL state formulas

= M,s Epiff pOu(s)

= Ms E-giffnotM,s Fo

= Ms ko OgiffMs Fg and Ms F ¢,

= M,s [Agiff for all fair paths T starting in's, M, 1t ¢

= M,s kEqiff there exists a fair path Tstarting in s,
such that M,t | f

‘ Semantics for path formulas remain the same. ‘

Comp4151 Ansgar Fehrke

Fair CTL model checking

Given fairness constraint W, = GF W, = GF W¥,and
Kripke structure M=(S, s, -, W)

Label all states that satisfy W, and W, with ¥, and W,

Use CTL model
checking

Fair CTL model checking

Revisiting the cases
Given a CTL formula ¢ in ENF deal with sub-formulae
as follows

1.If @ AP label s if @ O p(s)
2.If =~ ¢ label all states not labelled ¢
3.If o=@, Og,label all states labelled ¢, and @,

The first three cases remain the same

Fair CTL model checking
Case 4: @is of the form EX ¢

Add @to labels of s if 0(s,s") O - such that
¢ O labels (s”)and M,s’ FEWg,,

We use

Mt E W, iff Ck=0. M, | W, iff Ok20. M,1¢ W,

13



Fair CTL model checking
Computing M,s F EW,,

Basic idea

Find a path from s to a cycle s,,...,s, such that either

forallO<i<n Y, Olabel(s;) or
thereexist0<i<n Y, O label(s)

Fair CTL model checking
Labelling

1. Label all states in SCCs C of M with W, if
= thereexistsa sOCs.t. W, label(s) or

= if the exists a SCC D in C’, the restriction of C to states
with W, O label(s)

2. Backtrack from there, labelling states

3. Label states EX¢ if they have a successor labelled
¢ and Lpfair

Fair CTL model checking
Case 5: ¢is of the form E ¢,U o,

1. Add @to labels to s if @, /abels (s)
2. Add gto labels to s if
= @ W, O/abels(s”)
= (55)0 -
p = @0 /abels(s)
3. Repeat step 2 as long as new labels can be added

Compute the states that must be labelled W, as before

Fair CTL model checking

Case 6: @is of the form EG ¢

1. Create graph M' = (S, -/, p') from M with
= S'are all states s with by removing all states s O S in
which ¢ O/abels (s) and update -, " accordingly

2. Label all states in M’ that satisfy EW,,

14



Fair CTL model checking

Complexity

= For each several fairness constraints procedure has
to be applied recursively

= For n sub-formulas of the CTL formula ¢, and k
fairness constraints

=> complexity is O(|o| * (|S|+| - |)* k)

Summary

= CTL model checking is
= Linear in the size of the state space
= Linear in the length of the formula
= Linear in the number of fairness constraints

= Fairness constraints are few.
= Formulas are short.
= States explode !

15



