
1

Comp4151 Ansgar Fehnker

Algorithmic Verification

Comp4151

Lecture 1-B

Ansgar Fehnker

Comp4151 Ansgar Fehnker

Algorithmic Verification

The software crisis (and hardware as well)

� Computer become more powerful (Moore’s law)

� The quality of programs cannot keep up

� Up to 80% of all software development time is spent on locating
and correcting defects

� About 70% of all cost in hardware design go to verification and
validation

� Rework due to defects identified accounts for between 40% and
50% of total project cost

“When there were no computers programming was no problem. When we
had a few weak computers, it became a mild problem. Now that we have
gigantic computers, programming is a gigantic problem.” (Edsger Dijkstra)

Comp4151 Ansgar Fehnker

Algorithmic verification

Solution: Give Proof

Computer Aided Verification

� Theorem proving (mostly semi-automatic)

� Model checking (mostly automatic)

“The only effective way to raise the confidence level of a program
significantly is to give a convincing proof of its correctness.”

(Edsger Dijkstra)

Comp4151 Ansgar Fehnker

Model checking

The basic idea

� Given a model of the system

� Kripke structre, FSM, automaton, Petri net, …

� Given a formal specification

� LTL, CTL, mu-calculus, …

� another simpler model

� Calculate whether model satisfies specification

No proofs. (But you need math to build a model checker)

Fast (compared to other rigorous approaches)

Gives counter-examples (help with debugging, too)

2

Comp4151 Ansgar Fehnker

Reading

Model Checking

Edmund Clarke, Orna Grumberg and

Doron Peled

MIT Press 2000

This textbook can be obtained at the

UNSW bookshop

Comp4151 Ansgar Fehnker

Model checking

Today

Application examples

� program analysis

� mutual exclusion

� wireless network

� scheduling

Comp4151 Ansgar Fehnker

Program Analysis

Semantic analysis

� Check if the program does what it is supposed to
do.

� Requires an understanding of what the program
actually means

Syntactic analysis

� Look for common programming constructs that
cause bugs

� Except for the CFG, the program is just syntax

What is worng with this tautology?
Comp4151 Ansgar Fehnker

Program Analysis

What is wrong with this program?

int main()
{

int i,x; // Variable declaration.
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i < 10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) {
i=i-lock1++ ;

}
} // End for().

}

int main()
{

int i,x; // Variable declaration.
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i < 10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) {
i=i-lock1++ ;

}
} // End for().

}

Problems the compiler doesn’t find.

3

Comp4151 Ansgar Fehnker

Program Analysis

What is wrong with this program?

int main()
{

int i,x; // Variable declaration.
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i <= 10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) {
i=i-lock1++ ;

}
} // End for().

}

int main()
{

int i,x; // Variable declaration.
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i <= 10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) {
i=i-lock1++ ;

}
} // End for().

}

Problems the compiler doesn’t find.
Comp4151 Ansgar Fehnker

Program Analysis

Semantic properties
� Counter i should exceed 10 eventually

� lock1 should be zero at the end of the program

� After each lock++ there should be a lock--

Syntactic properties

� A variable cannot be used until it is initialized.

� The loop counter should not be modified in a loop.

� After each lock++ there should be a lock--

Comp4151 Ansgar Fehnker

Concurrent Systems

� Concurrent systems consists of subsystems,
components, modules, agents, …

� The components have to

� interact in a correct and timely manner

� cooperate to ensure functionality of the system

� compete for shared resources

� Concurrency bugs are often an unintended side
effect of parallelism and shared access to

resources.

Comp4151 Ansgar Fehnker

Concurrent Systems

Example
� 2 threads. They share variable x and have local
variables y and z, respectively.

� x has initially value 2

P1 || P2

y = x; z = x;

x = y+1; x = z+1 ;

� What is the result when the processes complete?

4

Comp4151 Ansgar Fehnker

Concurrent Systems

Example
� 2 threads. They share variable x and y

� x has initially value 2

� y has initially value 1

P1 || P2

y = x++; y = x++;

x = x+(y++); x = x+(y++);

� What is the result when the processes complete?

Comp4151 Ansgar Fehnker

Non-determinism

� Most sequential programs are deterministic

� At any point there is exactly one possible next
step

� Concurrent systems and programs are often
non-deterministic

� There might be multiple components that can
take the next step

� Model checking explores all possibility to

interleave steps

Comp4151 Ansgar Fehnker

Concurrent Systems

Example from Wikipedia

global integer A = 0;

task Received(){ task Timeout(){

A = A + 1; if (A is divisible by 2) {

print "RX"; print A;

} }

}

Will task Timeout ever print an odd number?

Comp4151 Ansgar Fehnker

Concurrent Systems

Race Conditions

Given a system with multiple processes that share a

resource.

A race condition is a situation in which the result or

output depends on the relative timing of events.

5

Comp4151 Ansgar Fehnker

Concurrent Systems

Critical Section

A piece of code that in which a process needs

exclusive access to a resource.

A most one process should be in the critical section at

the same time.

Mutual Exclusion

A system guarantees mutual exclusion if at most one

process can be in a critical section.

Important for OS. Shared memory, disc, printer, …

Comp4151 Ansgar Fehnker

Mutual Exclusion

Towards a solution: Flag critical sections

global integer A = 0;

task Received(){ task Timeout(){

*** begin CS *** *** begin CS ***

A = A + 1; if (A is divisible by 2) {

print "RX"; print A;

*** end CS *** }

} *** end CS ***

}

Mutex algorithms are arbiter to ensure exclusive access to CS

Comp4151 Ansgar Fehnker

Mutual Exclusion

Potential problems for mutex algorithms

deadlock: Two or more processes wait for the
another to complete a task

livelock: Two or more processes change their
state in reaction to the change in states
of the other processes, but none of
them really progresses.

starvation: A process is ready to excute a task, but
never gets the chance to take a step.

Comp4151 Ansgar Fehnker

Mutual Exclusion

Dining Philosophers Problem

� N philosophers having spaghetti for dinner

� Only N forks available on the dining table

� Every philosopher needs two forks for dining

� Give a solution that avoids

� Deadlock

� Livelock, and

� Starvation

6

Comp4151 Ansgar Fehnker

Mutual Exclusion

A solution
Introduce a shared variable to tell whose turn it is

var turn : 0..1;

P0 P1

while turn ≠ 0 while turn ≠ 1

do {nothing}; do {nothing};

"critical section"; "critical section";

turn:=1; turn:=0;

Ensures mutex, but processes have to alternate

Comp4151 Ansgar Fehnker

Mutual Exclusion

A solution
Introduce a flag for each process
var flag : array[0..1] of bool;

P0 P1

while flag[1] while flag[0]

do {nothing}; do {nothing};

flag[0]:=true; flag[1]:=true;

"critical section"; "critical section";

flag[0]:=false; flag[1]:=false;

Does not ensure mutex

Comp4151 Ansgar Fehnker

Mutual Exclusion

A solution
Introduce a flag for each process
var flag : array[0..1] of bool;

P0 P1

flag[0]:=true; flag[1]:=true;

while flag[1] while flag[0]

do {nothing}; do {nothing};

"critical section"; "critical section";

flag[0]:=false; flag[1]:=false;

Does ensure mutex, but may lead to deadlock
Comp4151 Ansgar Fehnker

Mutual Exclusion

A solution: Peterson Algorithm (1981)
Use flag and turn variable
var flag : array[0..1] of bool;

P0 P1
flag[0]:=true; flag[1]:=true;

turn:=1; turn:=0;

while flag[1]&turn=1 while flag[0]&turn=0

do {nothing}; do {nothing};

"critical section"; "critical section";

flag[0]:=false; flag[1]:=false;

Ensures mutex and no deadlock, livelock or starvation

7

Comp4151 Ansgar Fehnker

Fairness

� Many algorithms are only correct given additional
fairness assumptions.

� A fairness assumption means that each process will
get a chance to take part in the protocol

� This rules out the following situation

� A process starves because it never takes a step, although
the step is continuously/infinitely often enabled.

Comp4151 Ansgar Fehnker

Fairness

Weak fairness

An infinite execution is weak fair if a transition occurs

infinitely often if is only finitely often disabled.

Strong fairness

An infinite execution is strongly fair if a transition occurs

infinitely often if is infinitely enabled.

Comp4151 Ansgar Fehnker

Mutual Exclusion

Observation

� Many flawed solutions to the mutual exclusion
problem

� Reasoning over mutual exclusion is difficult

� You want to have proof that it works.

� Model checking can show correctness.

Spin demo

Comp4151 Ansgar Fehnker

Demo formula

result

model

8

Comp4151 Ansgar Fehnker

Protocols

Example: Wireless sensor networks

Aggregate of small, portable devices

� battery-operated computing power

� distributed gathering of sensor information

� wireless communications

� multi-hop communication

Comp4151 Ansgar Fehnker

Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

Flooding protocol

� listen to medium

� if you receive a message

� send message

� go to sleep

Properties of flooding

� simple

� used for routing

� redundant

� prone to collisions

� inefficient

Comp4151 Ansgar Fehnker

Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

Gossiping protocol

� listen to medium

� if you receive a message

� send message with probability p

� go to sleep

Comp4151 Ansgar Fehnker

Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

Properties of gossiping

� still simple

� reduces redundancy

� reduces collisions

� improved efficiency

Gossiping protocol

� listen to medium

� if you receive a message

� send message with probability p

� go to sleep

9

Comp4151 Ansgar Fehnker

Probabilistic Choice

Probability and Non-determinism

�Many probabilistic models allow for both
probabilistic choice and non-deterministic choice.

�Probabilism introduces a notion of fairness absent in
non-deterministic systems.

�Fairness restrictions/assumption on non-
deterministic systems are weaker

l0
l1

The non-deterministic
system can stay in l0

forever

l0 l1

1/2

1/2

The probabilistic
systems stays in l0

forever with probability 0 Comp4151 Ansgar Fehnker

Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

The model includes probabilistic

choice
�A node sends with probability p
�A node sends not with probability 1-p

�An implementation of a node that
always sends is incorrect

�An implementation of a node that never
sends is incorrect

�An implementation of a node that
alternates sending and “not-sending” is
incorrect

Comp4151 Ansgar Fehnker

Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

The network includes also non-
deterministic choice

� If node 1 and 2 receive a message
then

� either node 1 takes the next step
� or node 2 takes the next step
�An implementation in which node 1

always takes priority is correct
�An implementation in which node 2

always takes priority is correct
�An implementation in which node 1 and

2 alternate is correct
Comp4151 Ansgar Fehnker

Example

� Prism demo

No time for this one ☺

10

Comp4151 Ansgar Fehnker

Model checking can be used to solve scheduling

problems

Unsafe Safe

25min 20min 10min 5min

Can they make
it within 60 minutes ?

Scheduling

Comp4151 Ansgar Fehnker

unsafe

L==0

take!

y:=0

y>=25

release!

L==1

take!

y:=0

y>=25

release!

safe

Unsafe Safe

25min 20min 10min 5min

Can they make
it within 60 minutes ?

unsafe

L==0
take!

y:=0

y>=20

release!

L==

1take!
y:=0

y>=25

release!

safe
unsafe

L==0

take!
y:=0

y>=5

release!

L==
1take!
y:=0

y>=25

release!

safe

unsafe

L==0

take!
y:=0

y>=10

release!

L==
1take!
y:=0

y>=25

release!

safe

take?

release?

take?

release?

L:=1-L

Scheduling

Comp4151 Ansgar Fehnker

Scheduling

Uppaal demo

model

formula

result

Comp4151 Ansgar Fehnker

Summary

Model checking can be used to tackle a varienty

of problems

� Program verification

� Concurrent systems

� Protocols

� Scheduling

� ….

11

Comp4151 Ansgar Fehnker

Summary

Different models checkers differ in

� Modelling language

� Specification logic

� Model checking algorithm

Next week

� The fundamentals of modelling systems

