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Algorithmic Verification

The software crisis (and hardware as well)

� Computer become more powerful (Moore’s law)

� The quality of programs cannot keep up

� Up to 80% of all software development time is spent on locating 
and correcting defects

� About 70% of all cost in hardware design go to verification and 
validation

� Rework due to defects identified accounts for between 40% and 
50% of total project cost

“When there were no computers programming was no problem. When we
had a few weak computers, it became a mild problem. Now that we have 
gigantic computers, programming is a gigantic problem.” (Edsger Dijkstra)
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Algorithmic verification

Solution: Give Proof

Computer Aided Verification

� Theorem proving (mostly semi-automatic)

� Model checking (mostly automatic)

“The only effective way to raise the confidence level of a program 
significantly is to give a convincing proof of its correctness.”

(Edsger Dijkstra)
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Model checking

The basic idea

� Given a model of the system 

� Kripke structre, FSM, automaton, Petri net, …

� Given a formal specification

� LTL, CTL, mu-calculus, …

� another simpler model

� Calculate whether model satisfies specification

No proofs. (But you need math to build a model checker)

Fast (compared to other rigorous approaches)

Gives counter-examples (help with debugging, too)



2

Comp4151 Ansgar Fehnker

Reading

Model Checking

Edmund Clarke, Orna Grumberg and 

Doron Peled

MIT Press 2000

This textbook can be obtained at the 

UNSW bookshop
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Model checking

Today

Application examples

� program analysis

� mutual exclusion

� wireless network 

� scheduling
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Program Analysis

Semantic analysis

� Check if the program does what it is supposed to 
do.

� Requires an understanding of what the program 
actually means

Syntactic analysis

� Look for common programming constructs that 
cause bugs

� Except for the CFG, the program is just syntax

What is worng with this tautology?
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Program Analysis

What is wrong with this program?

int main()
{

int i,x;  // Variable declaration.  
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i <  10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) { 
i=i-lock1++ ;

}
} // End for().

}

int main()
{

int i,x;  // Variable declaration.  
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i <  10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) { 
i=i-lock1++ ;

}
} // End for().

}

Problems the compiler doesn’t find.
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Program Analysis

What is wrong with this program?

int main()
{

int i,x;  // Variable declaration.  
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i <= 10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) { 
i=i-lock1++ ;

}
} // End for().

}

int main()
{

int i,x;  // Variable declaration.  
int lock1;

lock1 = 0;// lock should be 0 at the end.
for(i=0; i <= 10; i++) {

if(x == 12) {.
lock1--;

}

if(i > 8) { 
i=i-lock1++ ;

}
} // End for().

}

Problems the compiler doesn’t find.
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Program Analysis

Semantic properties
� Counter i should exceed 10 eventually

� lock1 should be zero at the end of the program

� After each lock++ there should be a lock--

Syntactic properties

� A variable cannot be used until it is initialized.

� The loop counter should not be modified in a loop.

� After each lock++ there should be a lock--
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Concurrent Systems

� Concurrent systems consists of subsystems, 
components, modules, agents, … 

� The components have to

� interact in a correct and timely manner

� cooperate to  ensure functionality of the system

� compete for shared resources

� Concurrency bugs are often an unintended side 
effect of parallelism and shared access to 

resources.
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Concurrent Systems

Example
� 2 threads. They share variable x and have local 
variables y and z, respectively.

� x has initially value 2

P1 || P2

y = x; z = x;  

x = y+1; x = z+1 ;

� What is the result when the processes complete?
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Concurrent Systems

Example
� 2 threads. They share variable x and y

� x has initially value 2

� y has initially value 1

P1 ||   P2

y = x++; y = x++; 

x = x+(y++); x = x+(y++);

� What is the result when the processes complete?
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Non-determinism

� Most sequential programs are deterministic

� At any point there is exactly one possible next 
step

� Concurrent systems and programs are often 
non-deterministic

� There might be multiple components that can 
take the next step

� Model checking explores all possibility to 

interleave steps
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Concurrent Systems

Example from Wikipedia

global integer A = 0; 

task Received(){  task Timeout(){ 

A = A + 1; if (A is divisible by 2) { 

print "RX"; print A; 

} }

}

Will task Timeout ever print an odd number?
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Concurrent Systems

Race Conditions

Given a system with multiple processes that share a 

resource.  

A race condition is a situation in which the result or 

output depends on the relative timing of events.
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Concurrent Systems

Critical Section

A piece of code that in which a process needs 

exclusive access to a resource. 

A most one process should be in the critical section at 

the same time.

Mutual Exclusion

A system guarantees mutual exclusion if at most one 

process can be in a critical section.

Important for OS. Shared memory, disc, printer, …

Comp4151 Ansgar Fehnker

Mutual Exclusion

Towards a solution: Flag critical sections

global integer A = 0; 

task Received(){  task Timeout(){ 

*** begin CS ***  *** begin CS ***

A = A + 1; if (A is divisible by 2) { 

print "RX"; print A; 

*** end CS   *** }

} *** end CS   ***

}

Mutex algorithms are arbiter to ensure exclusive access to CS
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Mutual Exclusion

Potential problems for mutex algorithms

deadlock: Two or more processes wait for the 
another to complete a task

livelock: Two or more processes change their 
state in reaction to the change in states 
of the other processes, but none of 
them really progresses. 

starvation: A process is ready to excute a task, but 
never gets the chance to take a step.  
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Mutual Exclusion

Dining Philosophers Problem

� N philosophers having spaghetti for dinner

� Only N forks available on the dining table

� Every philosopher needs two forks for dining

� Give a solution that avoids

� Deadlock 

� Livelock, and

� Starvation
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Mutual Exclusion

A solution 
Introduce a shared variable to tell whose turn it is

var turn : 0..1;

P0 P1

while turn ≠ 0 while turn ≠ 1

do {nothing}; do {nothing};

"critical section"; "critical section";

turn:=1; turn:=0;

Ensures mutex, but processes have to alternate
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Mutual Exclusion

A solution 
Introduce a flag for each process
var flag : array[0..1] of bool;

P0 P1

while flag[1] while flag[0]

do {nothing}; do {nothing};

flag[0]:=true; flag[1]:=true;

"critical section"; "critical section";

flag[0]:=false; flag[1]:=false;

Does not ensure mutex

Comp4151 Ansgar Fehnker

Mutual Exclusion

A solution 
Introduce a flag for each process
var flag : array[0..1] of bool;

P0 P1

flag[0]:=true; flag[1]:=true;

while flag[1] while flag[0]

do {nothing}; do {nothing};

"critical section"; "critical section";

flag[0]:=false; flag[1]:=false;

Does ensure mutex, but may lead to deadlock
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Mutual Exclusion

A solution: Peterson Algorithm (1981)
Use flag and turn variable
var flag : array[0..1] of bool;

P0 P1
flag[0]:=true; flag[1]:=true;

turn:=1; turn:=0;

while flag[1]&turn=1 while flag[0]&turn=0

do {nothing}; do {nothing};

"critical section"; "critical section";

flag[0]:=false; flag[1]:=false;

Ensures mutex and no deadlock, livelock or starvation
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Fairness

� Many algorithms are only correct given additional 
fairness assumptions.

� A fairness assumption means that each process will 
get a chance to take part in the protocol

� This rules out the following situation

� A process starves because it never takes a step, although 
the step is continuously/infinitely often enabled.
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Fairness

Weak fairness

An infinite execution is weak fair if a transition occurs 

infinitely often if is only finitely often disabled.

Strong  fairness

An infinite execution is strongly fair if a transition occurs 

infinitely often if is infinitely enabled.
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Mutual Exclusion

Observation

� Many flawed solutions to the mutual exclusion 
problem

� Reasoning over mutual exclusion is difficult

� You want to have proof that it works.

� Model checking can show correctness.

Spin demo
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Demo formula

result

model



8

Comp4151 Ansgar Fehnker

Protocols

Example: Wireless sensor networks

Aggregate of small, portable devices

� battery-operated computing power  

� distributed gathering of sensor information

� wireless communications  

� multi-hop communication
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Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

Flooding protocol

� listen to medium 

� if you receive a message

� send message

� go to sleep

Properties of flooding

� simple

� used for routing

� redundant

� prone to collisions

� inefficient
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Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

Gossiping protocol

� listen to medium 

� if you receive a message

� send message with probability p

� go to sleep
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Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

Properties of gossiping

� still simple

� reduces redundancy

� reduces collisions

� improved efficiency

Gossiping protocol

� listen to medium 

� if you receive a message

� send message with probability p

� go to sleep
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Probabilistic Choice

Probability and Non-determinism

�Many probabilistic models allow for both 
probabilistic choice and non-deterministic choice.

�Probabilism introduces a notion of fairness absent in 
non-deterministic systems.

�Fairness restrictions/assumption on non-
deterministic systems are weaker 

l0
l1

The non-deterministic 
system can stay in l0

forever

l0 l1

1/2

1/2

The probabilistic 
systems stays in l0

forever with probability 0 Comp4151 Ansgar Fehnker

Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

The model includes probabilistic 

choice
�A node sends with probability p
�A node sends not with probability 1-p

�An implementation of a node that 
always sends is incorrect

�An implementation of a node that never 
sends is incorrect 

�An implementation of a node that 
alternates sending and “not-sending” is 
incorrect 
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Example

Example: Flooding and Gossiping Protocols

0 1 3

2 4 6

5 7 9

The network includes also non-
deterministic choice

� If node 1 and 2 receive a message
then

� either node 1 takes the next step
� or node 2 takes the next step 
�An implementation in which node 1 

always takes priority is correct
�An implementation in which node 2 

always takes priority is correct 
�An implementation in which node 1 and 

2 alternate is correct
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Example

� Prism demo

No time for this one ☺
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Model checking can be used to solve scheduling 

problems

Unsafe Safe

25min 20min 10min 5min

Can they make
it within 60 minutes ?

Scheduling
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unsafe

L==0

take!

y:=0

y>=25

release!

L==1

take!

y:=0

y>=25

release!

safe

Unsafe Safe

25min 20min 10min 5min

Can they make
it within 60 minutes ?

unsafe

L==0
take!

y:=0

y>=20

release!

L==

1take!
y:=0

y>=25

release!

safe
unsafe

L==0

take!
y:=0

y>=5

release!

L==
1take!
y:=0

y>=25

release!

safe

unsafe

L==0

take!
y:=0

y>=10

release!

L==
1take!
y:=0

y>=25

release!

safe

take?

release?

take?

release?

L:=1-L

Scheduling
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Scheduling

Uppaal demo

model

formula

result
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Summary

Model checking can be used to tackle a varienty

of problems

� Program verification

� Concurrent systems

� Protocols

� Scheduling

� ….
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Summary

Different models checkers differ in

� Modelling language

� Specification logic

� Model checking algorithm

Next week

� The fundamentals of modelling systems


