
COMP4141 Theory of Computation
Alternation

Ron van der Meyden

CSE, UNSW

Revision: 2014/05/14

(Credits: K Engelhardt, M Sipser, C Papadimitriou)

Motivation

Recall

nondeterministic TM’s, accept if some branch of the
computation tree accepts (used for NP)

co-nondeterministic TM’s, accept if all branches of the
computation tree accepts (used for coNP)

Alternating Turing machines combine the two acceptance modes
into one type of machine

ATMs
Definition

An alternating Turing Machine (ATM)

M = (Q, `,Σ, Γ, δ, q0, qaccept, qreject)

consists of:

Q, a finite set of states

` : Q −→ {∀,∃}, a labelling of states as universal or existential

Σ, the input symbol alphabet, t /∈ Σ

Γ ⊇ Σ, the tape symbol alphabet, t ∈ Γ

δ : Q × Γ −→ 2Q×Γ×{l,r}, the transition function

q0 ∈ Q, the start state

qaccept ∈ Q, the accept state

qreject ∈ Q, the reject state

L(ATM)

An ATM M runs on a word w as if it were an NTM, creating a
tree TM(w) of TM configurations (or a directed graph if we
identify nodes with identical configurations).

Definition (ATM acceptance)

Mark nodes of TM(w), proceeding from leaves to the root, as
follows:

1 every (accepting) configuration xqaccepty is marked,

2 c is marked if `(c) = ∃ and c has some marked successor in
TM(w), and

3 c is marked if `(c) = ∀ and c all successors in TM(w) are
marked .

If the root of TM(w) (the initial configuration) is marked at the
end of this process, then M accepts w .

Definitions of time and space complexity need not be changed.

Definition

Let t : N −→ N.

The alternating time complexity class, ATIME(t(n)) is the
collection of all languages that are decidable by an O(t(n)) time
ATM.

The alternating space complexity class, ASPACE(t(n)) is the
collection of all languages that are decidable by an O(t(n)) space
ATM.

AP =
⋃

k∈N
ATIME(nk)

APSPACE =
⋃

k∈N
ASPACE(nk)

AL = ASPACE(log n)

Example

Recall that it is not know whether

MIN-F = { 〈φ〉 | φ is a minimal Boolean formula }

is in NP or P. All we know so far is that MIN-F ∈ NPSAT.
“On input 〈φ〉:

1 Universally select a shorter formula ψ.

2 Existentially select an interpretation π of φ

3 Evaluate φ and ψ on π

4 Accept if the results differ and reject otherwise.”

proves that MIN-F ∈ AP.

Time, Space, and Alternation

Theorem

1. ATIME(t(n))
(a)

⊆ SPACE(t(n))
(b)

⊆ ATIME(t(n)2) if t(n) ≥ n.
2. ASPACE(t(n)) = TIME(2O(t(n))) if t(n) ≥ log n.

Corollary

AL = P, AP = PSPACE, and APSPACE = EXPTIME.

Proof Ideas

1.(a) ATIME(t(n)) ⊆ SPACE(t(n)):

simulate the ATM, do DFS to do the marking.

This gives SPACE(t(n)2), one t(n) for the recursion depth and
one t(n) for the configuration size.

Reduce the latter to constant size by merely recording the choices
made at each non-deterministic step, and recomputing the
configuration from the start when backtracking.

Proof Ideas

1.(b) SPACE(t(n)) ⊆ ATIME(t2(n)):

As in Savitch’s theorem, the ATM uses binary search to determine
whether the simulated TM could reach the accepting configuration
in 2dt(n) steps.

Rather than iterating over all possible midpoint configurations cm,
the ATM can use one big existential guess of t(n) steps to
construct cm, (and then universally branch into two recursive calls).

Proof Ideas

2.(“⊆”) ASPACE(t(n)) ⊆ TIME(2O(t(n))):

similar to the proof of PSPACE ⊆ EXPTIME, on input w ,
construct the directed acyclic computation graph containing the
configurations of the simulated ATM; first mark the accepting
nodes and then accept the word according to the definition of
ATM acceptance.

Proof Ideas cont.
2.(“⊇”) ASPACE(t(n)) ⊇ TIME(2O(t(n))):

Simulate a deterministic 2f (n) machine M by an O(f (n)) space
ATM S , where f (n) = O(t(n)). W.l.o.g. M accepts after erasing
all tape content and moving all the way to the left.

On input w , M goes through a sequence of configurations. We
can’t even store a single one of those in S because it could be too
long!

Let’s encode the sequence of configurations as a 2f (|w |) × 2f (|w |)

grid where a cell contains either a tape symbol or a tape symbol
and a state if that’s where the head of M is.

S then uses a recursive procedure R(i , j , d) where i , j are pointers
of size df (|w |)e in binary to a cell and d is a cell contents, to
check the bottom left grid cell i = 2f (|w |), j = 1 has contents
d = (qaccept,t).

Proof Ideas cont.

R = “on input 〈i , j , d〉
1 if i = 1 then accept if d is consistent with the j ’th cell of the

initial configuration q0w in this representation; else reject.
2 ∃-guess the contents a, b, c of the parent cells [i − 1, j − 1],

[i − 1, j], [i − 1, j + 1]
1 if the parent cells with contents a, b, c shouldn’t have the child

cell [i , j] with contents d , reject
2 ∀-recurse into R(i − 1, j − 1, a), R(i − 1, j , b),

R(i − 1, j + 1, c).”

Even though the recursion depth is 2f (|w |), the ATM can do with
O(f (w)) space because it need not store any of the arguments of
previous recursive calls: R only ever returns accept or reject.

Alternative Proof of PSPACE ⊆ AP

We show QBF ∈ AP by giving a polynomial time ATM.
M = “on input Q1x1 . . .Qkxkφ(x1, . . . , xk) where the Qi ∈ {∃,∀}

1 for 1 ≤ i ≤ k
1 Qi -guess a value vi ∈ {false,true} for xi

2 evaluate φ(v1, . . . , vk) and accept if it’s true; reject
otherwise.”

Polynomial Time Hierarchy #1

Definitions

A Σi -ATM is an ATM whose runs begin at an ∃ state, and
alternate, i.e., switch the {∃, ∀}-type of state, at most i − 1 times.

ΣiTIME(f (n)) is the class of languages Σi -ATMs can decide in
O(f (n)) time.

ΣiP =
⋃

k ΣiTIME(nk).

Similarly, define Πi -ATMs, ΠiTIME(f (n)), and ΠiP by starting
with ∀ instead of ∃.

PH =
⋃

i ΣiP =
⋃

i ΠiP is called the polynomial time hierachy.

NB

NP = Σ1P and coNP = Π1P.

Polynomial Time Hierarchy #2

Alternatively, we could have defined

Definitions

∆0P = Σ0P = Π0P = P; and for i ≥ 0

∆i+1P = PΣiP

Σi+1P = NPΣiP

Πi+1P = coNPΣiP

	Alternation
	Intro
	PH

