
Using Static Single Assignment Form to Improve Flow-Insensitive Pointer
Analysis *

Rebecca Hasti and Susan Horwitz
Computer Sciences Department, University of Wisconsin-Madison

1210 West Dayton Street, Madison, WI 53706 USA
Electronic mail: {hasti, horwitz}@cs.wisc.edu

Abstract

A pointer-analysis algorithm can be either flow-sensitive or
flow-insensitive. While flow-sensitive analysis usually pro-
vides more precise information, it is also usually consider-
ably more costly in terms of time and space. The main
contribution of this paper is the presentation of another op-
tion in the form of an algorithm that can be ‘tuned’ to
provide a range of results that fall between the results of
flow-insensitive and flow-sensitive analysis. The algorithm
combines a flow-insensitive pointer analysis with static sin-
gle assignment (SSA) form and uses an iterative process to
obtain progressively better results.

1 Introduction

Having information about what pointer variables may point
to is very useful (and often necessary) when performing
many kinds of program analyses. Obviously, the better (or
more precise) the information, the more useful the informa-
tion is. A points-to analysis that takes into account the order
in which statements may be executed (i.e., a flow-sensitive
analysis) generally provides more precise information than a
flow-insensitive analysis; however, flow-sensitive analyses are
considerably more costly in terms of time and/or space than
flow-insensitive analyses. Thus, the options for pointer anal-
ysis one is generally presented with are: (1) flow-insensitive
- faster but less precise; and (2) flow-sensitive - more precise
but time/space consuming. The main contribution of this
paper is the presentation of another option in the form of an
algorithm that can be ‘tuned’ to provide a range of results.
The algorithm combines a flow-insensitive pointer analysis
with static single assignment (SSA) form and uses an itera-
tive process to obtain progressively better results along the
spectrum from flow-insensitive to flow-sensitive. The par-
ticular flow-insensitive analysis used will affect the precision
of the final results. Whether it is possible to obtain results
as precise as those obtained by a flow-sensitive analysis is

*This work was supported in part by the National Science Foun-
dation under grant CCR-9625656, and by the Army Research Office
under grant DAAH04-85-1-0482.

Permiwion to make digital or hard copies of all or part of thfo wcrk for
personal M classroom uw is granted without 1-s provided that
copies are not msda or distributed for profit n commercial advan-
tage and that copies bear this notice and the full citstion on the tint page.
70 copy otherwise. to republish, to pest on sawers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPIAN ‘96 Montrsal, Canada
@ 1996 ACM 0-69791~967.4/96/0006...85.00

an open question.

1.1 Flow-sensitive vs. flow-insensitive analysis

Program analyses may be categorized as either flow-sensitive
or flow-insensitive. A flow-sensitive analysis takes into ac-
count the order in which the statements in the program may
be executed; a flow-insensitive analysis does not. In other
words, in a flow-sensitive analysis the program is handled as
a sequence of statements while in a flow-insensitive analysis
it is handled as a set of statements. Thus, a flow-sensitive
analysis produces results at the statement level (e.g., it may
discover different properties of a variable p at each state-
ment) whereas a flow-insensitive analysis produces results
at the program level (e.g., it can only discover properties of
a variable p that hold for the entire program).

(Analyses can be further categorized as context-sensitive
or context-insensitive. A context-sensitive analysis takes
into account the fact that a function must return to the
site of the most recent call; a context-insensitive analysis
propagates information from a call site, through the called
function, and back to all call sites. In this paper, all analyses
are assumed to be context-insensitive.)

One way to think about flow-insensitive analysis is in
terms of a variation on the standard dataflow framework
[Kil73]. The standard framework includes:

1. a lattice of dataflow facts,

2. a set of monotonic dataflow functions,

3. a control flow graph (CFG),

4. a mapping that associates one dataflow function with
each graph node (we use f,, to denote the function
mapped to node n).

The ideal goal of a flow-sensitive analysis is to find the
meet-over-all-paths solution to the dataflow problem [Kil73].
When this is not feasible (e.g., when the functions are not
distributive), an acceptable goal is to find the greatest so-
lution (under the lattice ordering) to the following set of
equations (one equation for each CFG node n):

n.fact =
meprede~ssors(n) fm(m’fact) (l)

(This equation is for a forward dataflow problem. The
equation for a backward datailow problem is similar, with
successors used in place of predecessors.)

Flow-insensitive analysis uses the same framework, ex-
cept that it uses a version of the CFG in which there is

97

a=1
b=2
c=a+b
if (. . .)

then a = 3

d=b
c=u+b
print(c)

(a) Original

a0 = 1
b. = 2
co = ao + bo
if (. . .)

then al = 3
u-2 = $(Ul,UO)
do = bo
Cl =a2 +bo
print(q)

(b) SSA Form

Figure 1: Example for constant propagation

an edge from each node to every other node (including it-
self) [Hor97]. Again, the ideal goal of the analysis is to find
the meet-over-all-paths solution (in the modified CFG), and
when this is not feasible, to find the greatest solution to the
set of equations:

n.fact =
manod:(cFG) fTrdm*fact)

(Note that this framework is useful for understanding flow-
insensitive analysis; actual algorithms do not involve creat-
ing this modified CFG or directly solving these equations.)

For the rest of this paper, when we refer to a flow-
sensitive analysis, we mean an analysis that computes the
greatest solution to the set of equations (1). Similarly, when
we refer to a flow-insensitive analysis, we mean an analy-
sis that computes the greatest solution to the set of equa-
tions (2).

Flow-sensitive analyses generally take more time and/or
space than their flow-insensitive counterparts; however, the
results are usually more precise. For example, consider
constant propagation on the code fragment in Figure l(a).
A flow-sensitive constant-propagation analysis determines
that:

l At’ (l), a = 1, b = 2, c = 3

l At (2), b = 2, c = 3, cl = 2

. At (3), b = 2, d = 2

and a flow-insensitive constant-propagation analysis deter-
mines that:

. b=2,d=2

Note that the results of the flow-insensitive analysis actually
mean that at every point in the program, b is either unini-
tialized or has the value 2, and similarly for d. This kind of
information is sufficient for most uses of the results of con-
stant propagation (e.g., replacing uses of constant variables
with their values). Also note that, although the results of
flow-insensitive analysis are not as precise as the results of
flow-sensitive analysis, they do provide some useful informa-
tion.

1.2 Using SSA form to improve flow-insensitive analysis

Static Single Assignment (SSA) form [CFR+Sl] is a pro-
gram representation in which variables are renamed (via
subscripting) and new definitions inserted to ensure that:

‘When we say that some fact is true at a particular point, we mean
that the fact is true immediately before that point.

1. Each variable xi has exactly one definition site.

2. Each use of a variable zi is reached by exactly one
definition.

The new definitions (called 4 nodes) are inserted in the CFG
at those places reached by two (or more) definitions of a
variable z (the join points) and are of the form:

Figure l(b) shows the SSA form for the example from
Figure l(a). Notice that once the program has been put
into SSA form, flow-sensitive and flow-insensitive constant
propagation identify the same instances of constant vari-
ables in the code. For example, both a flow-sensitive and a
flow-insensitive analysis on Figure l(b) produce the follow-
ing results (the results are shown in flow-sensitive format;
the results from flow-insensitive analysis hold not just at the
point given, but at every point in the program):

l At (l), a0 = 1, b. = 2, co = 3

l At (2), ae = 1, bo = 2, co = 3, al = 3, do = 2

. At (3), a,, = 1, bo = 2, co = 3, 01 = 3, do = 2

In other words, it does not matter whether the constant
propagation analysis done on the SSA form is flow-sensitive
or flow-insensitive. Thus, if the time and space required to
translate a program into SSA form and then perform a flow-
insensitive analysis are less than the time and space required
to do a flow-sensitive analysis, this approach is a win.

1.3 Points-to analysis

The presence of pointers in a program makes it necessary
to have information about what pointer variables may be
pointing to in order to do many program analyses (such as
constant propagation) correctly. Thus, a points-to analysis
must first be done on a program before any further anal-
yses are done. (There are two kinds of points-to analyses,
may and must. Whenever we use ‘points-to’ we mean ‘may-
point-to’.) This points-to analysis may be flow-sensitive or
flow-insensitive. For example, consider the code fragment in
Figure 2(a).

A flow-sensitive points-to analysis determines the fol-
lowing points-to information at (i.e., immediately before)
each program point (p + a means that p might point to a,
p + {a, b} means that p might point to a or to b):

Points-to information
u-kw
a-+w,p+a
u+x, p-is
u-,x, p-ku, c-2
u-ix, p-fa, c--)x
a-+{x, Yh P-)% c--)2
a --t tx, Y,), P + b, c -+ 2
a + lx, ~1, P + b, c + x, d + (2, Y)
a -+ (2, ~1, P + b, c + 2, d + (2, II),
b+.z

A flow-insensitive points-to analysis determines the fol-
lowing information:

98

a=&w a0 = &WO
p=&a PO = &a0
a=&x al = &x0
c = *p co = *po
if (. . .) if (. . .)

then *p=&y then * po = &yo
p=&b PI = &bo
d=a do = al
*p=&z *p1 = &zo
print(*a) print(*ai)

(a) Original (b) Naive SSA

Figure 2: An example with pointers and its naive translation
to SSA form

As before, the flow-insensitive analysis is not as precise as
the flow-sensitive analysis, but the information it does pro-
vide is safe (i.e., the points-to sets computed by the flow-
insensitive analysis are always supersets of the sets com-
puted by the flow-sensitive analysis).

Given the advantages of SSA form discussed above in
Section 1.2, it is natural to ask whether the approach of
translating the program to SSA form and then using a flow-
insensitive points-to analysis on the SSA form will achieve
the same results as a flow-sensitive analysis on the original
program. This approach seems reasonable since each vari-
able zk in the SSA form of the program corresponds only to
certain instances of the variable x in the original program.
Therefore, the ‘whole-program’ results of the flow-insensitive
analysis of the SSA form could be mapped to ‘CFG node
specific’ results in the original program. Unfortunately, this
approach will not work.

The basic problem is that it is not possible to translate
a program that contains pointers into SSA form without
first doing some pointer analysis. For example, Figure 2(b)
shows a naive translation to SSA form of the program shown
in Figure 2(a). There are several problems with the naive
translation. One problem is how the address-of operator (&)
is handled. For example, in Figure 2(a) at line (2), po is
given the address of ae. Clearly this is incorrect since it
leads to the incorrect inference that the dereference of pe at
line (4) is a use of ao, when in fact it is a use of al, defined
at line (3).

Another problem is that when a variable is defined indi-
rectly via a pointer dereference, that definition is not taken
into account in (naively) converting the program to SSA
form. For example, at (6) the assignment to *p is a def-
inition of a (since at that point p contains the address of
a). However, since variable a does not appear textually on
the left-hand side of the assignment, the naive conversion
to SSA form does not take this into account. The result
is that the program in Figure 2(b) violates the first prop-
erty of SSA form: that each variable zi have exactly one
definition site. Furthermore, because there is an (indirect)
assignment at line (6), the use of al at line (8) is reached by
two definitions, thus violating the second property of SSA
form.

Nevertheless, we believe that SSA form can be used to
improve the results of flow-insensitive pointer analysis. An
algorithm based on this idea is described below. The al-
gorithm is iterative: it starts with purely flow-insensitive
points-to information, and on each iteration it produces bet-
ter information (i.e., smaller points-to sets). We conjecture

that when the algorithm reaches a fixed point (the last iter-
ation produces the same points-to sets as the previous itera-
tion) the final results mapped back to the original program
will be the same as the results produced by a single run of
a flow-sensitive pointer analysis algorithm.

Empirical studies are needed to determine how the time
and space requirements of the iterative algorithm compare
with those of a flow-sensitive algorithm. However, since the
results of every iteration are safe (the points-to sets com-
puted after each iteration are supersets of the actual points-
to sets) the algorithm can also be safely terminated before
a fixed point is reached (for example, after a fixed number
of iterations, or when two consecutive iterations produce
results that are sufficiently similar). This means that the
algorithm can be ‘tuned’ to produce results that fall along
the spectrum from flow-insensitive to flow-sensitive analysis.

2 Algorithm description

The main insight behind the algorithm is that we can use
the results of (flow-insensitive) pointer analysis to normalize
a program, producing an intermediate form that has two
properties:

1. There are no pointer dereferences.

2. The points-to sets of all variables in the intermediate
form are safe approximations to (i.e., are supersets of)
the points-to sets of all the variables in the original
program.

Property 1 means that the intermediate form can be trans-
lated into SSA form. Property 2 means that flow-insensitive
pointer analysis on the SSA form produces results that are
valid for the original program.

When flow-insensitive pointer analysis is done on the
SSA form, the results are in terms of the SSA variables.
However, each SSA variable xi corresponds to certain in-
stances of the variable z in the original program. This means
that the points-to set for each xi can be mapped back to
those instances of x in the original program that correspond
to z;. Note that in doing this we are producing points-to
results that are no longer flow-insensitive, i.e., a variable z
may now have different points-to sets at different places in
the program. This results in points-to sets that are often
more precise than the sets produced by the initial analysis
(done on the original non-SSA form of the program). These
improved points-to sets can then be used to (re)normalize
the program, producing a new intermediate form. If the new
intermediate form is different from the previous one, the pro-
cess of converting the intermediate form to SSA form, doing
pointer analysis, and renormalizing can be repeated until a
fixed point is reached (no change is made to the intermediate
form).

Figure 3 gives an overview of the algorithm. Initially, we
will assume that the input program consists of a single func-
tion with no function calls. In Section 2.1 we describe how
to handle programs with multiple functions and functions
calls.

The algorithm first applies flow-insensitive pointer analy-
sis to the CFG, then uses the results to annotate each pointer
dereference in the CFG with its points-to set. Only pointer
dereferences are annotated because the places where we are
ultimately interested in knowing about points-to informa-
tion are the places where pointers are dereferenced. Note
that the CFG itself is never changed, except for the anno-
tations.

99

Given: a CFG G
Do flow-insensitive pointer analysis on G
Annotate the dereferences in G
Repeat:

Create the intermediate form (IM) from G
Convert IM to SSA form creating IMSSA
Do flow-insensitive pointer analysis on IMSSA
Update the annotations in G using IMSSA

and the pointer analysis results
until there are no changes in the annotations

Figure 3: An overview of the algorithm

Example: Figure 4(a) gives an example in which each
pointer dereference has been annotated using the results
of flow-insensitive points-to analysis. The annotations are
shown to the right of each node containing a pointer deref-
erence. For comparison, note that a flow-sensitive points-to
analysis would determine that at the dereference oft, t + s
and at the dereference of s, s + q. 0

The main loop of the algorithm begins by using the an-
notated CFG to create the (normalized) intermediate form
(IM). In the intermediate form, each pointer dereference is
replaced with its points-to set. If the points-to set con-
tains more than one element, the single original statement
is replaced with a multiway branch in which the kth arm of
the branch contains a copy of the original statement with
the pointer dereference replaced by the kth element of the
points-to set. If the points-to set contains only one element,
then rather than creating a branch, the pointer dereference
is just replaced with the element in the points-to set.

The intermediate form is then converted to SSA form in
two phases. In the first phase, conversion to SSA form is
done as usual (4 nodes are added and variables are renamed
via subscripting) with the exception that the operands of the
address-of operator are not given subscripts, i.e., an assign-
ment of the form p = &z is converted to pi = &e; all other
(non-address-of) uses and definitions of x are subscripted.
In the second phase, each assignment of the form pi = &z is
converted to a multiway branch. The number of arms of the
branch is the number of subscripts that z has in the SSA
form. The kth arm of the branch is of the form pi = &zk.
(As in the translation to intermediate form, if x only has
one subscript, we just replace &x with &x0.) -

The uurnose of the second chase is to handle the first
problem’wiih translating a program with pointers to SSA
form discussed in Section 1.3. Since a pointer that is given
the address of x could be pointing to any of the SSA versions
of z, using all possible versions in place of the address-of ex-
pression is a safe translation. Note that because we have
replaced each pointer dereference with its points-to set we
no longer have the problems mentioned in Section 1.3 that
arise from the indirect definition of variables through pointer
dereferences. Note also that after the second phase, the in-
termediate form may not be strictly in SSA form because
the transformation of pi = &x may result in multiple as-
signments to pi. However, this will not affect the pointer
analysis (which is the only way in which we are using this
form). An equivalent way to handle p; = &x would be to
convert it as described, followed by inserting a 4 node, and
renaming the pi’s in the arms of the branch. In either case,
the net result is that the definition of p that is live imme-
diately after the transformation of pi = &x has all SSA
versions of 2 in its points-to set.

Example: Figure 4(b) shows the intermediate form for
Figure 4(a). The intermediate form after the first phase
in the conversion to SSA form is shown in Figure 4(c) and
Figure 4(d) shows the final SSA form. 0

The next step is to do flow-insensitive points-to analy-
sis on the SSA version of the intermediate form (which we
denote by IMs&. The results of this pointer analysis are
then used to update the annotations in the CFG as follows:
For each CFG node N with a pointer dereference *p:

Find the corresponding node N’ in IMSSA. (If the
node has been converted to a multiway branch con-
struct, the branch node is the corresponding node.)
Recall that all pointer dereferences were replaced with
their corresponding points-to sets during the creation
of the intermediate form and thus the dereferenced
variable p itself is not present in N’.
Determine the SSA number k that p would have had
at node N’ if it appeared there.

Use the points-to set for pk to update the annotation
of *p in node N of the CFG.

The updating of the annotations completes one iteration of
the algorithm.

Example: Points-to analysis on IMSSA(Figure 4(d)) de-
termines that:

so -+ p
Sl -+ q
to + s

Note that because of the way the address-of operator is han-
dled, if xi is in pk’s points-to set, then zcj iS in pk’s points-
to set for all j E {0,1,2,. . . ,maxSSA-#(z)}. Thus, the
points-to sets can be represented in canonical form by using
variables without subscripts.

The node in IMSsAthat corresponds to the node *s = 2
in the original CFG (Figure 4(a)) is the branch node that
has pl = 2 and q1 = 2 as its arms. The SSA number that
s would have been given if it had appeared in that branch
node is 1. Because the analysis has determined that sr + q,
the node w = 2 in the original CFG is annotated with
s + {q}. Figure 5(a) shows the original program with
updated annotations. 0

Once the annotations have been updated, the process of
creating an intermediate form, converting it to SSA form,
doing pointer analysis, and obtaining better annotations can

be repeated. Notice that if the annotations are the same for
two different iterations, then the intermediate forms created
using the annotations will be identical. Thus, when no an-
notations are changed during the updating stage of the algo-
rithm (i.e., the annotations are the same for two successive
iterations), the algorithm has reached a fixed point (i.e., no
new pointer information can be discovered) and the algo-
rithm halts. Since the results of every iteration are safe, the
algorithm may also be halted after a user-specified number
of iterations (just after updating the annotations), resulting
in pointer information that lies somewhere in between the
results from a purely flow-insensitive analysis and the results
had the algorithm been run to completion.

Example: Figure 5(a) shows the CFG with its annota-
tions updated using the results of the first iteration. Fig-
ures 5(b), (c), and (d) illustrate the start of the second iter-
ation (the intermediate form and the two-phase conversion
to SSA form). Points-to analysis on Figure 5(d) determines
that:

so +p
Sl + q
to --f s

100

Original CFG
(with annotations)

P.0

4=1

8

S.&P

1lh.r

0 ‘s = 2 S’(P19)

(4

To SSA Form Phase 1
(4 nodes and subscripts added)

PO’0

52 qo= 1

so- &P

e2
q2= $(q o’ 9 ,I

(4

Intermediate (Normalized) Form
(*t replaced by s, and

*s replaced by p and q)

(b)

Final SSA Form
(instances of & handled)

(4

Figure 4: Translation to SSA form (first iteration)

101

Annotated CFG
(after 1 iteration)

0 p=o

(4

To SSA Form Phase 1
(subscripts added)

(4

Intermediate Form
(*t replaced by s, and

*s replaced by q)

p=o

8
q=l

s=&p

8

t=&s

s=&q

(b)

Final SSA Form
(instances of & handled)

PO’ 0

PI
4$1

so= &PO

(4

Figure 5: Translation to SSA form (second iteration)

102

int g, h;

;roid f0
h =g;
g = 0;

1

void main()
{

int i;
g = 3;
f0;
i = g;
if (. . .)

g=4;
else

f0;
1

Figure 6: A program with multiple functions

This is the ssme as the information determined by the first
iteration; thus, the CFG annotations do not change and the
algorithm terminates after the second iteration. Note that
the final results are the ssme ss the flow-sensitive analysis
on the original program. 0

2.1 Handling multiple functions and function calls

A program that contains multiple functions can be repre-
sented by a set of CFGs, one for each function. However,
there are problems with translating functions represented
this way to SSA form when the program includes global
variables. Figure 6 shows an example C program that il-
lustrates two problems that arise when global variables are
present.

One problem arises because a global variable may be
used in a function before any definition of it appears in that
function. For example, in the function f, global variable g is
used in the assignment to h before any assignment to g. The
difficulty is in determining the SSA number to give such a
use. Another problem is that, because a function can modify
a global variable, a use of a global variable that appears after
a call may not be reached by the definition before the call.
For example, in the function main, the value of g in the
assignment to i is 0 (from the assignment g = 0 in f) and
not 3 (from the assignment g = 3 before the call to f) and
hence the g in i = g should not have the same SSA number
as the g in g = 3.

One way that these problems could be handled is to pass
the global variables used or modified by a function as explicit
parameters, and to treat the function call as an assignment
to all of the global variables modified by the function.

A simpler approach is to create a supergraph’ from the
set of CFGs. The supergraph contains all nodes and edges of
the original CFGs, including a call node and a return-point
node for each function call. Additional edges are added from
each call node to the entry node of the called function, and
from the exit node of the called function to the call’s return-
point node. Figure 7(a) shows the CFGs for the program in

“The term super-graph was first used by Eugene Myers in [MyeEl].
William Landi and Barbara Ryder [LR91] use the term interprocedu-
ml contml j%w graph (ICFG).

Given: a list L of CFGS
Do flow-insensitive pointer analysis on L
For each CFG G in L

Annotate the dereferences in G
Create the supergraph S for L
Repeat:

Create the intermediate form (IM) from S
Convert IM to SSA form creating 1Mss~
Do flow-insensitive pointer analysis on 1Mss~
For each CFG G in L

Update the annotations in G using
IMssAand the pointer analysis results;
update calls through function pointers in S

until there are no changes in the annotations

Figure 8: The algorithm updated to handle multiple CFGs

Figure 6, and Figure 7(b) shows the corresponding super-
graph.

Calls through function pointers are represented using a
multiway branch in which the kth arm of the branch contains
a call to the kth element of the function pointer’s points-
to set. This requires that pointer analysis be done before
the supergraph is created. Moreover, the points-to sets for
function pointers may change (i.e., get smaller) during it-
eration, so the supergraph may need to be updated (by re-
moving some of the arms of the multi-way branches that
represent calls through function pointers) when annotations
are changed. Figure 8 gives the algorithm from Figure 3
updated to handle multiple CFGs.

2.2 Complexity

Each iteration of our algorithm requires a transformation to
SSA form and a flow-insensitive pointer analysis.

Although there exists a linear-time algorithm for placing
4 nodes [SG95], the renaming phase of translation to SSA
form can take cubic time in the worst case. Thus, in the
worst case, the time needed to completely translate a pro-
gram into SSA form (including renaming) is cubic. More-
over, the resulting program can be quadratic in the size of
the original program. However, experimental evidence sug-
gests that both the time to translate and the size of the
translated program are linear in practice [CFR+Sl] [CC95].

Andersen [And941 gives a flow-insensitive pointer-snal-
ysis algorithm that computes the greatest fixed point of
the set of equations (2) given in Section 1.1. Andersen’s
algorithm is cubic in the worst case. Experimental evi-
dence intended to evaluate the algorithm’s performance in
practice[SH97] is inconclusive: on small programs (up to
about 10,000 lines) its performance is very similar to that
of Steensgaard’s (essentially) linear-time algorithm[Ste96];
however, lines of code alone does not seem to be a good
predictor of runtime (for example, one 6,000 line program
required over 700 CPU seconds, while several 7,000 line pro-
grams required only 3 seconds). Note that our algorithm
could make use of a fast algorithm like Steensgaard’s. How-
ever, Steensgaard’s algorithm does not always compute the
greatest fixed point of the set of equations (2). Therefore,
while the final result produced by our algorithm would still
be an improvement over a purely flow-insensitive analysis,
it is unlikely that it would be as good as a flow-sensitive
analysis that computes the greatest fixed point of the set of
equations (1).

103

Original CFGs

(4

Corresponding Supergraph

Q Entermain
g=3

w

Call f

Return
point

9

i=g

(b)

Figure 7: The CFGs and supergraph corresponding to the code in Figure 6

104

3 Related Work

A program representation similar to the intermediate form
described here was used by Cytron and Gershbein in [CG93],
where they give an algorithm for incrementally incorporat-
ing points-to information into SSA form. Our intermediate
representation is essentially an in-lined version of Cytron
and Gershbein’s IsAlias function. However, their algorithm
requires pre-computed may-alias information and incorpo-
rates points-to information as needed into a partial SSA
form while solving another dataflow problem (constant prop-
agation, in their paper).

Lapkowski and Hendren [LH96] also discuss the problems
with SSA form in the presence of pointers. However, they
abandon SSA form and develop instead a related analysis
called SSA Numbering.

Others have worked on improving the precision of flow-
insensitive alias analysis. In [BCCH94] Burke et al. develop
an approach that involves using pre-computed kill informa-
tion, although an empirical study by Hind and Pioli [HP971
does not show it to be more precise in practice than a flow-
insensitive analysis. Shapiro and Horwitz [SH97] give an
algorithm that can be ‘tuned, so that its precision as well
as worst-case time and space requirements range from those
of Steensgaard’s (almost linear, less precise flow-insensitive)
algorithm to those of Andersen’s (cubic worst-case but more
precise flow-insensitive) algorithm.

4 Conclusions

We have presented a new iterative points-to analysis al-
gorithm that uses flow-insensitive pointer analysis, a nor-
malized intermediate form, and translation to SSA form.
The results after just one iteration are generally better than
those of a purely flow-insensitive analysis (on the original
program) and if the algorithm is run until the fixed point
is reached, the results may be as good as those of a flow-
sensitive analysis.

We are currently working on implementations of our al-
gorithm using the flow-insensitive pointer analyses defined
in [And94], [Ste96], and [SH97]. We plan to use the im-
plementations to explore how our algorithm compares to
flow-sensitive points-to analysis in practice.

5 Acknowledgement

Thanks to Charles Consel, ‘whose question about using SSA
form in pointer analysis inspired this work.

References

[And941 L. 0. Andersen. Program Analysis and Special-
ization for the C Programming Language. PhD
thesis, DIKU, University of Copenhagen, May
1994. (DIKU report 94/19).

[BCCH94] M. Burke, P. Carini, J.D. Choi, and M. Hind.
Flow-insensitive interprocedural alias analysis in
the presence of pointers. In K. Pingali, U. Baner-
jee, D. Galernter, A. Nicolau, and D. Padua,
editors, Languages and Compilers for Parallel
Computing: Proceedings of the 7th International
Workshop, volume 892 of Lecture Notes in Com-
puter Science, pages 234-250, Ithaca, NY, Au-
gust 1994. Springer-Verlag.

[CC951 C. Click and K.D. Cooper. Combining analy-
ses, combining optimizations. ACM Transac-
tions on Programming Languages and Systems,
17(2):181-196, 1995.

[CFR+Sl] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Weg-
man, and F.K. Zadeck. Efficiently computing
static single assignment form and the control
dependence graph. ACM Transactions on Pro-
gramming Languages and Systems, 13(4):451-
490, October 1991.

[CG93]

[Hor97]

[HP971

[Ki173]

[LH96]

[LR91]

[We811

[SG%]

[SH97]

[Ste96]

R. Cytron and R. Gershbein. Efficient ac-
commodation of may-alias information in SSA
form. SIGPLAN Conference on Programming
Language Design and Implementation, 28(6):36-
45, June 1993.

S. Horwitz. Precise flow-insensitive may-alias
analysis is NP-hard. ACM Transactions on Pro-
gramming Languages and Systems, 19(1):1-6,
January 1997.

M. Hind and A. Pioli. An empirical comparison
of interprocedural pointer alias analyses. IBM
Research Report RC 21058, IBM Research Divi-
sion, December 1997.

G.A. Kildall. A unified approach to global
program optimization. In ACM Symposium
on Principles of Programming Languages, pages
194-206, January 1973.

C. Lapkowski and L.J. Hendren. Extended SSA
numbering: Introducing SSA properties to lan-
guages with multi-level pointers. ACAPS Tech-
nical Memo 102, School of Computer Science,
McGill University, Mont&J, Canada, April
1996.

W. Landi and B.G. Ryder. Pointer induced aliss-
ing: A problem classification. In ACM Sympo-
sium on Principles of Programming Languages,
pages 93-103, 1991.

E.W. Myers. A precise inter-procedural data flow
algorithm. In ACM Symposium on Principles of
Programming Languages, pages 219-230, 1981.

V.C. Sreedhar and G.R. Gao. A linear time algo-
rithm for placing +nodes. In ACM Symposium
on Principles of Programming Languages, pages
62-73, 1995.

M. Shapiro and S. Horwitz. Fast and accu-
rate flow-insensitive points-to analysis. In ACM
Symposium on Principles of Programming Lan-
guages, pages 1-14, January 1997.

B. Steensgaard. Points-to analysis in almost lin-
ear time. In ACM Symposium on Principles of
Programming Languages, pages 32-41, January
1996.

105

