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Abstract 

A pointer-analysis algorithm can be either flow-sensitive or 
flow-insensitive. While flow-sensitive analysis usually pro- 
vides more precise information, it is also usually consider- 
ably more costly in terms of time and space. The main 
contribution of this paper is the presentation of another op- 
tion in the form of an algorithm that can be ‘tuned’ to 
provide a range of results that fall between the results of 
flow-insensitive and flow-sensitive analysis. The algorithm 
combines a flow-insensitive pointer analysis with static sin- 
gle assignment (SSA) form and uses an iterative process to 
obtain progressively better results. 

1 Introduction 

Having information about what pointer variables may point 
to is very useful (and often necessary) when performing 
many kinds of program analyses. Obviously, the better (or 
more precise) the information, the more useful the informa- 
tion is. A points-to analysis that takes into account the order 
in which statements may be executed (i.e., a flow-sensitive 
analysis) generally provides more precise information than a 
flow-insensitive analysis; however, flow-sensitive analyses are 
considerably more costly in terms of time and/or space than 
flow-insensitive analyses. Thus, the options for pointer anal- 
ysis one is generally presented with are: (1) flow-insensitive 
- faster but less precise; and (2) flow-sensitive - more precise 
but time/space consuming. The main contribution of this 
paper is the presentation of another option in the form of an 
algorithm that can be ‘tuned’ to provide a range of results. 
The algorithm combines a flow-insensitive pointer analysis 
with static single assignment (SSA) form and uses an itera- 
tive process to obtain progressively better results along the 
spectrum from flow-insensitive to flow-sensitive. The par- 
ticular flow-insensitive analysis used will affect the precision 
of the final results. Whether it is possible to obtain results 
as precise as those obtained by a flow-sensitive analysis is 
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an open question. 

1.1 Flow-sensitive vs. flow-insensitive analysis 

Program analyses may be categorized as either flow-sensitive 
or flow-insensitive. A flow-sensitive analysis takes into ac- 
count the order in which the statements in the program may 
be executed; a flow-insensitive analysis does not. In other 
words, in a flow-sensitive analysis the program is handled as 
a sequence of statements while in a flow-insensitive analysis 
it is handled as a set of statements. Thus, a flow-sensitive 
analysis produces results at the statement level (e.g., it may 
discover different properties of a variable p at each state- 
ment) whereas a flow-insensitive analysis produces results 
at the program level (e.g., it can only discover properties of 
a variable p that hold for the entire program). 

(Analyses can be further categorized as context-sensitive 
or context-insensitive. A context-sensitive analysis takes 
into account the fact that a function must return to the 
site of the most recent call; a context-insensitive analysis 
propagates information from a call site, through the called 
function, and back to all call sites. In this paper, all analyses 
are assumed to be context-insensitive.) 

One way to think about flow-insensitive analysis is in 
terms of a variation on the standard dataflow framework 
[Kil73]. The standard framework includes: 

1. a lattice of dataflow facts, 

2. a set of monotonic dataflow functions, 

3. a control flow graph (CFG), 

4. a mapping that associates one dataflow function with 
each graph node (we use f,, to denote the function 
mapped to node n). 

The ideal goal of a flow-sensitive analysis is to find the 
meet-over-all-paths solution to the dataflow problem [Kil73]. 
When this is not feasible (e.g., when the functions are not 
distributive), an acceptable goal is to find the greatest so- 
lution (under the lattice ordering) to the following set of 
equations (one equation for each CFG node n): 

n.fact = 
meprede~ssors(n) fm(m’fact) (l) 

(This equation is for a forward dataflow problem. The 
equation for a backward datailow problem is similar, with 
successors used in place of predecessors.) 

Flow-insensitive analysis uses the same framework, ex- 
cept that it uses a version of the CFG in which there is 
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a=1 
b=2 
c=a+b 
if (. . .) 

then a = 3 

d=b 
c=u+b 
print(c) 

(a) Original 

a0 = 1 
b. = 2 
co = ao + bo 
if (. . .) 

then al = 3 
u-2 = $(Ul,UO) 
do = bo 
Cl =a2 +bo 
print(q) 

(b) SSA Form 

Figure 1: Example for constant propagation 

an edge from each node to every other node (including it- 
self) [Hor97]. Again, the ideal goal of the analysis is to find 
the meet-over-all-paths solution (in the modified CFG), and 
when this is not feasible, to find the greatest solution to the 
set of equations: 

n.fact = 
manod:(cFG) fTrdm*fact) 

(Note that this framework is useful for understanding flow- 
insensitive analysis; actual algorithms do not involve creat- 
ing this modified CFG or directly solving these equations.) 

For the rest of this paper, when we refer to a flow- 
sensitive analysis, we mean an analysis that computes the 
greatest solution to the set of equations (1). Similarly, when 
we refer to a flow-insensitive analysis, we mean an analy- 
sis that computes the greatest solution to the set of equa- 
tions (2). 

Flow-sensitive analyses generally take more time and/or 
space than their flow-insensitive counterparts; however, the 
results are usually more precise. For example, consider 
constant propagation on the code fragment in Figure l(a). 
A flow-sensitive constant-propagation analysis determines 
that: 

l At’ (l), a = 1, b = 2, c = 3 

l At (2), b = 2, c = 3, cl = 2 

. At (3), b = 2, d = 2 

and a flow-insensitive constant-propagation analysis deter- 
mines that: 

. b=2,d=2 

Note that the results of the flow-insensitive analysis actually 
mean that at every point in the program, b is either unini- 
tialized or has the value 2, and similarly for d. This kind of 
information is sufficient for most uses of the results of con- 
stant propagation (e.g., replacing uses of constant variables 
with their values). Also note that, although the results of 
flow-insensitive analysis are not as precise as the results of 
flow-sensitive analysis, they do provide some useful informa- 
tion. 

1.2 Using SSA form to improve flow-insensitive analysis 

Static Single Assignment (SSA) form [CFR+Sl] is a pro- 
gram representation in which variables are renamed (via 
subscripting) and new definitions inserted to ensure that: 

‘When we say that some fact is true at a particular point, we mean 
that the fact is true immediately before that point. 

1. Each variable xi has exactly one definition site. 

2. Each use of a variable zi is reached by exactly one 
definition. 

The new definitions (called 4 nodes) are inserted in the CFG 
at those places reached by two (or more) definitions of a 
variable z (the join points) and are of the form: 

Figure l(b) shows the SSA form for the example from 
Figure l(a). Notice that once the program has been put 
into SSA form, flow-sensitive and flow-insensitive constant 
propagation identify the same instances of constant vari- 
ables in the code. For example, both a flow-sensitive and a 
flow-insensitive analysis on Figure l(b) produce the follow- 
ing results (the results are shown in flow-sensitive format; 
the results from flow-insensitive analysis hold not just at the 
point given, but at every point in the program): 

l At (l), a0 = 1, b. = 2, co = 3 

l At (2), ae = 1, bo = 2, co = 3, al = 3, do = 2 

. At (3), a,, = 1, bo = 2, co = 3, 01 = 3, do = 2 

In other words, it does not matter whether the constant 
propagation analysis done on the SSA form is flow-sensitive 
or flow-insensitive. Thus, if the time and space required to 
translate a program into SSA form and then perform a flow- 
insensitive analysis are less than the time and space required 
to do a flow-sensitive analysis, this approach is a win. 

1.3 Points-to analysis 

The presence of pointers in a program makes it necessary 
to have information about what pointer variables may be 
pointing to in order to do many program analyses (such as 
constant propagation) correctly. Thus, a points-to analysis 
must first be done on a program before any further anal- 
yses are done. (There are two kinds of points-to analyses, 
may and must. Whenever we use ‘points-to’ we mean ‘may- 
point-to’.) This points-to analysis may be flow-sensitive or 
flow-insensitive. For example, consider the code fragment in 
Figure 2(a). 

A flow-sensitive points-to analysis determines the fol- 
lowing points-to information at (i.e., immediately before) 
each program point (p + a means that p might point to a, 
p + {a, b} means that p might point to a or to b): 

Points-to information 
u-kw 
a-+w,p+a 
u+x, p-is 
u-,x, p-ku, c-2 
u-ix, p-fa, c--)x 
a-+{x, Yh P-)% c--)2 
a --t tx, Y,), P + b, c -+ 2 
a + lx, ~1, P + b, c + x, d + (2, Y) 
a -+ (2, ~1, P + b, c + 2, d + (2, II), 
b+.z 

A flow-insensitive points-to analysis determines the fol- 
lowing information: 
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a=&w a0 = &WO 
p=&a PO = &a0 
a=&x al = &x0 
c = *p co = *po 
if (. . .) if (. . .) 

then *p=&y then * po = &yo 
p=&b PI = &bo 
d=a do = al 
*p=&z *p1 = &zo 
print(*a) print(*ai) 

(a) Original (b) Naive SSA 

Figure 2: An example with pointers and its naive translation 
to SSA form 

As before, the flow-insensitive analysis is not as precise as 
the flow-sensitive analysis, but the information it does pro- 
vide is safe (i.e., the points-to sets computed by the flow- 
insensitive analysis are always supersets of the sets com- 
puted by the flow-sensitive analysis). 

Given the advantages of SSA form discussed above in 
Section 1.2, it is natural to ask whether the approach of 
translating the program to SSA form and then using a flow- 
insensitive points-to analysis on the SSA form will achieve 
the same results as a flow-sensitive analysis on the original 
program. This approach seems reasonable since each vari- 
able zk in the SSA form of the program corresponds only to 
certain instances of the variable x in the original program. 
Therefore, the ‘whole-program’ results of the flow-insensitive 
analysis of the SSA form could be mapped to ‘CFG node 
specific’ results in the original program. Unfortunately, this 
approach will not work. 

The basic problem is that it is not possible to translate 
a program that contains pointers into SSA form without 
first doing some pointer analysis. For example, Figure 2(b) 
shows a naive translation to SSA form of the program shown 
in Figure 2(a). There are several problems with the naive 
translation. One problem is how the address-of operator (&) 
is handled. For example, in Figure 2(a) at line (2), po is 
given the address of ae. Clearly this is incorrect since it 
leads to the incorrect inference that the dereference of pe at 
line (4) is a use of ao, when in fact it is a use of al, defined 
at line (3). 

Another problem is that when a variable is defined indi- 
rectly via a pointer dereference, that definition is not taken 
into account in (naively) converting the program to SSA 
form. For example, at (6) the assignment to *p is a def- 
inition of a (since at that point p contains the address of 
a). However, since variable a does not appear textually on 
the left-hand side of the assignment, the naive conversion 
to SSA form does not take this into account. The result 
is that the program in Figure 2(b) violates the first prop- 
erty of SSA form: that each variable zi have exactly one 
definition site. Furthermore, because there is an (indirect) 
assignment at line (6), the use of al at line (8) is reached by 
two definitions, thus violating the second property of SSA 
form. 

Nevertheless, we believe that SSA form can be used to 
improve the results of flow-insensitive pointer analysis. An 
algorithm based on this idea is described below. The al- 
gorithm is iterative: it starts with purely flow-insensitive 
points-to information, and on each iteration it produces bet- 
ter information (i.e., smaller points-to sets). We conjecture 

that when the algorithm reaches a fixed point (the last iter- 
ation produces the same points-to sets as the previous itera- 
tion) the final results mapped back to the original program 
will be the same as the results produced by a single run of 
a flow-sensitive pointer analysis algorithm. 

Empirical studies are needed to determine how the time 
and space requirements of the iterative algorithm compare 
with those of a flow-sensitive algorithm. However, since the 
results of every iteration are safe (the points-to sets com- 
puted after each iteration are supersets of the actual points- 
to sets) the algorithm can also be safely terminated before 
a fixed point is reached (for example, after a fixed number 
of iterations, or when two consecutive iterations produce 
results that are sufficiently similar). This means that the 
algorithm can be ‘tuned’ to produce results that fall along 
the spectrum from flow-insensitive to flow-sensitive analysis. 

2 Algorithm description 

The main insight behind the algorithm is that we can use 
the results of (flow-insensitive) pointer analysis to normalize 
a program, producing an intermediate form that has two 
properties: 

1. There are no pointer dereferences. 

2. The points-to sets of all variables in the intermediate 
form are safe approximations to (i.e., are supersets of) 
the points-to sets of all the variables in the original 
program. 

Property 1 means that the intermediate form can be trans- 
lated into SSA form. Property 2 means that flow-insensitive 
pointer analysis on the SSA form produces results that are 
valid for the original program. 

When flow-insensitive pointer analysis is done on the 
SSA form, the results are in terms of the SSA variables. 
However, each SSA variable xi corresponds to certain in- 
stances of the variable z in the original program. This means 
that the points-to set for each xi can be mapped back to 
those instances of x in the original program that correspond 
to z;. Note that in doing this we are producing points-to 
results that are no longer flow-insensitive, i.e., a variable z 
may now have different points-to sets at different places in 
the program. This results in points-to sets that are often 
more precise than the sets produced by the initial analysis 
(done on the original non-SSA form of the program). These 
improved points-to sets can then be used to (re)normalize 
the program, producing a new intermediate form. If the new 
intermediate form is different from the previous one, the pro- 
cess of converting the intermediate form to SSA form, doing 
pointer analysis, and renormalizing can be repeated until a 
fixed point is reached (no change is made to the intermediate 
form). 

Figure 3 gives an overview of the algorithm. Initially, we 
will assume that the input program consists of a single func- 
tion with no function calls. In Section 2.1 we describe how 
to handle programs with multiple functions and functions 
calls. 

The algorithm first applies flow-insensitive pointer analy- 
sis to the CFG, then uses the results to annotate each pointer 
dereference in the CFG with its points-to set. Only pointer 
dereferences are annotated because the places where we are 
ultimately interested in knowing about points-to informa- 
tion are the places where pointers are dereferenced. Note 
that the CFG itself is never changed, except for the anno- 
tations. 
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Given: a CFG G 
Do flow-insensitive pointer analysis on G 
Annotate the dereferences in G 
Repeat: 

Create the intermediate form (IM) from G 
Convert IM to SSA form creating IMSSA 
Do flow-insensitive pointer analysis on IMSSA 
Update the annotations in G using IMSSA 

and the pointer analysis results 
until there are no changes in the annotations 

Figure 3: An overview of the algorithm 

Example: Figure 4(a) gives an example in which each 
pointer dereference has been annotated using the results 
of flow-insensitive points-to analysis. The annotations are 
shown to the right of each node containing a pointer deref- 
erence. For comparison, note that a flow-sensitive points-to 
analysis would determine that at the dereference oft, t + s 
and at the dereference of s, s + q. 0 

The main loop of the algorithm begins by using the an- 
notated CFG to create the (normalized) intermediate form 
(IM). In the intermediate form, each pointer dereference is 
replaced with its points-to set. If the points-to set con- 
tains more than one element, the single original statement 
is replaced with a multiway branch in which the kth arm of 
the branch contains a copy of the original statement with 
the pointer dereference replaced by the kth element of the 
points-to set. If the points-to set contains only one element, 
then rather than creating a branch, the pointer dereference 
is just replaced with the element in the points-to set. 

The intermediate form is then converted to SSA form in 
two phases. In the first phase, conversion to SSA form is 
done as usual (4 nodes are added and variables are renamed 
via subscripting) with the exception that the operands of the 
address-of operator are not given subscripts, i.e., an assign- 
ment of the form p = &z is converted to pi = &e; all other 
(non-address-of) uses and definitions of x are subscripted. 
In the second phase, each assignment of the form pi = &z is 
converted to a multiway branch. The number of arms of the 
branch is the number of subscripts that z has in the SSA 
form. The kth arm of the branch is of the form pi = &zk. 
(As in the translation to intermediate form, if x only has 
one subscript, we just replace &x with &x0.) - 

The uurnose of the second chase is to handle the first 
problem’wiih translating a program with pointers to SSA 
form discussed in Section 1.3. Since a pointer that is given 
the address of x could be pointing to any of the SSA versions 
of z, using all possible versions in place of the address-of ex- 
pression is a safe translation. Note that because we have 
replaced each pointer dereference with its points-to set we 
no longer have the problems mentioned in Section 1.3 that 
arise from the indirect definition of variables through pointer 
dereferences. Note also that after the second phase, the in- 
termediate form may not be strictly in SSA form because 
the transformation of pi = &x may result in multiple as- 
signments to pi. However, this will not affect the pointer 
analysis (which is the only way in which we are using this 
form). An equivalent way to handle p; = &x would be to 
convert it as described, followed by inserting a 4 node, and 
renaming the pi’s in the arms of the branch. In either case, 
the net result is that the definition of p that is live imme- 
diately after the transformation of pi = &x has all SSA 
versions of 2 in its points-to set. 

Example: Figure 4(b) shows the intermediate form for 
Figure 4(a). The intermediate form after the first phase 
in the conversion to SSA form is shown in Figure 4(c) and 
Figure 4(d) shows the final SSA form. 0 

The next step is to do flow-insensitive points-to analy- 
sis on the SSA version of the intermediate form (which we 
denote by IMs&. The results of this pointer analysis are 
then used to update the annotations in the CFG as follows: 
For each CFG node N with a pointer dereference *p: 

Find the corresponding node N’ in IMSSA. (If the 
node has been converted to a multiway branch con- 
struct, the branch node is the corresponding node.) 
Recall that all pointer dereferences were replaced with 
their corresponding points-to sets during the creation 
of the intermediate form and thus the dereferenced 
variable p itself is not present in N’. 
Determine the SSA number k that p would have had 
at node N’ if it appeared there. 

Use the points-to set for pk to update the annotation 
of *p in node N of the CFG. 

The updating of the annotations completes one iteration of 
the algorithm. 

Example: Points-to analysis on IMSSA(Figure 4(d)) de- 
termines that: 

so -+ p 
Sl -+ q 
to + s 

Note that because of the way the address-of operator is han- 
dled, if xi is in pk’s points-to set, then zcj iS in pk’s points- 
to set for all j E {0,1,2,. . . ,maxSSA-#(z)}. Thus, the 
points-to sets can be represented in canonical form by using 
variables without subscripts. 

The node in IMSsAthat corresponds to the node *s = 2 
in the original CFG (Figure 4(a)) is the branch node that 
has pl = 2 and q1 = 2 as its arms. The SSA number that 
s would have been given if it had appeared in that branch 
node is 1. Because the analysis has determined that sr + q, 
the node w = 2 in the original CFG is annotated with 
s + {q}. Figure 5(a) shows the original program with 
updated annotations. 0 

Once the annotations have been updated, the process of 
creating an intermediate form, converting it to SSA form, 
doing pointer analysis, and obtaining better annotations can 

be repeated. Notice that if the annotations are the same for 
two different iterations, then the intermediate forms created 
using the annotations will be identical. Thus, when no an- 
notations are changed during the updating stage of the algo- 
rithm (i.e., the annotations are the same for two successive 
iterations), the algorithm has reached a fixed point (i.e., no 
new pointer information can be discovered) and the algo- 
rithm halts. Since the results of every iteration are safe, the 
algorithm may also be halted after a user-specified number 
of iterations (just after updating the annotations), resulting 
in pointer information that lies somewhere in between the 
results from a purely flow-insensitive analysis and the results 
had the algorithm been run to completion. 

Example: Figure 5(a) shows the CFG with its annota- 
tions updated using the results of the first iteration. Fig- 
ures 5(b), (c), and (d) illustrate the start of the second iter- 
ation (the intermediate form and the two-phase conversion 
to SSA form). Points-to analysis on Figure 5(d) determines 
that: 

so +p 
Sl + q 
to --f s 
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Original CFG 
(with annotations) 

P.0 

4=1 

8 

S.&P 

1lh.r 

0 ‘s = 2 S’(P19) 

(4 

To SSA Form Phase 1 
(4 nodes and subscripts added) 

PO’0 

52 qo= 1 

so- &P 

e2 
q2= $( q o’ 9 ,I 

(4 

Intermediate (Normalized) Form 
(*t replaced by s, and 

*s replaced by p and q) 

(b) 

Final SSA Form 
(instances of & handled) 

(4 

Figure 4: Translation to SSA form (first iteration) 
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Annotated CFG 
(after 1 iteration) 

0 p=o 

(4 

To SSA Form Phase 1 
(subscripts added) 

(4 

Intermediate Form 
(*t replaced by s, and 

*s replaced by q) 

p=o 

8 
q=l 

s=&p 

8 

t=&s 

s=&q 

(b) 

Final SSA Form 
(instances of & handled) 

PO’ 0 

PI 
4$1 

so= &PO 

(4 

Figure 5: Translation to SSA form (second iteration) 
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int g, h; 

;roid f0 
h =g; 
g = 0; 

1 

void main() 
{ 

int i; 
g = 3; 
f0; 
i = g; 
if (. . .) 

g=4; 
else 

f0; 
1 

Figure 6: A program with multiple functions 

This is the ssme as the information determined by the first 
iteration; thus, the CFG annotations do not change and the 
algorithm terminates after the second iteration. Note that 
the final results are the ssme ss the flow-sensitive analysis 
on the original program. 0 

2.1 Handling multiple functions and function calls 

A program that contains multiple functions can be repre- 
sented by a set of CFGs, one for each function. However, 
there are problems with translating functions represented 
this way to SSA form when the program includes global 
variables. Figure 6 shows an example C program that il- 
lustrates two problems that arise when global variables are 
present. 

One problem arises because a global variable may be 
used in a function before any definition of it appears in that 
function. For example, in the function f, global variable g is 
used in the assignment to h before any assignment to g. The 
difficulty is in determining the SSA number to give such a 
use. Another problem is that, because a function can modify 
a global variable, a use of a global variable that appears after 
a call may not be reached by the definition before the call. 
For example, in the function main, the value of g in the 
assignment to i is 0 (from the assignment g = 0 in f) and 
not 3 (from the assignment g = 3 before the call to f) and 
hence the g in i = g should not have the same SSA number 
as the g in g = 3. 

One way that these problems could be handled is to pass 
the global variables used or modified by a function as explicit 
parameters, and to treat the function call as an assignment 
to all of the global variables modified by the function. 

A simpler approach is to create a supergraph’ from the 
set of CFGs. The supergraph contains all nodes and edges of 
the original CFGs, including a call node and a return-point 
node for each function call. Additional edges are added from 
each call node to the entry node of the called function, and 
from the exit node of the called function to the call’s return- 
point node. Figure 7(a) shows the CFGs for the program in 

“The term super-graph was first used by Eugene Myers in [MyeEl]. 
William Landi and Barbara Ryder [LR91] use the term interprocedu- 
ml contml j%w graph (ICFG). 

Given: a list L of CFGS 
Do flow-insensitive pointer analysis on L 
For each CFG G in L 

Annotate the dereferences in G 
Create the supergraph S for L 
Repeat: 

Create the intermediate form (IM) from S 
Convert IM to SSA form creating 1Mss~ 
Do flow-insensitive pointer analysis on 1Mss~ 
For each CFG G in L 

Update the annotations in G using 
IMssAand the pointer analysis results; 
update calls through function pointers in S 

until there are no changes in the annotations 

Figure 8: The algorithm updated to handle multiple CFGs 

Figure 6, and Figure 7(b) shows the corresponding super- 
graph. 

Calls through function pointers are represented using a 
multiway branch in which the kth arm of the branch contains 
a call to the kth element of the function pointer’s points- 
to set. This requires that pointer analysis be done before 
the supergraph is created. Moreover, the points-to sets for 
function pointers may change (i.e., get smaller) during it- 
eration, so the supergraph may need to be updated (by re- 
moving some of the arms of the multi-way branches that 
represent calls through function pointers) when annotations 
are changed. Figure 8 gives the algorithm from Figure 3 
updated to handle multiple CFGs. 

2.2 Complexity 

Each iteration of our algorithm requires a transformation to 
SSA form and a flow-insensitive pointer analysis. 

Although there exists a linear-time algorithm for placing 
4 nodes [SG95], the renaming phase of translation to SSA 
form can take cubic time in the worst case. Thus, in the 
worst case, the time needed to completely translate a pro- 
gram into SSA form (including renaming) is cubic. More- 
over, the resulting program can be quadratic in the size of 
the original program. However, experimental evidence sug- 
gests that both the time to translate and the size of the 
translated program are linear in practice [CFR+Sl] [CC95]. 

Andersen [And941 gives a flow-insensitive pointer-snal- 
ysis algorithm that computes the greatest fixed point of 
the set of equations (2) given in Section 1.1. Andersen’s 
algorithm is cubic in the worst case. Experimental evi- 
dence intended to evaluate the algorithm’s performance in 
practice[SH97] is inconclusive: on small programs (up to 
about 10,000 lines) its performance is very similar to that 
of Steensgaard’s (essentially) linear-time algorithm[Ste96]; 
however, lines of code alone does not seem to be a good 
predictor of runtime (for example, one 6,000 line program 
required over 700 CPU seconds, while several 7,000 line pro- 
grams required only 3 seconds). Note that our algorithm 
could make use of a fast algorithm like Steensgaard’s. How- 
ever, Steensgaard’s algorithm does not always compute the 
greatest fixed point of the set of equations (2). Therefore, 
while the final result produced by our algorithm would still 
be an improvement over a purely flow-insensitive analysis, 
it is unlikely that it would be as good as a flow-sensitive 
analysis that computes the greatest fixed point of the set of 
equations (1). 
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Figure 7: The CFGs and supergraph corresponding to the code in Figure 6 
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3 Related Work 

A program representation similar to the intermediate form 
described here was used by Cytron and Gershbein in [CG93], 
where they give an algorithm for incrementally incorporat- 
ing points-to information into SSA form. Our intermediate 
representation is essentially an in-lined version of Cytron 
and Gershbein’s IsAlias function. However, their algorithm 
requires pre-computed may-alias information and incorpo- 
rates points-to information as needed into a partial SSA 
form while solving another dataflow problem (constant prop- 
agation, in their paper). 

Lapkowski and Hendren [LH96] also discuss the problems 
with SSA form in the presence of pointers. However, they 
abandon SSA form and develop instead a related analysis 
called SSA Numbering. 

Others have worked on improving the precision of flow- 
insensitive alias analysis. In [BCCH94] Burke et al. develop 
an approach that involves using pre-computed kill informa- 
tion, although an empirical study by Hind and Pioli [HP971 
does not show it to be more precise in practice than a flow- 
insensitive analysis. Shapiro and Horwitz [SH97] give an 
algorithm that can be ‘tuned, so that its precision as well 
as worst-case time and space requirements range from those 
of Steensgaard’s (almost linear, less precise flow-insensitive) 
algorithm to those of Andersen’s (cubic worst-case but more 
precise flow-insensitive) algorithm. 

4 Conclusions 

We have presented a new iterative points-to analysis al- 
gorithm that uses flow-insensitive pointer analysis, a nor- 
malized intermediate form, and translation to SSA form. 
The results after just one iteration are generally better than 
those of a purely flow-insensitive analysis (on the original 
program) and if the algorithm is run until the fixed point 
is reached, the results may be as good as those of a flow- 
sensitive analysis. 

We are currently working on implementations of our al- 
gorithm using the flow-insensitive pointer analyses defined 
in [And94], [Ste96], and [SH97]. We plan to use the im- 
plementations to explore how our algorithm compares to 
flow-sensitive points-to analysis in practice. 

5 Acknowledgement 

Thanks to Charles Consel, ‘whose question about using SSA 
form in pointer analysis inspired this work. 

References 

[And941 L. 0. Andersen. Program Analysis and Special- 
ization for the C Programming Language. PhD 
thesis, DIKU, University of Copenhagen, May 
1994. (DIKU report 94/19). 

[BCCH94] M. Burke, P. Carini, J.D. Choi, and M. Hind. 
Flow-insensitive interprocedural alias analysis in 
the presence of pointers. In K. Pingali, U. Baner- 
jee, D. Galernter, A. Nicolau, and D. Padua, 
editors, Languages and Compilers for Parallel 
Computing: Proceedings of the 7th International 
Workshop, volume 892 of Lecture Notes in Com- 
puter Science, pages 234-250, Ithaca, NY, Au- 
gust 1994. Springer-Verlag. 

[CC951 C. Click and K.D. Cooper. Combining analy- 
ses, combining optimizations. ACM Transac- 
tions on Programming Languages and Systems, 
17(2):181-196, 1995. 

[CFR+Sl] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Weg- 
man, and F.K. Zadeck. Efficiently computing 
static single assignment form and the control 
dependence graph. ACM Transactions on Pro- 
gramming Languages and Systems, 13(4):451- 
490, October 1991. 

[CG93] 

[Hor97] 

[HP971 

[Ki173] 

[LH96] 

[LR91] 

[We811 

[SG%] 

[SH97] 

[Ste96] 

R. Cytron and R. Gershbein. Efficient ac- 
commodation of may-alias information in SSA 
form. SIGPLAN Conference on Programming 
Language Design and Implementation, 28(6):36- 
45, June 1993. 

S. Horwitz. Precise flow-insensitive may-alias 
analysis is NP-hard. ACM Transactions on Pro- 
gramming Languages and Systems, 19(1):1-6, 
January 1997. 

M. Hind and A. Pioli. An empirical comparison 
of interprocedural pointer alias analyses. IBM 
Research Report RC 21058, IBM Research Divi- 
sion, December 1997. 

G.A. Kildall. A unified approach to global 
program optimization. In ACM Symposium 
on Principles of Programming Languages, pages 
194-206, January 1973. 

C. Lapkowski and L.J. Hendren. Extended SSA 
numbering: Introducing SSA properties to lan- 
guages with multi-level pointers. ACAPS Tech- 
nical Memo 102, School of Computer Science, 
McGill University, Mont&J, Canada, April 
1996. 

W. Landi and B.G. Ryder. Pointer induced aliss- 
ing: A problem classification. In ACM Sympo- 
sium on Principles of Programming Languages, 
pages 93-103, 1991. 

E.W. Myers. A precise inter-procedural data flow 
algorithm. In ACM Symposium on Principles of 
Programming Languages, pages 219-230, 1981. 

V.C. Sreedhar and G.R. Gao. A linear time algo- 
rithm for placing +nodes. In ACM Symposium 
on Principles of Programming Languages, pages 
62-73, 1995. 

M. Shapiro and S. Horwitz. Fast and accu- 
rate flow-insensitive points-to analysis. In ACM 
Symposium on Principles of Programming Lan- 
guages, pages 1-14, January 1997. 

B. Steensgaard. Points-to analysis in almost lin- 
ear time. In ACM Symposium on Principles of 
Programming Languages, pages 32-41, January 
1996. 

105 


