
Off-line Variable Substitution for Scaling Points-to Analysis

Atanas Rountev
Department of Computer Science

Rutgers University
rountev@cs.rutgers.edu

Satish Chandra
Bell Laboratories

Lucent Technologies
chandra@research.bell-labs.com

Abstract

Most compiler optimizations and software productivity tools
rely on information about the effects of pointer dereferences
in a program. The purpose of points-to analysis is to com-
pute this information safely, and as accurately as is practical.
Unfortunately, accurate points-to information is difficult to
obtain for large programs, because the time and space re-
quirements of the analysis become prohibitive.

We consider the problem of scaling flow- and context-insensi-
tive points-to analysis to large programs, perhaps contain-
ing hundreds of thousands of lines of code. Our approach
is based on a variable substitution transformation, which is
performed off-line, i.e., before a standard points-to analy-
sis is performed. The general idea of variable substitution
is that a set of variables in a program can be replaced by
a single representative variable, thereby reducing the input
size of the problem. Our main contribution is a linear-time
algorithm which finds a particular variable substitution that
maintains the precision of the standard analysis, and is also
very effective in reducing the size of the problem.

We report our experience in performing points-to analysis
on large C programs, including some industrial-sized ones.
Experiments show that our algorithm can reduce the cost of
Andersen’s points-to analysis [2] substantially: on average,
it reduced the running time by 53% and the memory cost
by 59%, relative to an efficient baseline implementation of
the analysis.

1 Introduction

The goal of points-to analysis is to compute, for a given
pointer p in a program, the set of variables whose address p
may contain during the execution of the program. Points-
to computation provides a conservative estimate of the set
of variables read or written indirectly through the pointer
dereference ∗p. This information is important in imple-
menting a number of compiler optimizations (e.g., common
subexpression elimination) as well as software productiv-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006...$5.00.

ity tools (e.g., program slicing). Without such information,
overly pessimistic assumptions must be made about pointer
dereferences.

Precision and efficiency of points-to analysis are important
issues. Without good precision—small points-to sets—the
analysis may be of limited use for its intended purpose.1

Without good efficiency, it is infeasible to scale the analysis
to large programs. Unfortunately, precision and efficiency
usually come at each other’s expense.

In this paper, we consider the problem of performing points-
to analysis on rather large programs—perhaps, up to a mil-
lion lines of code—while maintaining a reasonable level of
precision. The first points-to analysis algorithm that could
handle programs of this size is due to Steensgaard [15].
Steensgaard’s analysis runs in time almost linear in the size
of the program. Unfortunately, the results obtained by this
analysis are relatively imprecise. An alternative algorithm
due to Andersen [2] can produce much more precise re-
sults. However, Andersen’s analysis has cubic time com-
plexity, which limits its scalability. (These two algorithms
are described further in Section 2.1.) Straightforward imple-
mentations of this analysis are ill-suited for handling large
programs, because the time and space requirements become
very high and often prohibitive. The key to scaling Ander-
sen’s analysis to larger programs, therefore, is in reducing
the space and time requirements of the implementation. An
example of such an approach is the implementation of An-
dersen’s analysis in [5], which uses cycle elimination to re-
duce significantly the resource requirements of the analysis.
(Cycle elimination is discussed further in Section 4.3.)

We have designed and implemented a new algorithm that
improves the scalability of Andersen’s analysis by reducing
the input size of the problem. Using this algorithm, we have
been able to perform Andersen’s analysis on a program con-
taining nearly 500,000 lines of code in about 7 minutes. Our
experiments show that in practice, our algorithm can reduce
time requirements by as much as 65% (53% on average), and
space requirements by 68% (59% on average), relative to the
time and space requirements of an efficient implementation
based on the techniques in [5] and [16], which include cycle
elimination and other optimizations.

We find it useful to describe our algorithm in the framework
of variable substitution for points-to analysis. The general

1Admittedly, the question whether the results are precise enough
for an intended application is a difficult one to answer without ac-
tually putting the results to use. We will talk of precision only in a
relative sense.

47

idea behind variable substitution is to reduce the cost of
points-to analysis by replacing a set of program variables
with a single representative variable. Depending on how
the substitution is performed, this may result in less precise
points-to results. For example, one can consider Steens-
gaard’s analysis as performing a specific kind of variable sub-
stitution that results in loss of precision relative to Ander-
sen’s analysis. The approach that we present in this paper
is essentially a new kind of variable substitution, with two
key differences: one, it maintains the precision of Andersen’s
analysis, and two, it is performed off-line, i.e., before the ac-
tual analysis. An off-line technique decouples the resource
optimization from the core analysis, making it independent
of any particular implementation of the core analysis.

The off-line variable substitution used by our algorithm ex-
ploits a commonly found program behavior, that many point-
er variables in a program have the same points-to set. The
reason for this behavior is that once an address is taken, it
is often passed around the program; for example, the ad-
dress value may be used as an actual argument in a chain
of procedure calls. If we could precompute a set of pointer
variables that must have the same points-to “answer”, we
only need to perform points-to analysis for one representa-
tive variable from that set. This lets us reduce the size of
the problem that we hand over to the analysis. While we
have concentrated on reducing the cost of Andersen’s anal-
ysis, we conjecture that such precomputation can be helpful
in other points-to analyses as well.

The contributions of our work are the following:

• We propose off-line variable substitution as a technique
for reducing the cost of points-to analysis, possibly at
the expense of some loss of precision.

• We present a linear-time algorithm for computing a
particular substitution which substantially reduces the
cost of Andersen’s analysis without any loss of preci-
sion.

• We present an experimental study on a set of large C
programs, up to nearly 750,000 lines of code, to show
the advantages of our substitution, and describe why
these advantages are achieved.

The rest of the paper is organized as follows. Section 2 pro-
vides background material on points-to analysis algorithms
and describes the notion of variable substitution. Section 3
defines the formal model for off-line variable substitution,
and presents a particular substitution based on an equiva-
lence relation on program variables; Section 4 presents an
algorithm for computing this equivalence relation. Section 5
describes the design and implementation of points-to analy-
sis based on our algorithm. Section 6 presents experimental
results on a set of large programs. Section 7 discusses re-
lated work, and Section 8 presents conclusions and future
work.

2 Points-to Analysis and Variable Substitution

Points-to analysis starts by defining a finite set V of vari-
ables ; each variable represents one or more memory loca-
tions. Points-to relationships are represented using a points-
to graph in which nodes correspond to variables. A directed
edge from node v1 to node v2 shows that one of the memory

Andersen’s graph

-

-

�
�3

Q
Qs

a

b c

d e

Steensgaard’s graph

- -a b,d c,e

a = &b
b = &c
a = &d
d = &e

Figure 1: Andersen’s vs Steensgaard’s analysis.

locations represented by v1 may contain the address of one
of the memory locations represented by v2. Flow-sensitive
points-to analysis takes into account the flow of control be-
tween different program points; in contrast, flow-insensitive
points-to analysis ignores control flow.2 Context-sensitive
points-to analysis considers (sometimes approximately) only
program paths along which calls and returns are properly
matched, while context-insensitive points-to analysis does
not make this distinction.

2.1 Flow- and Context-Insensitive Points-to Analysis

Flow- and context-insensitive points-to analysis computes
a single points-to graph for the whole program. Andersen’s
analysis [2] is a relatively precise analysis from this category;
it has O(n3) worst-case complexity, where n is the size of
the program. The analysis can be modeled as an iterative
computation in which each iteration starts with a partial
points-to graph and then adds new edges according to the
semantics of program statements. Thus, for the assignment
“p = q”, new edges are added from p to all current successors
of q; for the statement “p = ∗q”, new edges are added from
p to the successors of all successors of q; and so on for other
statements. This model can be formalized by defining a
lattice of points-to graphs L = 2V ×V and a transfer function
f : L→ L, which encodes the cumulative points-to effect of
all program statements. The final solution is the limit of the
finite sequence ∅, f(∅), f2(∅), etc.
A relatively inexpensive flow- and context-insensitive points-
to analysis is Steensgaard’s analysis [15]. It has O(nα(n, n))
complexity (where α is the inverse of Ackermann’s function),
but is much less precise than Andersen’s analysis. In this
approach, the nodes in the points-to graph represent sets
of variables, and each node has at most one outgoing edge.
After new edges are added in the manner described above,
a node may have more than one outgoing edge and all of its
successors need to be merged into a single node. An exam-
ple of Andersen’s and Steensgaard’s analyses, due to [14], is
shown in Figure 1; points-to pairs (b, e) and (d, c) in Steens-
gaard’s graph are spurious.

The nodes of Steensgaard’s graph define a partition of V
into disjoint equivalence classes; the variables at each node
form a separate equivalence class. The partition is stored in
a fast union/find data structure [17], which allows efficient
node merges. One of the variables in each class is used as
an equivalence class representative (ECR) [15]. During the
analysis, every reference to a variable v is translated into a
reference to the ECR for the equivalence class to which v

2Some analyses (e.g., [7, 9]) only ignore intraprocedural flow of
control.

48

currently belongs.

Shapiro and Horwitz [14] propose a family of points-to anal-
yses whose cost and precision range from those of Steens-
gaard’s analysis to those of Andersen’s analysis. Similarly
to Steensgaard’s analysis, the nodes in the points-to graph
represent sets of variables. Each node has at most k out-
going edges, where k is one of the parameters of the analy-
sis. This is achieved by assigning each variable to one of k
categories and merging nodes only if they are in the same
category. The boundary cases k = 1 and k = |V | correspond
to Steensgaard’s and Andersen’s analysis, respectively.

2.2 Variable Substitution

A common feature of Steensgaard’s and Shapiro-Horwitz’s
analyses is the use of an ECR as a placeholder for all vari-
ables in the equivalence class. The analyses can be thought
of as performing “on-the-fly” translation from variables to
representatives. Alternatively, this approach can be consid-
ered as modifying the program by replacing (substituting)
each occurrence of a variable with the current representative
for that variable. For example, the assignment “p = q” can
be thought of as “e(p) = e(q)”, where e(p) and e(q) are the
current ECRs for p and q.

As seen from Steensgaard’s and Shapiro-Horwitz’s analyses,
replacing a set of variables with a single placeholder variable
can be used to reduce the cost of the analysis; of course, some
loss of precision may occur. We call this general cost-saving
technique variable substitution. In our specific variable sub-
stitution, rather than performing the substitution during the
analysis (as in Steensgaard’s and Shapiro-Horwitz’s analy-
ses), we perform it off-line, or before the analysis. In this
approach, the program is first modified by replacing every
occurrence of each variable with the representative for that
variable. Points-to analysis is then applied to the modified
program and the resulting solution is used to recover a so-
lution for the original program. The next section describes
this approach in the context of Andersen’s analysis.

3 Off-line Variable Substitution

In this section, we first define a model for off-line variable
substitution and show that it is safe (i.e., the substitution
does not cause any points-to relation to be missed from the
final answer). We then describe a substitution based on a
specific partitioning of program variables into equivalence
sets. This substitution preserves the precision of Ander-
sen’s analysis, and in practice, also reduces substantially the
cost of the remaining points-to computation. We also dis-
cuss simplifications made possible by discovering the precise
points-to solutions of some variables during our computa-
tion of equivalence sets; the computation itself is described
in Section 4.

3.1 Definition and Safety

To simplify the presentation, we assume that the program is
represented by a set of basic statements, as described by the
grammar in Figure 2; some preprocessing may be needed to
transform the program to this standard form.

Off-line variable substitution is based on a substitution func-

Var → identifier
Assign → Var = &Var

| Var = Var
| Var = ∗Var
| ∗Var = Var

FunDef → Var (Var, . . . ,Var) ⇒ Var
Call → Var =Var (Var, . . . ,Var)
FunPtrCall → Var = (∗Var) (Var, . . . ,Var)
Stmt → Assign | FunDef | Call | FunPtrCall

Figure 2: Grammar for basic statements. FunDef contains
the function name, the formals, and a unique variable rep-
resenting the return value of the function. A function call
contains a variable to which the return value is assigned.

tion σ : V → V ′ such that each variable from V is either
mapped to itself, or to a “fresh” variable that is not in
V . Thus, some variables from V are preserved by σ, while
others are replaced by representative variables. In general,
many variables could be mapped to the same representative.
Based on σ, the original program is modified by replacing
each occurrence of a variable v with σ(v).

Let L and L′ denote the lattices of points-to graphs for
the original and the modified program, respectively. The
modified program corresponds to a new transfer function
f ′ : L′ → L′. Applying Andersen’s analysis to this modified
program yields a solution G′

S which is the limit of the se-
quence ∅, f ′(∅), f ′(f ′(∅)), etc. A solution GS for the original
program can be obtained as GS = {(vi, vj)|(σ(vi), σ(vj)) ∈
G′

S}.
This approach is illustrated by the example in Figure 3.
Note that trivial assignments such as “x = x” can be elimi-
nated after the substitution. In general, G′

S could be signif-
icantly smaller than Andersen’s points-to graph GA for the
original program. Thus, the running time and memory cost
of the analysis could be significantly reduced. It is also clear
that some loss of precision may occur—for example, edges
(a, q) and (p, q) in GS are spurious.

The safety of off-line variable substitution is guaranteed by
the following claim:

Theorem 1 GA ⊆ GS , where GA is Andersen’s points-to
graph for the original program.

For each G ∈ L, let σL(G) = {(σ(u), σ(v))|(u, v) ∈ G}. We
can prove by induction on i that σL(Gi) ⊆ G′

i, where Gi is
the partial points-to graph for the original program after it-
eration i, and G′

i is the corresponding graph for the modified
program. Thus, σL(GA) ⊆ G′

S, which implies GA ⊆ GS .

Off-line variable substitution can be used for constructing
approximate points-to analyses—different substitution func-
tions result in different tradeoffs between cost and precision.
Even though we present and use off-line variable substitu-
tion in the context of Andersen’s analysis, the technique is
applicable to other kinds of points-to analysis. For exam-
ple, it could be useful in investigating tradeoffs between cost
and precision for pointer analyses with some degree of flow
or context sensitivity (e.g., [8, 7, 4, 18, 9]).

49

a = &b
b = &c
b = &d
q = b
p = a

σ(a) = x

σ(p) = x

σ(b) = y

σ(q) = y

-
x = &y
y = &c
y = &d

- -
@
@R

G′
S

x y c

d

-
- -

@
@R-�
��

�
��
-
@
@R

GS

a b c

p q d

GA = GS − {(a, q), (p, q)}

Figure 3: Off-line variable substitution example. Graph G′
S is the points-to graph after the substitution. Graph GS is the

corresponding points-to graph in terms of variables from the original program. Edges (a, q) and (p, q) are spurious with respect
to Andersen’s points-to graph GA; this substitution does not preserve precision.

3.2 Substitution of Equivalence Sets

In this subsection we propose a particular off-line variable
substitution that reduces the cost of Andersen’s analysis
without any loss of precision. The substitution is based on
a collection of equivalence sets. An equivalence set is a set
of variables that have the same points-to solution in GA.
Any two variables that belong to the same equivalence set
are equivalent variables. In Section 4 we show how to com-
pute some equivalence sets in linear time. We would like to
keep the cost of this computation low, because it must be
included in the total cost of the analysis.

The substitution is based on a precomputed collection of
disjoint equivalence sets S0, S1, . . . , Sk. (This collection need
not cover the entire set of variables.) We use a single “fresh”
representative variable ri for each equivalence set Si. For
each v ∈ V , σ(v) is defined as follows:

• If v is a function name, let σ(v) = v
• Otherwise, if v’s address is taken somewhere in the
program, let σ(v) = v

• Otherwise, if v ∈ Si, let σ(v) = ri

• Otherwise, let σ(v) = v

The precision of this substitution is guaranteed by the fol-
lowing theorem:

Theorem 2 For the above definition of σ, GA = GS.

We can prove by induction on i that G′
i ⊆ σL(GA), where

G′
i and σL are the same as in the proof of Theorem 1; thus,
GS ⊆ GA and therefore GS = GA. The proof is based on
three observations. First, equivalent variables behave simi-
larly with respect to Andersen’s analysis and can be replaced
by a single representative without any loss of precision. Sec-
ond, it is necessary to preserve all variables that are function
names; this is needed to ensure that actual/formal pairs in
the modified program are properly matched. Third, it is
necessary to preserve all targets of points-to edges; this is
achieved by preserving all variables whose address is taken
somewhere in the program. Consider again the example in
Figure 3. Variables b and q are equivalent. However, since
the address of b is taken, mapping both b and q to the same
representative variable results in the spurious edges (a, q)
and (p, q).

If there is a large number of equivalent variables, G′
S is sig-

nificantly smaller than GA, resulting in reduction in the run-
ning time and the memory cost of Andersen’s analysis.

3.3 Non-pointer Elimination

After the substitution has been performed, the cost of the
analysis can be further reduced by non-pointer elimination.
A non-pointer is a variable with an empty points-to set
in GA. Our computation of equivalence sets is capable of
identifying some of the non-pointers in the program.3 Sup-
pose that all variables in equivalence sets Si, Sj , . . . , Sm are
non-pointers. The following statements involving the repre-
sentatives ri, rj , . . . , rm are irrelevant to the propagation of
pointer values and can be safely eliminated:

• Assignments “p = ri” and “ri = q”
• Assignments “∗p = ri” and “ri = ∗q”
• Direct calls “ri = f(rj, . . . , rm)”
• Indirect calls “ri = (∗fp)(rj , . . . , rm)”

Our computation of equivalence sets can sometimes also
identify variables that point to exactly one variable in GA;
we refer to such variables as known pointers. If all vari-
ables in some equivalence set Si point only to the variable
x, each occurrence of ∗ri in the modified program can be
replaced by x. This, in turn, may reduce the cost of the
subsequent points-to analysis. We refer to this transforma-
tion as known-pointer instantiation.

4 Equivalence Sets Computation

In this section we present our linear-time algorithm for com-
puting equivalence sets. During the computation, the algo-
rithm also identifies some of the non-pointers and known
pointers in the program. In order to keep the cost of the
computation low, the algorithm only computes equivalence
sets that are “easy” to detect; nevertheless, our experiments
show that this approach discovers a significant number of
equivalent variables.

The algorithm starts by constructing a subset graph G⊆.
Intuitively, the edges in G⊆ represent subset relationships
between the points-to solutions for the nodes. For each pro-
gram variable v, the subset graph contains node n(v) and
node n(∗v). If the address of v is taken anywhere in the
program, the subset graph also contains node n(&v). The
edge set of G⊆ represents all subset relationships that can be
directly inferred from the program; it is defined as follows:

3Due to the weak type system of C, declared types cannot be used
to identify non-pointers.

50

r = &p
p = &x
q = &y
p = q
q = ∗r
s = &x

s = ∗r
t = ∗r
y = ∗p
i = j
i = k

-

-

-

- -

6�
�	

@
@R

-

-@
@I
??

@@R

���

@@R

���

~

&p

1

r

1

&x

2

&y

3
4

p

q

∗r s

t

5

4

x

∗s

6

7

y

∗p

∗q
8

j

k

i0

0

0

9

10

11

∗j

∗k
∗i

Figure 4: Subset graph example. The numbers denote the labels assigned by the algorithm from Figure 6. The direct SCCs
are {n(r)}, {n(s)}, {n(t)}, {n(j)}, {n(k)}, and {n(i)}. The non-trivial equivalence sets are {p, q, t} and {j, k, i}; the latter is a
non-pointer set.

• For each assignment “p = &x”, G⊆ contains the edges
(n(&x), n(p)) and (n(x), n(∗p)).

• For each assignment “p = q”, G⊆ contains the edges
(n(q), n(p)) and (n(∗q), n(∗p)).

• For each assignment “p = ∗q”, G⊆ contains the edge
(n(∗q), n(p))

• For each assignment “∗p = q”, G⊆ contains the edge
(n(q), n(∗p))

• For each pair of an actual a and a corresponding formal
f in a direct call, G⊆ contains the edges (n(a), n(f))
and (n(∗a), n(∗f))

• For each direct call where r is the return variable of
the called function and p is assigned the return value
at the call, G⊆ contains the edges (n(r), n(p)) and
(n(∗r), n(∗p))

Figure 4 shows a set of basic statements and the correspond-
ing subset graph; isolated nodes in the graph are not shown.
Andersen’s points-to graph for this program is given in Fig-
ure 5.

Let Pt(v) be the points-to set for variable v in the final
Andersen’s points-to solution. We can associate a points-to
set with each node inG⊆ as follows: the points-to set of n(v)
is Pt(v); the points-to set of n(∗v) is the union of Pt(x) for
all variables x ∈ Pt(v); the points-to set of n(&v) is {v}. It
is straightforward to prove the following claim:

Theorem 3 For every edge (n1, n2) in the subset graph,
Pt(n1) ⊆ Pt(n2).

As a corollary, all nodes in a strongly connected component
(SCC) of the subset graph have the same points-to solution.

4.1 Direct Nodes

Intuitively, a direct node n(v) corresponds to a variable v
for which we can track directly all values assigned to v. The
points-to set of a direct node depends only on the points-to
sets of its predecessor nodes in the subset graph. We do
not consider dereference nodes n(∗v) and address-of nodes
n(&v) to be direct. A variable node n(v) is direct only if all
of the following conditions hold:

• Variable v never has its address taken, because in this
case we cannot track indirect assignments to v through
statements of the form “∗p = q”.

• Variable v is not a formal parameter for a function
whose address is taken, because we may not know all
the corresponding actuals from which the formal gets
its values.

• Variable v is not assigned the return value of a call
through a function pointer, because, again, we do not
know all the corresponding return values.

The last two conditions are needed because we do not know
function pointer targets a priori; recall that we ignore indi-
rect calls when constructing the subset graph. In the exam-
ple from Figure 4, all variable nodes except n(p), n(x) and
n(y) are direct. It is easy to prove the following theorem:

Theorem 4 If n is a direct node, Pt(n) is equal to the
union of Pt(m), where m is a predecessor of n in the subset
graph.

As a corollary, if all predecessors of n have the same points-
to set, n also has that same points-to set.

4.2 Computation of Equivalence Sets

After constructing the subset graph, the analysis computes
its strongly connected components and builds its SCC con-
densation. The resulting graph G′

⊆ is a directed acyclic
graph in which each node corresponds to a SCC in G⊆. A
direct node n′ in G′

⊆ represents a SCC that contains only
direct nodes from G⊆. Using Theorem 4, it is easy to prove
that the points-to set of such n′ is the union of the points-to
sets of its predecessors.

The equivalence sets can be computed by traversing G′
⊆ in

topological sort order, as shown in Figure 6. The algorithm
assigns an integer label to each node. If two nodes are as-
signed the same label, their points-to sets are the same. Spe-
cial consideration is given to nodes that can be shown to
have empty points-to sets—all such nodes are assigned label
0. Labels that correspond to known points-to sets are stored
in the partial map Solved.

The algorithm outputs two maps. VarLabel is a complete
map from program variables to integer labels. It encodes
the equivalence sets—if two variables have the same label,
they belong to the same equivalence set. Furthermore, any
variable with label 0 is a non-pointer. Solved is a partial map
from integer labels to program variables; if (l, x) ∈ Solved,
the points-to set of any variable with label l is exactly {x}.
The algorithm runs in time O(max (|N ′

⊆|, |E ′
⊆|)), which, in

turn, is linear in the number of normalized statements in
the input program.

51

r = &p
p = &x
q = &y
p = q
q = ∗r
s = &x

s = ∗r
t = ∗r
y = ∗p
i = j
i = k

?

? ?

Q
Q
Qs

PPPPPPq

Q
Q
Qs

�
�
�+

������)

�
�
�+

r i j k

p q s t

x y

Figure 5: Andersen’s points-to graph for Figure 4. Variables
p, q, s, and t have the same points-to set. Variables i, j, and
k are non-pointers.

The example in Figure 4 shows one possible assignment of
labels to the SCCs of the subset graph. Suppose {n(&p)} is
the first SCC in the topological sort order. Since it is not
direct, it is assigned label 1 and (1, p) is added to Solved.
The SCC {n(r)} is direct and gets label 1; furthermore, the
points-to solution for r can be looked up in Solved as {p}.
The SCC {n(q), n(p), n(∗r)} is not direct and is assigned the
fresh label 4. Since {n(t)} is direct, its gets the same label;
as a result, the equivalence set {p, q, t} is detected. The
SCC {n(j)} is direct and has no predecessors; thus, in the
original C program j gets all of its values from non-pointer
assignments such as “j = 1”. Since j and k are non-pointers,
{n(j)} and {n(k)} are assigned label 0. The SCC {n(i)} is
direct and gets label 0 as well; as a result, the non-pointer
equivalence set {j, k, i} is discovered. Note that the analysis
does not detect the non-pointers x and y. Also, even though
s has the same points-to solution as p, q, and t, the algorithm
cannot add s to that equivalence set because the points-to
sets of the two predecessors of n(s) are different. We could
potentially maintain additional data structures to be able to
track inclusion properties among labels, which would allow
us to infer that n(s) should also get the label 4.

One might wonder why we keep n(∗v) nodes in G⊆ at all,
since these are not direct nodes, and any SCC that contains
a n(∗v) node is not direct as well. The reasons for keeping
such nodes are, one, that they may lead to forming larger
SCC components, and two, a successor of a non-direct node
in G′

⊆ could be a direct node which inherits the label from
its predecessor, thus adding members to the equivalence set.
Both reasons are illustrated by node n(∗r) in Figure 4.
In the example, the only non-singleton equivalence sets are
S4 = {p, q, t} and S0 = {i, j, k}. They result in the following
substitutions: σ(q) = r4, σ(t) = r4, σ(i) = r0, σ(j) = r0,
and σ(k) = r0. Variable p is not substituted by r4 because
its address is taken in the program. The rest of the variables
belong to singleton equivalence sets and are not substituted.
Variable r is a known pointer, as the computation reveals
that r only points to p. Consequently, we instantiate each
occurrence of ∗r by p. We present the following input to
Andersen’s analysis: r = &p, p = &x, r4 = &y, p = r4, r4 =
p, s = &x, s = p, r4 = p, y = ∗p. By Theorem 2, the points-
to solution obtained by Andersen’s analysis on this input
program, after reverse mapping, is the same as the points-
to solution obtained by applying Andersen’s analysis on the
original program.

4.3 Comparison with Cycle Elimination

Our algorithm, in particular the subset graph construction,
bears some connection with the idea of cycle elimination in

input G′
⊆ = (N

′
⊆, E

′
⊆)

output VarLabel : array[V] of integer
Solved : map integer → V

declare SccLabel : array[N ′
⊆] of integer

counter: integer

counter := 1;
foreach n′ ∈ N ′

⊆ in topological sort order do
if n′ is not a direct node then

SccLabel [n′] := counter;
counter := counter + 1;
if n′ is an address-of node n(&v) then

add (SccLabel [n′],v) to Solved;
else if n′ has no predecessors then

SccLabel [n′] := 0;
else

if all predecessors of n′

have the same label l then
SccLabel [n′] := l;

else
SccLabel [n′] := counter;
counter := counter + 1;

foreach v ∈ V do
VarLabel [v] := SccLabel [ContainingScc(n(v))];

Figure 6: Computation of equivalence sets.

set-inclusion constraint graphs [5]. In both graphs, nodes
represent points-to sets and edges represent subset relation-
ships.4 A cycle in the constraint graph corresponds to vari-
ables v0, . . . , vk such that

Pt(v0) ⊆ Pt(v1) ⊆ . . . ⊆ Pt(vk) ⊆ Pt(v0)

where Pt(vi) is the points-to set of vi. All variables on a cy-
cle have equal points-to sets and can be replaced by a single
representative variable. In [5], cycle detection and elimi-
nation is used to improve the performance of Andersen’s
analysis.

The strongly connected components in the subset graph also
find equivalence relationships due to cycles, but only in the
initial set of inclusion relationships apparent from the pro-
gram. Most of the benefit of cycle elimination in [5], how-
ever, comes from finding and eliminating cycles online—as
fresh ones appear during constraint solving, rather than only
in the initial graph. Our algorithm does not discover such
cycles, because unlike [5], no new edges are added during the
analysis. For example, consider the assignments “p = &x”
and “∗p = y”. In [5], the analysis will use the points-to
pair (p, x) to determine that the value of y is assigned to x;
this results in the new constraint Pt(y) ⊆ Pt(x), which may
result in new cycles being found. In our subset graph, there
will be no edge from n(y) to n(x).

Instead, our algorithm creates equivalence sets that cross
cycle boundaries. By propagating a label from a node to
some of its successors, our approach is capable of discovering
equivalent variables that do not belong to any cycle. For
example, in Figure 4, variables p, q, and t are found to be
in the same equivalence set, even though they do not form
a cycle in the sense of constraint graphs.

4We refer the reader to [5] to see how set constraints can be used
to model Andersen’s analysis.

52

5 Design and Implementation

We investigated the impact of off-line variable substitution
on the cost of Andersen’s analysis by comparing two versions
of the analysis. The standard version implements the tra-
ditional Andersen’s analysis; the substitution version uses
the algorithm from Section 4 to compute equivalence sets
and then performs off-line variable substitution, non-pointer
elimination and known-pointer instantiation.

The standard version is implemented in ML and uses a front
end for C also implemented in ML. The front end builds a
simplified program representation in which the statements
are normalized to consist of only a few simple forms; for ex-
ample, each statement contains at most one pointer deref-
erence. The analysis traverses the simplified representation
and extracts a set of basic statements, as described in Fig-
ure 2. Similarly to [15, 14, 5], structures and arrays are
treated as monolithic objects and their individual elements
are not distinguished. Library functions are handled by pro-
viding stubs that simulate their points-to effects. Dynamic
memory allocation is handled by considering each call to
malloc and other heap-allocating functions as equivalent to
taking the address of a new variable unique to the site of
the malloc call.

As a practical matter, we phase our implementation by writ-
ing intermediate results to disk. Thus the front end extracts
the basic statements and stores them on disk. The analy-
sis works on a list of basic statements available in a file.
This approach allows clean separation between the front end,
equivalence set computation (if any), and the main analysis.

The substitution version of Andersen’s analysis is organized
as follows. The equivalence set computation reads the basic
statements from disk, computes variable labels and known
pointers, and terminates by writing this information back to
disk. The next phase, invoked separately, reads the informa-
tion from disk, performs off-line variable substitution, non-
pointer elimination and known-pointer instantiation, and
computes Andersen’s solution similarly to the standard ver-
sion.

The standard version and the last phase of the substitu-
tion version are both based on the implementation of An-
dersen’s analysis in Bane (Berkeley ANalysis Engine) [1].
Bane is a toolkit for constructing constraint-based program
analyses. The public distribution of Bane5 contains an ef-
ficient constraint-solving engine, and an implementation of
Andersen’s analysis that uses this engine [5, 16]; to the best
of our knowledge, this is the fastest publicly available im-
plementation of Andersen’s analysis. Since our front end
and program representation are different, we did not use
Bane’s implementation of the analysis directly. Instead,
we created a version that traverses our intermediate rep-
resentation, generates exactly the same kind of constraints
as Bane’s implementation would have generated, and then
uses the constraint-solving engine provided by Bane to com-
pute the points-to solution.

6 Experiments and Results

For our experiments, we used a set of C programs ranging
in size from 30K to around 750K LOC. Some characteristics
of the programs are given in Table 1. The third column in

5http://bane.cs.berkeley.edu

Program LOC [K] NumStmt [K] NumVar [K]
nethack 30.7 50.2 52.9
burlap 49.6 67.5 66.6
vortex 67.2 55.9 71.8
emacs 99.4 108.7 124.7
povray 133.9 116.8 119.1
gcc 217.7 255.3 254.5
switch1 ∼ 500 366.5 419.9
switch2 ∼ 750 765.7 794.8

Table 1: Data programs.

Program TA [sec] SA [MB] TIO [sec]
nethack 114.4 76.5 3.6
burlap 143.6 94.4 4.8
vortex 154.8 91.9 4.9
emacs 235.2 145.2 8.8
povray 382.4 193.0 8.7
gcc 942.3 347.4 18.9
switch1 1054.7 485.3 28.4
switch2 — — 57.3

Table 2: Cost of Andersen’s analysis. TA is the running time
and SA is the memory used by the analysis. TIO is the time
for disk write/read of basic statements.

Table 1 gives the number of basic statements (of the form
shown in Figure 2) and the last column shows the number
of variables in the basic statements. Most of the programs
are publicly available, except switch1 and switch2, which
are proprietary programs used in Lucent’s products.

All experiments were performed using a single 195 MHz pro-
cessor on a multi-processor SGI Origin machine with 1.5 GB
physical memory. The reported time measurements are the
best values out of three runs. The space was measured by in-
strumenting the ML garbage collector to report the amount
of live data after each garbage collection (therefore, the num-
bers are somewhat approximate).

Table 2 shows the cost of the standard version of Andersen’s
analysis. Column TA gives the time to perform Andersen’s
analysis after the basic statements are read from disk. Col-
umn SA shows the space needed by the analysis. Column
TIO gives the total time for disk write/read of basic state-
ments; the average increase in the running time due to disk
IO is 3%.

The results show that the running time of the standard ver-
sion itself is quite reasonable, given the cubic worst-case
complexity of Andersen’s analysis. The results also show
that for large programs the memory cost of the analysis can
be significant. In fact, our largest program could not be
analyzed because the analysis ran out of memory. Clearly,
memory could be a bottleneck when analyzing large pro-
grams.

Table 3 shows the overall performance of the substitution
version. Columns TE and SE show the time and space
needed to compute the equivalence sets. This computa-
tion currently has a simple implementation with no perfor-
mance tuning; we expect to reduce both the running time
and the consumed space by using a more mature imple-
mentation. Columns T ′

A and S
′
A show the cost of Ander-

sen’s analysis after substitution, non-pointer elimination,
and known-pointer instantiation. The reduction in analy-

53

Program TE [sec] SE [MB] T ′
A [sec] S′

A [MB] ∆T [%] ∆S [%]
nethack 16.9 20.3 46.0 37.1 45.0% 51.5%
burlap 21.5 25.2 46.5 41.4 52.6% 56.1%
vortex 22.3 27.6 57.9 41.7 48.2% 54.6%
emacs 35.0 46.3 63.3 45.2 58.2% 68.1%
povray 45.1 44.6 165.8 90.1 44.8% 53.3%
gcc 113.3 95.7 214.7 121.4 65.2% 65.1%
switch1 223.4 157.4 211.3 137.6 58.8% 67.6%
switch2 465.2 297.0 — — — —

Table 3: Overall performance of the substitution version. TE and SE are the time and space needed to compute the equivalence
sets. T ′

A and S
′
A are the time and space for Andersen’s analysis after substitution, non-pointer elimination, and known-pointer

instantiation. The last two columns show the reduction in analysis cost.

Program Overall [%] SCC [%] Nptr [%]
nethack 66.0% 3.4% 35.0%
burlap 74.5% 4.7% 50.2%
vortex 71.4% 1.5% 46.7%
emacs 79.1% 5.0% 54.4%
povray 76.1% 4.7% 38.3%
gcc 76.8% 4.4% 31.1%
switch1 81.9% 2.0% 56.6%
switch2 78.4% 3.4% 38.8%

Table 4: Reduction in the number of variables. The columns
show the overall reduction, the reduction due to SCCs in the
subset graph, and the reduction due to non-pointers.

sis time ∆T is computed as 1 − (TE + T
′
A)/TA, where TA

is the time from Table 2. Since the equivalence sets are
computed separately from Andersen’s analysis, the over-
all space cost is max(SE ,S

′
A) and the reduction in space

is ∆S = 1− max(SE ,S
′
A)/SA. It is clear that the reduction

in the number of variables results in significant reduction
of the analysis cost—on average, 53% for running time and
59% for space.

Even with significant reduction in the number of variables,
the analysis of switch2 ran out of memory. However, it
would be misleading to conclude that either the original
switch2, or the program after variable substitution, def-
initely needed more than 1.5 GB of space. The garbage
collector in SML/NJ has peak virtual-memory requirements
that are considerably higher than the size of the live data.6

In fact, at the time the substitution version ran out of mem-
ory on a 1.5 GB machine, the live data was only about
500 MB. But based on the experience with other programs,
we extrapolate that switch2 could run in much less mem-
ory using the substitution version than using the standard
version.

Table 4 shows the effectiveness of substitution based on
equivalence sets. The second column gives the fraction of
variables eliminated due to substitution. On average, the
number of variables is reduced by 76%. We performed fur-
ther experiments to estimate the impact of different sources
of this reduction. First, we estimated the reduction that
can be obtained by only computing the SCCs in the subset
graph. In this scenario, two variables are equivalent only if
they belong to the same SCC. The reduction in the num-
ber of variables is shown in the third column of Table 4.
Clearly, little can be gained from SCC computation alone;

6The garbage collector [11] is optimized for speed and aimed at
medium-sized data sets; our data sizes are unusually large for it.

Program Size Size Size Size
100-101 101-102 102-103 > 103

nethack 4116 274 12 0
burlap 3596 230 12 0
vortex 4492 271 5 1
emacs 4563 334 18 2
povray 6834 1021 32 0
gcc 16009 1624 78 4
switch1 25667 1417 97 4
switch2 52541 3334 426 13

Table 5: Distribution of equivalence set sizes.

this is consistent with the observations in [5].

Next, we measured the reduction obtained by performing
substitution only on non-pointer variables. The reduction
in the number of variables is shown in the last column of
Table 4. Clearly, the approach from Section 4 detects a sig-
nificant number of non-pointers, resulting in average reduc-
tion of 44%. We also computed the number of all variables
that have empty points-to sets in the final Andersen’s so-
lution (the numbers are not shown), and discovered that,
on average, 82% of them are detected by the approach from
Section 4. The large number of non-pointers is due to the
fact that in C programs many variables are not intended to
be used as pointers and have no effect on points-to analysis.
Because of the weak type system of C (due to type casting),
these variables cannot be eliminated solely on the basis of
their declared types.

The remainder of the reduction is obtained from equivalence
sets that span multiple SCC nodes. To obtain some insight
into these equivalence sets, we computed the distribution of
their sizes; the results are presented in Table 5. Singleton
equivalence sets are trivial for the purposes of substitution
and are not counted. The single non-pointer equivalence set
is not counted either. In each case, we found that most of
the equivalence sets are small, and in fact, the number of
larger sets tends to decrease polynomially with increasing
set size. We also examined some of the programs manually
to see why variables form large equivalence sets. We found
this was mostly due to passing around pointers to global
data structures. Since such pointers are copied many times,
including copies made from actual to formal parameters, a
large number of pointers end up having the same points-to
set. To our knowledge, this empirical behavior has not been
noticed or exploited in program analysis work before.

As described in Section 4, the computation of equivalence
sets detects some of the known pointers in the program. Af-

54

ter the substitution, dereferences of such variables (or deref-
erences of their representatives) are instantiated by their
known targets, resulting in a somewhat simpler program.
Our algorithm finds between 7% and 20% (12% on average)
of all variables as having a known single target. Further ex-
periments show that known-pointer instantiation improves
space and time reductions only marginally (about 2%).

7 Related Work

There is a large body of work on pointer analysis. Some
of the analyses concentrate on pointers that point to heap-
allocated memory (e.g., [6, 13]). Others analyze pointers
that point to stack-based memory; among them, some are
flow-sensitive (e.g., [8, 7, 4, 18]), while others are flow-insensi-
tive (e.g., [2, 7, 15, 19, 14, 9]).

Several analyses use placeholder variables to represent sets
of related variables. The use of equivalence class represen-
tatives in Steensgaard’s and Shapiro-Horwitz’s analyses was
already discussed in Section 2. Other examples are the
non-visible names from [8], the invisible names from [4],
the extended parameters from [18], the cycle witness vari-
ables from [5], the placeholder variables from [12], and the
equivalence class representatives from [10]. In general, the
placeholders need not be used throughout the program; for
example, in [8, 7, 4], a placeholder is used when analyzing
a called procedure, and the original variable is used in the
calling procedure.

The flow-sensitive pointer analysis from [7] uses a subset
of a procedure’s control-flow graph which only contains the
program points at which the solution could change. This
reduces the size of the problem because a set of program
points that share the same solution can be represented by a
single program point. This technique resembles our use of
a representative variable for a set of variables that have the
same points-to solution.

The most closely related work that focuses on speeding up
Andersen’s analysis is cycle elimination in the Bane analysis
system [1], which was already discussed in Section 4.3. The
Bane engine was recently enhanced with another important
optimization, called projection merging [16]. The version of
Bane that we used incorporates projection merging as well.

The problem of scaling class analysis of object-oriented pro-
grams also lends itself to solutions somewhat analogous to
those used for point-to analysis. While a relatively precise
O(n3) algorithm exists, researchers have proposed different
levels of approximation, usually derived by merging nodes
in a graph representation of the problem [3]. It would be
interesting to see if our techniques for points-to analysis are
also useful for class analysis.

8 Conclusions and Future Work

We have shown that a particular form of off-line variable
substitution based on equivalence sets can be used to re-
duce the cost of Andersen’s analysis without any loss of pre-
cision. The computation of equivalence sets has linear-time
complexity and significantly reduces the number of variables
(by 76% on average). This reduction translates into signif-
icant reduction in the analysis running time (53% on aver-
age) and memory cost (59% on average). We believe that

this technique can be widely adapted, as it is simple, and
independent of any particular implementation of Andersen’s
analysis.

Off-line variable substitution can be used to develop approx-
imate versions of Andersen’s analysis. It would be inter-
esting to investigate substitutions that further reduce the
cost of the analysis, possibly at the expense of some pre-
cision. Off-line variable substitution could also be useful
for developing approximate versions of other pointer analy-
ses, including analyses with some degree of flow or context
sensitivity. Finally, it would be interesting to consider uses
of the substitution technique for analyses similar to pointer
analysis—for example, class analysis and escape analysis for
object-oriented languages.

9 Acknowledgments

We would like to thank the Bane team at Berkeley for
distributing their code and answering questions about it.
Darren Atkinson provided the preprocessed source code for
burlap, emacs and gcc. John Reppy provided assistance
with instrumenting the garbage collector. Nevin Heintze
and Dino Oliva made several improvements to the front end
used in this work. Barbara Ryder, Matthew Arnold, and Pe-
ter Mataga provided helpful comments on earlier versions of
this paper. The first author was supported by Bell Labora-
tories summer internship and by NSF grant CCR-9900988.

References

[1] A. Aiken, M. Fähndrich, J. Foster, and Z. Su. A toolkit
for constructing type- and constraint-based program
analyses. In Proc. Workshop on Types in Compilation,
LNCS 1473, pages 78–96, 1998.

[2] L. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU, Uni-
versity of Copenhagen, May 1994.

[3] G. DeFouw, D. Grove, and C. Chambers. Fast interpro-
cedural class analysis. In Proc. Symposium on Princi-
ples of Programming Languages, pages 222–236, 1998.

[4] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proc. Conference on Pro-
gramming Language Design and Implementation, pages
242–257, 1994.

[5] M. Fähndrich, J. Foster, Z. Su, and A. Aiken. Partial
online cycle elimination in inclusion constraint graphs.
In Proc. Conference on Programming Language Design
and Implementation, pages 85–96, 1998.

[6] R. Ghiya and L. Hendren. Is it a tree, a DAG or a
cyclic graph? In Proc. Symposium on Principles of
Programming Languages, pages 1–15, 1996.

[7] M. Hind, M. Burke, P. Carini, and J. D. Choi. Interpro-
cedural pointer alias analysis. ACM Transactions on
Programming Languages and Systems, 21(4):848–894,
July 1999.

[8] W. Landi and B. G. Ryder. A safe approximation al-
gorithm for interprocedural pointer aliasing. In Proc.

55

Conference on Programming Language Design and Im-
plementation, pages 235–248, 1992.

[9] D. Liang and M. J. Harrold. Efficient points-to analysis
for whole-program analysis. In Proc. Symposium on
the Foundations of Software Engineering, LNCS 1687,
pages 199–215, 1999.

[10] D. Liang and M. J. Harrold. Equivalence analysis: A
general technique to improve the efficiency of data-flow
analyses in the presence of pointers. In Proc. Workshop
on Program Analysis for Software Tools and Engineer-
ing, pages 39–46, 1999.

[11] J. Reppy. A high-performance garbage collector for
Standard ML. Technical memorandum, AT&T Bell
Laboratories, Dec. 1993.

[12] A. Rountev, B. G. Ryder, and W. Landi. Data-flow
analysis of program fragments. In Proc. Symposium on
the Foundations of Software Engineering, LNCS 1687,
pages 235–252, 1999.

[13] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive updat-
ing. ACM Transactions on Programming Languages
and Systems, 20(1):1–50, Jan. 1998.

[14] M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In Proc. Symposium
on Principles of Programming Languages, pages 1–14,
1997.

[15] B. Steensgaard. Points-to analysis in almost linear
time. In Proc. Symposium on Principles of Program-
ming Languages, pages 32–41, 1996.

[16] Z. Su, M. Fähndrich, and A. Aiken. Projection merg-
ing: Reducing redundancies in inclusion constraint
graphs. In Proc. Symposium on Principles of Program-
ming Languages, pages 81–95, 2000.

[17] R. E. Tarjan. Data Structures and Network Algorithms.
Society for Industrial and Applied Mathematics, 1983.

[18] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proc. Conference
on Programming Language Design and Implementation,
pages 1–12, 1995.

[19] S. Zhang, B. G. Ryder, and W. Landi. Program decom-
position for pointer aliasing: A step towards practical
analyses. In Proc. Symposium on the Foundations of
Software Engineering, pages 81–92, 1996.

56

