Fast Copy Coalescing and Live-Range Identification

Zoran Budimli¢, Keith D. Cooper, Timothy J. Harvey,
Ken Kennedy, Timothy S. Oberg, and Steven W. Reeves

Department of Computer Science
Rice University, Houston, Texas

ABSTRACT

This paper presents a fast new algorithm for modeling and rea-
soning about interferences for variables in a program without con-
structing an interference graph. It then describes how to use this in-
formation to minimize copy insertion for ¢-node instantiation dur-
ing the conversion of the static single assignment (SSA) form into
the control-flow graph (CFG), effectively yielding a new, very fast
copy coalescing and live-range identification algorithm.

This paper proves some properties of the SSA form that enable
construction of data structures to compute interference informa-
tion for variables that are considered for folding. The asymptotic
complexity of our SSA-to-CFG conversion algorithm is O(na(n)),
where n is the number of instructions in the program.

Performing copy folding during the SSA-to-CFG conversion elim-
inates the need for a separate coalescing phase while simplifying
the intermediate code. This may make graph-coloring register allo-
cation more practical in just in time (JIT) and other time-critical
compilers For example, Sun’s Hotspot Server Compiler already
employs a graph-coloring register allocator[10].

This paper also presents an improvement to the classical inter-
ference-graph based coalescing optimization that shows a decrease
in memory usage of up to three orders of magnitude and a decrease
of a factor of two in compilation time, while providing the exact
same results.

We present experimental results that demonstrate that our algo-
rithm is almost as precise (within one percent on average) as the
improved interference-graph-based coalescing algorithm, while re-
quiring three times less compilation time.

Categories and Subject Descriptors: D.3.4 [Programming Lan-
guages]: Processors — compilers, optimization

General Terms: Algorithms, Languages, Theory

Additional Keywords and Phrases: Register allocation, code gener-
ation, copy coalescing, interference graph, live-range identification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PLDI’02, June 17-19, 2002, Berlin, Germany

Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

25

1. INTRODUCTION

It has long been known that copies can be folded during the
construction of the SSA form [2]. Essentially, each variable that
is defined by a copy is replaced in subsequent operations by the
source of that copy. The implementation of this strategy has a cou-
ple of subtle problems but is otherwise an effective optimization.
In effect, copy folding during SSA construction deletes all of the
copies in a program, except for those that must be used to instanti-
ate ¢-nodes.

This simple observation may reduce the number of copies in a
program, but naive ¢-node instantiation introduces many unneces-
sary copies. In our experience, the number of copies used to in-
stantiate ¢-nodes is much higher than the number of copies in the
original code.

Classically, to solve this problem one would coalesce SSA names
into a single name using an interference graph, as described by
Chaitin [5, 4]. The interference graph models names as nodes, and
edges between the nodes represent an interference — there is at
least one point in the code where the two name are simultaneously
live. The intuition for register allocation is that if two variables
interfere, we will have to use a different register for each variable.
The same holds true for copy coalescing: if two names joined by a
copy interfere, the copy is necessary and cannot be coalesced.

Unfortunately, this conceptually simple method requires a data
structure that is quadratic in the number of names. As Cooper, et
al. showed [6], the cost of building an interference graph is signifi-
cant, and for JIT compilers or other systems where compile time is
crucial, this cost may be prohibitive.

This paper presents a new algorithm that performs copy coalesc-
ing without building an interference graph. We model interferences
using a combination of liveness and dominance information. We
present a theoretic background that shows that our optimization is
safe. We present experimental data that shows that, on average,
our implementation of this algorithm rivals the effectiveness of the
interference-graph coalescer in removing dynamic copies while us-
ing only a fraction of the compilation time required by that algo-
rithm.

2. SSA PROPERTIES

This section presents a brief description of the SSA properties
that we use to construct our algorithm. A full formal description,
along with the proofs of all the lemmas and theorems is presented
elsewhere [3].

The preliminary step in our algorithm is to ensure that the code
is in regular form, which we shall define with the following con-
struction. We start with a standard CFG, (N, E, bg), made up of a
set of NV nodes, E edges, and a unique start node, bo. We impose an
added restriction on the code in the incoming CFG, that it be strict.

DEFINITION 2.1. A strict program is one in which, for every
variable, v, and for every use of v, every possible path from bo to
the use of v passes through one of the definitions of v.

Strictness is a requirement for languages such as Java, but it can
be imposed on languages like C or Fortran as well by initializing
every variable at the start of by. The initializations that are unnec-
essary can then be removed by a dead-code elimination pass, or,
alternatively, we can restrict the initializations to only those vari-
ables that are in the live-in set of by. Since the live-in set of b
should be empty, variables that make it into this set are those for
which there is an upwards-exposed use of the variable, and thus
some path from the use backwards up the CFG on which there is no
definition of the variable.

Given a strict program, we then convert the code into SSA form.
It is a natural result of the SSA algorithm that, after the conversion,
not only is every use of a variable dominated by a single definition,
but also every definition dominates all of its uses.> We call this a
regular program.

Given a regular program, we can now define interference:

DEFINITION 2.2. Two variables interfere if and only if they are
simultaneously live at some point in a regular program.

With Definition 2.2, we can prove the following theorem:

THEOREM 2.1. If two variables in a regular program interfere,
the definition point of one will dominate the definition point of the
other.

Informally, the proof for this theorem results from the fact that
both variable definitions must dominate the point in the program
where they interfere.

We can refine Theorem 2.1 to suit our purposes with the follow-
ing theorem, which results directly from the computation of live-
ness:

THEOREM 2.2. If two variables, v1 and wvo, in a regular pro-
gram interfere and the definition point of v; dominates the defini-
tion point of vo, then either v, is in the live-in set of the block in
which v, is defined, or both variables are defined in the same block.

Thus, we can quickly check interference between two variables
simply by examining the liveness information associated with the
blocks in which the variables are defined.

3. COALESCING ALGORITHM

With the code in regular form, we can proceed with the algo-
rithm. Essentially, we use union-find to group together all of the
names joined at ¢-nodes. We then use the previous reasoning about
interference to break the union-find sets apart when we discover
two members of the same set interfere. To break a set, we reinsert
copies between the member that we want to remove and all of the
other members of the set. At the end, all SSA names that are in the
same set do not interfere, and, therefore, can share the same name.
Note that we build pruned SSA [8] to make the reasoning simpler
and because parts of the analysis necessary for pruned SSA, such
as liveness analysis, are assumed. The algorithm we present should
work for minimal or semi-pruned SSA as well, although the addi-
tional inexactness of those forms propagates itself into our analysis,
possibly causing the insertion of extra copies that may not other-
wise have been added.

If we had not allowed copy folding during the construction of
SSA form, the initial union-find sets would contain only values that

The seeming exception to this is a ¢-node parameter, v, whose
definition is in a block, b,, not necessarily dominating the
block, b,ns, in which v is used as a parameter. However, the “move-
ment” of the value from the variable to the ¢-node actually takes
place along the incoming edge to by, and this edge is dominated
by b,.

26

do not interfere. Indeed, this is precisely the algorithm used by a
Chaitin/Briggs register allocator [5, 4, 1] to identify live ranges.
The allocator joins all ¢-node names into a single set and then
builds the aforementioned interference graph. It then coalesces live
ranges joined at a copy but that do not otherwise interfere. This is
a classic pessimistic algorithm: all copies are assumed to be neces-
sary until proven otherwise.

In contrast, the algorithm presented here is optimistic: we as-
sume that every copy is unnecessary, and then we reinsert those
that we cannot prove are unnecessary. The register allocator does
not perform copy folding during SSA construction because some of
those copies really are necessary — they move a value from one
storage location to another, usually to free up the first location for
another value. When we fold copies during SSA construction, we,
in effect, transfer the information about the exchange into a ¢-node,
where we may later recover the move by inserting a new copy.

The algorithm has four steps. First, we union together all ¢-node
parameters (and the name of the ¢-node itself). This gives us an
initial guess at what are, essentially, live-range names. The sec-
ond step of the algorithm compares the set members against each
other, looking for interferences, which, if found, cause one of the
members to be split into a new set, necessitating insertion of copies
from that member to members of the first. Then a unique name is
given to each set and, finally, the code is rewritten with all neces-
sary copies.

Notice that copies are not actually inserted until the final step,
for reasons described in Section 3.6. Instead, we maintain an ar-
ray, Waiting, indexed by block name, where each entry is a list of
pending copy insertions for the end of that block. When one of the
earlier stages discovers a copy that needs to be inserted into some
block, b, we add the copy to W aiting[b]. Also, because ¢-node pa-
rameters flow along edges, we use the notation F'rom(z) to specify
the block out of which the value in x flows.

3.1 Building Initial Live Ranges

The first step to coalescing copies and building live ranges is to
union together the ¢-node parameters. As we explained earlier,
some of these unions will include names of variables that interfere,
and one of each of these pairs will have to be removed from the set.

While we were developing the implementation of our algorithm,
we found that some filtering during the building of the unions could
save time and give us fewer copies. While unioning names, we de-
tect interferences between just two names (the ¢-node and the cur-
rent parameter). Specifically, we use liveness information to detect
that the SSA construction erroneously folded a copy. The folding
was in error because both variables are live at some point in the
code. In general, only a single copy is needed to break the in-
terference. On the other hand, if we wait until later, each of those
names may interfere with many of the other names in the union, ne-
cessitating many more copies to ensure breaking the interference.
Thus, given a ¢-node, p, defined in block b, with parameters a1
through a,,, we apply the following simple tests of interference.
These five are not exhaustive, but they handle the simple cases
— any interference found will cause a copy to be inserted; other-
wise, a; is added to the union.

e If a; is in the live-in set of b, add a copy from a; to p in
W aiting[From(a;)]. Note that our liveness analysis distin-
guishes between values that flow into b’s ¢-nodes and values
that flow directly to some other use in b or b’s successors.
Only in the latter case will a; be in b’s live-in set.

e If pis in the live-out set of a;’s defining block, add a copy
to Waiting[From(as)].

e If a; is defined by a ¢-node and p is in the live-in set of the
block defining a;, add a copy to Waiting[F'rom(a;)].

inputs: IN (dominator tree DT')
(set of variables S)
outputs:. OUT (dominance forest DF’)

for depth-first order over dominator tree nodes b
preorder(b) = the next preorder name
mazxpreorder(b) = the largest preorder number

of b’s descendants

Take S in dominator order

mazpreorder(Virtual Root) = MAX

CurrentParent = Virtual Root

stack.Push(Virtual Root)

for all the variables v in .S in sorted order
while preorder(v) > maxpreorder(CurentParent)

stack.Pop()

CurrentParent = stack.Top()
make v a child of the CurrentParent
stack.Push(v)

CurrentParent = v
Remove Virtual Root from DF

Figure 1: Constructing the dominance-forest

e If a; has already been added to another set of names be-
cause of another ¢-node in the current block, add a copy
to Waiting[From(a;)].

e If a; and a; are defined in the same block, then add a copy
to either Waiting[From(a;)] or Waiting[From(a;)].

3.2 The Dominance Forest

At the end of the first step, we have disjoint sets of names that
may share the same name. We now need to discover members of
the set that interfere with other members of the same set.

A critical part of our algorithm is the engineering required to
perform the second step efficiently. It would be prohibitively ex-
pensive to do a pairwise comparison of all the members in the set.
Instead, we have developed a new data structure, called a domi-
nance forest, which allows us to perform a linear comparison of set
members by ordering them according to dominance information.

DEFINITION 3.1. Let S be a set of SSA variables in a regular SSA
program such that no two variables in .S are defined in the same
block. Let > be a strict dominance relation. Let v; be a variable
in .S, and B; the block in which v; is defined. Dominance forest
DF(S) is a graph in which the nodes are the blocks B; such
that v; € S, and there is an edge from B; to B; if and only if
BZ‘>BJ‘, and ﬂ (Uk S S),vi;évk;évj, such that B; > By > Bj.

Succinctly, the dominance forest is a mapping of SSA variables to
the basic blocks that contain their definition points, with the edges
representing collapsed dominator-tree paths. We use Lemma 3.1
to show that we need only check edges in the dominance forest
for interferences. We will show in the next section how to use the
dominance forest.

Figure 1 shows the pseudo code for dominance-forest construc-
tion. This algorithm starts by adding a V'irtual Root to the result to
simplify the construction process. (We remove the Virtual Root
at the end, which may create a forest.) In a depth-first traversal of
the dominator tree, we label all nodes in the tree with their preorder
sequence of traversal. On the way up in the traversal, we also com-
pute the maximum preorder number of the descendants for each
node. This number allows the algorithm to identify the antecedent-
descendent information from the dominator tree in constant time
and is due to Tarjan[11]. This preorder-numbering process is done
only once for the whole SSA.

The algorithm iterates over the variables in order of increas-
ing preorder number, or pn. Within the loop, a variable named

27

CurrentParent is maintained, which holds the reference to the
root of the subtree currently in construction. There is an edge be-
tween Current Parent and the current variable v if pn(v) is less
than or equal to the the largest preorder number of Current Parent,
which means that CurrentParent dominates v. Traversing the
variables in increasing order of pn(v) ensures that no edges are
inserted prematurely (if « dominates b, which dominates c, the re-
lationship will be: pn(a) < pn(b) < pn(c), which will ensure that
only the edges (a, b) and (b, c) are inserted and not the edge (a, ¢)).

3.3 Walk the Forests

We built the dominance forests to reduce the number of inter-
ferences for which we have to check. We can do this using the
following Lemma:

LEMMA 3.1. Given variable v; defined in block b; and vari-
able v; defined in block b;, if b; is a child of b; in the dominance
forest and v; does not interfere with v;, then v; cannot interfere
with any of the variables represented by b;’s descendants in the
dominance forest.

Informally, the proof of this Lemma comes from the fact that
if v; interferes with any of the v;’s descendents — for example vy,
then v; must interfere with v;, since it must be live at the definition
point of v, thus it must be live at the definition of v;.

Lemma 3.1, in essence, prunes the pairwise search space of names
in a set. That is, it shows that when we map the names of some set
onto its dominance forest, each variable, v, needs to be compared
only to those variables defined in blocks immediately descendant
of the block defining v.

Figure 2 contains the algorithm for finding and resolving inter-
ferences within a dominance forest. The dominance forest is tra-
versed depth first. If a variable, v, interferes with any other variable
in the dominance forest, v must interfere with one of its children.
Because variables are checked for interference only against their
children in the dominance forest, any parent variable that interferes
with its child forces us to insert all of the copies necessary to break
any interferences between the two. This has the effect of separat-
ing the variable from any of its more distant descendants it might
interfere with.

3.4 Local Interferences

Up to this point, only liveness information at block boundaries
has been considered. However, there are situations where two vari-
ables do not interfere at any block boundaries but are nonetheless
live in the same block. This happens when one of the variables, v1,
is live coming into the block where the second variable, vz, is de-
fined. In this case, we need to ensure that v, ’s last use occurs be-
fore v is defined, which requires a walk through the block to de-
termine. Our algorithm keeps a list of variable pairs that need to
be checked for local interference. After traversing all of the domi-
nance forests and before inserting actual copies, our algorithm tra-
verses each block backwards to find and break any of these local
interferences.

3.5 Renaming Variables

Once copies have been inserted, those variables that are still con-
nected by ¢-nodes need to be given a single unique name. Naive it-
eration over ¢-nodes and renaming the parameters to a single name
is not sufficient. If a variable were a parameter to multiple ¢-nodes,
the variable would be renamed multiple times, resulting in incorrect
code.

The solution is to iterate over all those variables that are can-
didates for renaming (those that were a part of one of the union-
find sets and are not on the list of variables to remove from the

for depth-first traversal of DF;
if variable p is ¢’s parent and is in the live — out set of ¢’s defining block
if p can not interfere with any of its other children and ¢ has fewer copies to insert than p
Insert copies for ¢ and make ¢’s children p’s children
else insert copies for p
else if parent p is in the live — in set of ¢’s defining block or p and ¢ have the same defining block
Add the variable pair (p, ¢) to the list to check for local interference later

Figure 2: Finding and resolving interferences

a=1 al=1 al=1
b=2 bl=2 bl=2

if p then w if p then

|
-

X=a X=b x2=al x2 = bl
y=b y=a K / y2=hbl y2=al
k\ }J X2 = ¢(al,bl)
y2 = g(bl,al)
return xfy return x2/y2 return x2/y2
a. Original Code b. SSA Form With c. g-nodes Replaced With Copies
Copies Folded
Figure 3: The “virtual swap” problem
al=1 al=1 al=1
bl =2 bl1=2 _bl =2
if pthen if pthen w r_ if p then ﬁ
x2=al y2=al bl=al y2=al y2=bl y2=al
bl=al
X2 = ¢(x2,b1) bl = @b1,b1) bl = @(bl,bl)
y2 = g(bl,y2) y2 = o(bl,y2) y2 = @(y2,y2)
return x2/y2 return blly2 return bl/y2
a. Inserted Copies for al b. x2 Folded Into b1 c. Inserted Copy For y2

Figure 4: Inserting copies for the “virtual swap” problem

28

set by inserting copies) and rename them to a single unique name.
The Find function will return a single unique name per set, and
that name can be used for renaming all members of that set.

3.6 Correct Copy Insertion

We have to be careful when inserting copies for ¢-nodes, be-
cause naive copy insertion may produce incorrect code. Two such
problems, the “lost copy” problem, and the “swap” problem, are
described in detail by Briggs, et al. [2]. We avoid the “lost copy”
problem by splitting critical edges after we have read in the code.
The “swap” problem is addressed as in Briggs, et al. by careful
ordering of copies with temporaries inserted to break any cycles.
This is precisely the reason that we use the W aiting array to store
pending copies; as Briggs, et al. show, the ordering of the full set
of copies to be inserted is critical to correctness.

The “virtual swap” problem is a case similar to the “swap” prob-
lem, but has to be addressed with special attention when attempting
to produce the minimal number of copies. In the “virtual swap”
problem, two variables are defined by copies on either side of a
conditional, and they take opposite values on opposing sides.

3.6.1 The “Virtual Swap” Problem

Figure 4 illustrates an example where the naive insertion of copies
still produces correct code. However, a careful implementation is
needed when the copies are inserted into the SSA in our algorithm.
The naive algorithm inserts all copies for the ¢-nodes, while our
algorithm attempts to insert as few copies as possible. When ana-
lyzing the ¢-nodes, the algorithm determines that the variables a1
and b1 are simultaneously live at the end of the first block and can-
not be folded together. The algorithm then picks one of them and
inserts copies for it. On the left of the Figure 4 we show the exam-
ple from Figure 3 with a1l being picked for copy insertion.

After the copies have been inserted, the last pass of the algorithm
scans through the SSA and renames the variables as needed. This is
the point where some additional interferences can be identified and
some additional copies needed. In Figure 4b, all appearances of x2
have been replaced with b1. This exposes an interference between
the first and the second ¢-nodes, which forces insertion of a copy
on Figure 4 c.

3.7 Algorithmic Complexity

The dominance-forest construction algorithm is linear in the size
of the join set. It starts with a depth-first traversal of the dominator
tree, which is linear in size of the dominator tree, but it is done
only once for the whole SSA. It then uses the radix sort [7] to sort
the variables in the set, which is linear as well since the number
of variables in the join set cannot be greater than the number of
basic blocks in the CFG. Each of the variables in the set is visited
exactly once in the loop. So the complexity of the dominance forest
construction algorithm is O(|.S|).

The copy insertion algorithm begins with constructing join sets
for variables in the ¢-nodes of the graph. This can be done in
O(na(n)) time using the union-find algorithm [7], where n is the
number of variables in ¢-nodes, and « is the inverse Ackermann’s
function. The algorithm then constructs the dominance forests for
these sets (which are disjoint), which is linear in the total number
of variables in ¢-nodes. For each dominance forest, the algorithm
visits all the edges, which is linear in the number of nodes in the
forest. At the end, all ¢-nodes are visited and the variables that
are the arguments of the ¢-nodes are renamed into a single variable
name. The total complexity of this algorithm is O(n«(n)), where
n is the total number of arguments in all the ¢-nodes in the SSA.

Since the inverse of Ackermann’s function is practically a con-

29

stant, one cannot hope to achieve better algorithmic complexity
than what is presented here, since all the ¢-nodes and all of their
arguments have to be visited at least once in the SSA-to-CFG con-
version.

4. EXPERIMENTS

In this section, we present experimental evidence to show that
this algorithm is both effective and efficient. We compare our al-
gorithm against two versions of the interference-graph coalescer.
One is simply a coalescing phase stripped from our implementation
of a Chaitin/Briggs register allocator. The second is an improved
version, made possible by an insight into building the interference
graph, that is significantly faster than the original, but equally pre-
cise.

The test suite we used in our experiments is made up of 169
routines that come from Forsythe, et al.’s book on numerical meth-
0ds[9], as well as the Spec and Spec ’95 libraries. We ran these
codes on a minimally loaded 300 MHz Sparc Ultra 10 with 256
megabytes of memory. Due to space constraints, we only report on
the ten largest results in each experiment. We took the ten programs
that took longest to compile using the standard SSA-to-CFG con-
version for Table 2 and Table 3 and the ten programs with the most
dynamic copies for Table 4 and Table 5. However, we think that
these give a reasonable insight into the behavior of the algorithms.
We use the following nomenclature to distinguish the algorithms:

e Briggs — the Chaitin/Briggs interference-graph coalescer
e Briggs* — the improved interference-graph coalescer, below

e Standard — the Briggs, et al. ¢-node-instantiation algorithm
that does not attempt to eliminate any copies

e New — the algorithm presented herein.

4.1 Engineering the Interference-Graph
Coalescer

During the development of the experiments to test this new algo-
rithm, we discovered a simple oversight in building the interference
graph as described by Briggs in his dissertation. Briggs’ algorithm
requires four steps. First, the code is converted to SSA form. Names
are then joined to form live ranges by unioning ¢-node parameters.
The third step is a loop in which the interference graph is built
and then copies whose source and destination do not interfere have
those live ranges coalesced. Because the interference graph is not
exact, it needs to be rebuilt after all of the coalescible copies have
been identified and those live ranges have been unioned together.
This can expose additional opportunities for coalescing, so these
two steps are iterated until all opportunities have been found. For
these experiments, the final step is to rewrite the code to reflect the
namespace described by the live ranges.

This algorithm is simple and powerful, but it is very expensive.
The interference graph is modeled as a triangular bit matrix, with
as many rows or columns as there are live-range names. This data
structure requires n? /2 bits that have to be cleared. As Cooper, et
al. showed [6], this is a considerable part of the overall running
time of a graph-coloring register allocator.

The flaw in this algorithm is that it builds an interference graph
that includes the full set of live-range names. The reason for this
is that if the coalescing phase does not fold any copies, the inter-
ference graph is correct, and the remaining phases of the allocator
then use it. However, if the coalescing phase unions any live ranges,

Memory Usage (in bytes)
Algorithm First Pass Second Pass

File Briggs | Briggs* %Zf’;’;: Briggs | Briggs* Briggs | Briggs*
fieldX 3.10 1.55 0.53 || 2120664 83521 || 1553762 1139
parmvrX 2.53 1.26 0.53 1968409 8281 1800293 380
parmovX 2.26 111 0.51 1701720 7140 1556880 324
twldrv 2.20 0.49 0.23 598689 24806 426735 715
foppp 1.28 0.03 0.02 || 950137 0

radfgX 1.25 0.73 0.58 446224 90300 215296 4900
radbgX 1.22 0.67 0.56 405132 80940 200928 5005
parmveX 0.95 0.46 0.51 453939 4556 395012 182
jacld 0.57 0.15 0.26 82225 8695 50512 0
smoothX 0.46 0.25 0.52 175561 23562 104976 1640
AVERAGE 1.58 0.67 0.42

Table 1: Time (in seconds) and memory (in bytes) comparison for the interference-graph coalescers

the interference graph has to be rebuilt, and in our experiments, we
rarely saw input that did not require at least two iterations (and few
that required more). While the build/coalesce loop, as Briggs calls
it, is iterating, the interference graph should only be built using
live-range names that are involved in copies. To maintain a com-
pact namespace, this requires an extra mapping array, but the cost
of accessing the array each time a name is examined is offset by
the considerable decrease in the size of the interference-graph bit
matrix. Table 1 shows the difference in memory used to build the
interference graph. Clearly, the savings in memory usage is im-
mense, and the time required to perform coalescing is, on average,
less than half the time with our improved algorithm.

To our knowledge, this is the first publication of this insight. Cer-
tainly, comparison of our SSA-coalescing algorithm has to be made
against the best known coalescer (which, in this case, is the Briggs’
algorithm improved by using the insights described above), which
these experiments do.

4.2 Running Time

Table 2 shows the running time of the three algorithms, the orig-
inal SSA ¢-node replacement algorithm presented in Briggs, et al.,
the algorithm presented in this paper, and the improved coalescer
from our register allocator. The timer was started immediately be-
fore building SSA form, and its value is recorded immediately after
the code is rewritten in its various forms by the different algorithms.

Clearly, the additional analysis to restrict the number of copies is
more expensive than the universal copy-insertion algorithm. How-
ever, our algorithm is considerably faster than the interference-
graph coalescer.

Table 3 shows the maximum amount of memory used by the
three algorithms during compilation. Over the full test suite, our
algorithm uses, on average, 40% more memory than the standard
¢-node-replacement algorithm. It uses only 21% more memory
than the improved interference-graph coalescer, which itself uses
substantially less memory than the previous state of the art. This
table and Table 2 show that memory usage alone is not the only
determinant of the compiler’s total running time.

4.3 Efficacy Measurements

In Table 4, we show the number of copy operations that were
executed. Our algorithm produces code that executes about 1%
fewer copies, on average, than the interference-graph coalescer.
The interference-graph coalescer tries to remove copies out of in-
nermost loops first, on the theory that these are the most profitable
to remove. This heuristic sometimes fails, as in the case of tnit X,
but it also sometimes wins; on some of the codes in the test suite,

30

our algorithm results in code that executes up to two-thirds again
as many copy operations as the code produced by the interference-
graph coalescer.

In Table 5, we show a static measurement of copies left in the
code by the three algorithms. On average, our algorithm leaves in
approximately three percent more static copies than the interference-
graph coalescer, but as with dynamic copies, the results vary signif-
icantly. Again, we believe this reflects the heuristic nature of both
algorithms.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we give a theoretical background that enables fast
computation of interference information and present a practical, ef-
ficient algorithm to perform copy folding without building an inter-
ference graph. The applications of this algorithm are many. It can
be used as a standalone pass of an optimizer. It can replace the cur-
rent copy-insertion phase of an optimizer’s SSA implementation.
Finally, it can replace the coalescing phase of a Chaitin/Briggs reg-
ister allocator.

Our experiments show that this algorithm provides significant
improvements in running time over an interference-graph-based al-
gorithm, while maintaining comparable precision. These results
make this algorithm very attractive for use in any system, includ-
ing, perhaps, systems in which compile time is a critical concern,
such as JIT compilers.

We have also presented an implementation insight concerning
building an interference graph for copy coalescing that can be triv-
ially inserted into existing graph-coloring register allocators to make
them run much faster.

Our plan for future research includes design and implementa-
tion of a fast register-allocation algorithm that uses the results pre-
sented in this paper. We will also consider implementation of sev-
eral heuristics to improve the precision of this algorithm without
sacrificing the compilation time.

6. ACKNOWLEDGMENTS

The authors would like to thank the many people who supported
this work, including members of the MSCP, especially Linda Tor-
czon, as well as John Mellor-Crummey, both of whom provided
many useful suggestions. The authors would like to thank Preston
Briggs for his contributions. We are also indebted to Compag, Los
Alamos Computer Science Institute, and the GrADS NSF project
(grant #9975020) for their support of this work.

File Standard | New | Briggs* || o 2r2e BZZ;’JS*
parmvrX 0.17 | 0.38 1.26 2.24 0.30
fieldX 0.17 | 0.48 1.55 2.82 0.31
parmovX 0.15 | 0.30 111 2.00 0.27
radfgX 0.10 | 0.24 0.73 2.40 0.33
radbgX 0.10 | 0.22 0.67 2.20 0.33
twlidrv 0.07 | 0.16 0.49 2.29 0.33
parmveX 0.06 | 0.13 0.46 217 0.28
initx 0.06 | 0.11 0.26 1.83 0.42
advbndX 0.04 | 0.07 0.15 1.75 0.47
deseco 0.03 | 0.07 0.20 2.33 0.35
AVERAGE 0.10 | 0.22 0.69 2.20 0.32
Table 2: Comparison of compilation times (in seconds)
File Standard New [Briggs* || o 2ree Bf,\gf]f;s*
parmvrX 4214880 | 5365964 | 5126100 1.27 1.05
fieldX 3144244 | 5062808 | 3513180 1.61 1.44
parmovX 3740196 | 4785972 | 4562856 1.28 1.05
radfgX 1594768 | 2379156 | 1785964 1.49 1.33
radbgX 1492484 | 2250356 | 1695244 151 1.33
twlidrv 1496208 | 1805984 | 1613080 1.21 1.12
parmveX 1734400 | 2204940 | 2081044 1.27 1.06
initx 1456780 | 1814224 | 1680640 1.25 1.08
advbndX 1009844 | 1253616 | 1130072 1.24 1.11
deseco 614496 954356 718856 1.55 1.33
AVERAGE || 2049830 | 2787738 | 2390704 1.36 1.17
Table 3: Comparison of compiler memory usage (in bytes)
File Standard New [Briggs* || o 2ree Bf,\gf]f;s*
tomcatv 23572565 64571 64571 0.00 1.00
blts 17222000 | 3716100 | 3666100 0.22 1.01
buts 17111000 | 4055500 | 4050500 0.24 1.00
getbX 8197640 63520 63520 0.01 1.00
twldrv 5244414 215761 217777 0.04 0.99
smoothX 4213120 599920 467440 0.14 1.28
rhs 3509310 414324 414324 0.12 1.00
parmvrX 2218540 43610 42630 0.02 1.02
saxpy 2000000 20000 20000 0.01 1.00
initX 1755598 92810 390455 0.05 0.24
Table 4: Comparison of dynamic copies executed
File Standard | New | Briggs* || o2re Bf,\gf]f;s*
tomcatv 112 47 47 0.42 1.00
blts 82 36 31 0.44 1.16
buts 72 33 31 0.46 1.06
getbX 176 28 28 0.16 1.00
twldrv 976 164 169 0.17 0.97
smoothX 668 283 215 0.42 1.32
rhs 678 32 27 0.05 1.19
parmvrX 352 101 101 0.29 1.00
saxpy 4 1 1 0.25 1.00
initX 458 106 118 0.23 0.90

Table 5: Comparison of static number of copies

31

7.
(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

Preston Briggs. Register Allocation via Graph Coloring.
PhD thesis, Rice University, April 1992.

Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and
L. Taylor Simpson. Practical improvements to the
construction and destruction of static single assignment
form. Software — Practice and Experience, 28(8):859-881,
July 1998.

Zoran Budimli¢. Compiling Java for High Performance and
the Internet. PhD thesis, Rice University, January 2001.

Gregory J. Chaitin. Register allocation and spilling via graph
coloring. SIGPLAN Notices, 17(6):98-105, June 1982.
Proceedings of the ACM SIGPLAN ’82 Symposium on
Compiler Construction.

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra,
John Cocke, Martin E. Hopkins, and Peter W. Markstein.
Register allocation via coloring. Computer Languages,
6:47-57, January 1981.

Keith D. Cooper, Timothy J. Harvey, and Linda Torczon.
How to build an interference graph. Software — Practice and
Experience, 28(4):425-444, April 1998.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. M.1.T. Press, Cambridge,
Massachusetts, U.S.A., 1990.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and
Systems, 13(4):451-490, October 1991.

George E. Forsythe, Michael A. Malcolm, and Cleve B.
Moler. Computer Methods for Mathematical Computations.
Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

The Java Hotspot Virtual Machine, Technical White Paper,
April 2001.

Robert Endre Tarjan. Testing flow graph reducibility. Journal
of Computer and System Sciences, 9:355-365, 1974.

32

