
P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction

KEITH D. COOPER
Rice University
L. TAYLOR SIMPSON
BOPS, Incorporated
and
CHRISTOPHER A. VICK
Sun Microsystems, Incorporated

Operator strength reduction is a technique that improves compiler-generated code by reformulat-
ing certain costly computations in terms of less expensive ones. A common case arises in array
addressing expressions used in loops. The compiler can replace the sequence of multiplies gener-
ated by a direct translation of the address expression with an equivalent sequence of additions.
When combined with linear function test replacement, strength reduction can speed up the execu-
tion of loops containing array references. The improvement comes from two sources: a reduction in
the number of operations needed to implement the loop and the use of less costly operations.

This paper presents a new algorithm for operator strength reduction, called OSR. OSR improves
upon an earlier algorithm of Allen, Cocke, and Kennedy [Allen et al. 1981]. OSR operates on the
static single assignment (SSA) form of a procedure [Cytron et al. 1991]. By taking advantage of
the properties of SSA form, we have derived an algorithm that is simple to understand, quick to
implement, and, in practice, fast to run. Its asymptotic complexity is, in the worst case, the same
as the Allen, Cocke, and Kennedy algorithm (ACK). OSR achieves optimization results that are
equivalent to those obtained with the ACK algorithm. OSR has been implemented in several research
and production compilers.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
Optimization

General Terms: Algorithms, Languages

Additional Key Words and Phrases: loops, strength reduction, static single assignment form

1. INTRODUCTION

Operator strength reduction is a transformation that a compiler uses to replace
costly (strong) instructions with cheaper (weaker) ones. A weak form of strength

This work was supported by DARPA, by IBM Corporation, and by Texas Instruments, Inc. DARPA
provided much of the funding for the underlying project, the Massively Scalar Compiler Project.
Authors’ addresses: K. D. Cooper, 6100 Main Street, MS 132, Houston, TX 77005; email:
cooper@rice.edu; L. T. Simpson, 11129 Miramar Dr., Austin, TX 78726; email: taylor.simpson@
austin.rr.com; C. A. Vick, Sun Micro Systems, Inc., 901 San Antonio Road, USCA 14-102, Palo Alto,
CA, 94303-4900; email: christopher.vick@sun.com.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the cpoyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 0164-0925/01/1100–0603 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001, Pages 603–625.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

604 • K. D. Cooper et al.

sum = 0.0
do i = 1, 100

sum = sum + a(i)
enddo

sum← 0.0
i← 1

L: t1← i − 1
t2← t1× 4
t3← t2+ a
t4← load t3
sum← sum+ t4
i← i + 1
if (i ≤ 100) goto L

sum0 ← 0.0
i0 ← 1

L: sum1 ← φ(sum0, sum2)
i1 ← φ(i0, i2)
t10 ← i1 − 1
t20 ← t10 × 4
t30 ← t20 + a
t40 ← load t30

sum2 ← sum1 + t40

i2 ← i1 + 1
if (i2 ≤ 100) goto L

Source code Intermediate code SSA form

Fig. 1. Code for a simple loop.

reduction replaces 2× x with either x + x or x� 1. The more powerful form of
strength reduction replaces an iterated series of strong computations with an
equivalent series of weaker computations. The classic example replaces certain
repeated multiplications inside a loop with repeated additions. This case arises
routinely in loop nests that manipulate arrays. The resulting additions are usu-
ally cheaper than the multiplications that they replace. In some cases, the ad-
ditions can be folded into the target computer’s addressing modes. Many opera-
tions other than multiplication can also be reduced in this manner. Allen, Cocke,
and Kennedy provide a detailed catalog of such reductions [Allen et al. 1981].

This paper presents a new algorithm for performing strength reduction,
called OSR, that improves upon the classic algorithm by Allen, Cocke, and
Kennedy (ACK) [Allen et al. 1981]. By assuming some specific prior optimiza-
tions and operating on the SSA form of the procedure [Cytron et al. 1991],
we have derived a method that is simple to understand and quick to imple-
ment. OSR achieves results that are, essentially, equivalent to those obtained
with ACK, while avoiding some shortcomings of ACK, such as the need to apply
ACK multiple times to reduce some of the induction variables created by other
reductions. OSR’s asymptotic complexity is, in the worst case, the same as the
ACK algorithm.

Opportunities for strength reduction arise routinely from details that the
compiler inserts to implement source-level abstractions. To see this, consider
the simple Fortran code fragment shown in Figure 1. The left column shows
source code; the middle column shows the same loop in a low-level intermedi-
ate code. Notice the four instruction sequence that begins at the label L. The
compiler inserted this code (with its multiply) as the expansion of a(i). The
right column shows the code in pruned SSA form [Choi et al. 1991].

The left column of Figure 2 shows the code that results from applying OSR,
followed by dead code elimination. The compiler created a new variable, t5, to
hold the value of the expression (i − 1)× 4 + a. Its value is computed directly,
by incrementing it with the constant 4, rather than recomputing it on each
iteration as a function of i. Strength reduction automates this transformation.

Of course, further improvement may be possible. For example, the only re-
maining use for i2 is in the test that determines whether to terminate the loop

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 605

sum0 ← 0.0
i0 ← 1
t50 ← a

L: sum1 ← φ(sum0, sum2)
i1 ← φ(i0, i2)
t51 ← φ(t50, t52)
t40 ← load t51

sum2 ← sum1+ t40

i2 ← i1+ 1
t52 ← t51+ 4
if (i2 ≤ 100) goto L

sum0 ← 0.0
t50 ← a

L: sum1 ← φ(sum0, sum2)
t51 ← φ(t50, t52)
t40 ← load t51

sum2 ← sum1+ t40

t52 ← t51+ 4
if (t52 ≤ 396+a) goto L

After strength reduction After linear function test replacement

Fig. 2. Same loop after strength reduction.

or to continue for another iteration. The compiler can reformulate the tests to
use t52, making the instructions that define i useless (or “dead”). This trans-
formation is called linear function test replacement (LFTR). Applying this trans-
formation, followed by dead code elimination, produces the code that appears
in the right column of Figure 2.

Strength reduction has been an important transformation for two princi-
pal reasons. First, multiplying integers has usually taken longer than adding
them. This made strength reduction profitable; the amount of improvement
varied with the relative costs of addition and multiplication. Second, strength
reduction decreased the “overhead” introduced by translation from a higher-
level language down to assembly code. Opportunities for this transformation
are frequently introduced by the compiler as part of address translation for ar-
ray elements. In part, strength reduction’s popularity stems from the fact that
these computations are plentiful, stylized, and, in a very real sense, outside the
programmer’s concern.1

In the future, we may see microprocessors, where an integer multiply and
an integer add, both take a single cycle. Even on such a machine, strength
reduction will still have a role to play.

—Strength reduction often decreases the total number of operations in a loop.
Smaller operation counts usually lead to faster code. The shorter sequences
used to generate addresses may lead to tighter schedules, as well.

—In combination with algebraic reassociation [Cocke and Markstein 1980a;
Santhanam 1992; Briggs and Cooper 1994], strength reduction can reduce
the number of induction variables used in a loop, reducing the number
of update operations required at the loop’s end and reducing demand for
registers.

1For dramatic evidence that the overhead computations introduced in translation are significant,
look at the numbers given by Scarborough and Kolsky [1980] in their report on the Fortran H
Extended compiler. Almost all of their improvements come from eliminating integer computations,
not floating-point computations. Most of the eliminated instructions are introduced by translation
to support the abstractions in the source-code program.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

606 • K. D. Cooper et al.

—On some machines, autoincrement or autodecrement features adjust a regis-
ter’s value as a side effect of a memory operation; strength reduction creates
code that is shaped in a way to take advantage of this feature. With the mul-
tiply in place, the opportunity for autoincrement or autodecrement is hidden.

—Strength reduction decreases the number of multiplies and increases the
number of additions. If more of the target machine’s functional units can add
than can multiply, this effect may give the scheduler additional freedom.

Thus, we expect that strength reduction will remain a useful transformation,
even if the costs of addition and multiplication become identical.

The next section summarizes prior work on strength reduction, and places
OSR in that context. We follow that section with a deeper introduction to strength
reduction, given through a more detailed description of the ACK algorithm.
Section 4 presents the OSR algorithm and its implementation. Section 5 shows
how to fit linear function test replacement into our scheme.

2. PREVIOUS WORK

Reduction of operator strength has a long history in the literature. The
first published discussions appear around 1969, in papers by Allen [1969]
and Cocke and Schwartz [1970]. One family of algorithms grew out of the
ideas in these seminal papers. A second family of algorithms grew out
of the early work on data-flow-based optimization, typified by Morel and
Renvoise’s [1979] classic paper on partial redundancy elimination. A third body
of work generalizes strength reduction to more complex domains than integer
arithmetic. Finally, several authors have published papers that describe the
implementations of the simpler, weaker form of strength reduction that applies
knowledge about the values of operands to reduce an isolated instruction.

Allen-Cocke-Kennedy and its Descendants. A family of techniques has evolved
from the early work described by Allen [1969] and Cocke and Schwartz [1970].
This includes work by Kennedy [1973], Cocke and Kennedy [1977], and Allen
et al. [1981]. These algorithms transform a single loop at a time. They work
outward through each loop nest, making passes to build use-definition chains,
to find loops and insert prolog blocks, to find loop-invariant values (called region
constants) and induction variables. Finally, they perform the actual reduction
and instruction replacement in another pass. The ACK algorithm must be re-
peated to handle some second order effects. LFTR requires a separate pass over
each loop. Cocke and Markstein [1980b] showed a transformation for reduc-
ing certain division and modulo operations. Chase [1988] extended the ACK

algorithm to reduce more additions. Markstein et al. [1994] described a so-
phisticated algorithm that combines strength reduction with reassociation.
Sites [1979] looked at the related issue of minimizing the number of loop in-
duction variables.

Data-flow Methods. A second family of techniques has grown up around the
literature of data-flow analysis [Dhamdhere 1979; Issac and Dhamdhere 1980;
Dhamdhere 1989; Knoop et al. 1993]. These methods incorporate the strengths
of data-flow based optimization, particularly the careful code-placement

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 607

techniques developed for partial redundancy elimination [Morel and Renvoise
1979]. The data-flow methods for strength reduction require none of the control-
flow analysis needed by ACK and its descendants. This forces them to use a much
simpler notion of region constant—they detect only simple literal constants.
Thus, they miss some opportunities that the ACK-style methods discover, such
as reducing i× j where i is the induction variable of the innermost loop con-
taining the instruction and j is an induction variable of an outer loop. These
algorithms must be repeated to handle second-order effects. Their placement
techniques avoid lengthening execution paths; algorithms in the ACK family,
including our own, cannot make the same claim.

Generalizations of Strength Reduction. A number of authors have looked at
generalizations of strength reduction that work on set operations as well as
classical integer arithmetic. Early [1974] first looked at this problem; he called
the transformation “iterator inversion”. Fong [1979] builds on that work to
generalize the discovery of induction variables [Fong and Ullman 1976] and to
reduce set formers in SETL. Paige generalized Early’s work to create algorithms
for “formal differentiation” [Paige and Schwartz 1977; Paige and Koenig 1982].
This, in turn, led to work on multiset discrimination as a way of avoiding the
worst case behavior of hashing in actual implementations [Cai and Paige 1991].
Liu and Stoller [1998] have worked on generalizations of strength reduction
that incrementalize certain loop-based array computations.

Weak Strength Reduction. This simpler form of the transformation, where
an operation such as 2× x is replaced with either x+ x or x� 1, is widely used.
Bernstein [1986] presents an algorithm used in the IBM PL.8 compiler that
replaces integer multiply operations with a known constant argument by a
sequence of add, subtract, and multiply operations. Briggs distributed a more
complete implementation of these ideas via the Internet [Briggs and Harvey
1994], which appears to have been used by others [Wu 1995]. Granlund [1995]
implemented a similar technique in the Gnu C compiler. He also looked at
replacing division with multiplication [Granlund and Montgomery 1994].

Our Algorithm. OSR properly belongs in the ACK family of algorithms. It in-
herits the strengths of ACK, including the enlarged notions of region constant
and induction variable. At the same time, it capitalizes on the properties of SSA

to simplify both the explanation and the implementation. The result is a small,
robust technique that is easy to implement and to maintain.

3. THE ALLEN-COCKE-KENNEDY ALGORITHM

Because OSR is intended as a replacement for the ACK algorithm, we begin by
describing that algorithm. This allows us to make detailed comparisons when
we present OSR. It also serves as a detailed introduction to the techniques and
problems of strength reduction.

ACK focuses on loops, or strongly connected regions (SCRs), in a procedure’s
control-flow graph (CFG). For the present purpose, an SCR is a set of basic
blocks with the property that a path exists between any two blocks in the SCR.
The compiler discovers SCRs using an appropriate technique, such as Tarjan’s

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

608 • K. D. Cooper et al.

[1974] flow-graph reducibility algorithm or Havlak’s [1997] extensions to it.
ACK requires that each SCR have a unique landing pad—a prolog block that
is always executed prior to entry into the SCR. The landing pad provides a
convenient place to insert code that must execute before the loop. If landing
pads do not exist, ACK inserts them. ACK processes the SCRs in a loop nest
“inside out”, starting from the most deeply nested SCR and working outward.

Conceptually, the first step in performing strength reduction is to identify
operations that can be reduced. ACK searches an SCR to find instructions whose
operands are either region constants or induction variables with respect to some
SCR S.

—A variable v is a region constant with respect to S if v’s value does not change
inside S. We denote the set of region constants for S as RC(S).

—A variable i is an induction variable with respect to S if every definition of
i inside S is one of: the sum of an induction variable and a region constant,
an induction variable minus a region constant, or a COPY operation where the
source is an induction variable. We denote the set of induction variables for
S as IV(S).

These two sets, RC(S) and IV(S) are the key to determining whether an
instruction is a candidate for strength reduction. ACK assumes that all the SCRs
have been identified and their RC sets computed prior to its start. In practice,
each of these requires a separate pass over the code.

We present ACK as if it operated on a single SCR. The code, shown in Figure 3,
reflects this decision. The main routine, ACK, takes two arguments: a strongly
connected region, SCR, and a set of region constants, RC. Its first step is to
compute IV(SCR). For an initial approximation, it uses the set of all names
defined by one of the appropriate instructions (+, −, or COPY). To refine this set,
it iterates through the SCR a second time and removes any name that is defined
by an operation other than +, −, or COPY, or that has operands that are not in
IV(SCR) or RC(SCR).

The next step is to initialize a worklist of instructions that are candidates
for reduction. The algorithm instantiates the worklist in a set called CANDS. To
simplify our discussion, we will restrict our attention to candidate instructions
in the following forms:

x ← i × j x ← j × i x ← i ± j x ← j + i

where i ∈ IV(SCR) and j ∈RC(SCR). Allen et al. [1981] describe a variety of
other reducible candidate instructions. These are straightforward extensions
to the algorithm.

Once the initial round of candidate instructions has been found, the algo-
rithm repeatedly removes an instruction from the CANDs set and reduces it.
For each candidate instruction, ACK creates a temporary variable to hold the
value that it computes. It uses a hash table to avoid creating redundant tem-
porary names [Kennedy 1973]. In Figure 3, the function getName implements
the hash table. A call to getName consumes an expression (an opcode and two
operands) and produces a temporary name. The first time that getName sees

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 609

ACK(SCR, RC)
IV← ∅
for each instruction “x ← y op z” in SCR

if op ∈ {+,−, COPY}
IV← IV ∪ {x}

changed← TRUE

while changed do
changed← FALSE

for each instruction “x ← y op z” in SCR with x ∈ IV
if y 6∈ IV ∪RC or z 6∈ IV ∪RC

IV← IV− {x}
changed← TRUE

CANDS← ∅
for each instruction i in SCR of the form x ← iv× rc,

x ← rc× iv, x ← iv + rc, or x ← rc+ iv
CANDS← CANDS ∪ {i}

while CANDS 6= ∅
Select and remove an instruction i from CANDS – “x ← iv op rc”
result← getName(op, iv, rc)
if result = x

Delete i
else

Replace i with “x ← result”

for each definition point p of either iv or rc reaching i
if there is no definition for result in the macro block for p

if p is in the prolog
Insert “result← iv op rc” at end of prolog
Perform constant folding if possible

else if p is of the form “iv← k”
Insert “result← k op rc” into the macro block for p
Add this instruction to CANDS

else if p is of the form “iv← k + l” with k ∈ IV and l ∈ RC
if op = ×

result1 ← getName(op, k, rc)
result2 ← getName(op, l , rc)
Insert the following sequence into the macro block for p:

result1 ← k op rc
result2 ← l op rc
result← result1 + result2

Add the first two instructions to CANDS
else

result1 ← getName(op, k, rc)
Insert the following sequence into the macro block for p:

result1 ← k op rc
result← result1 + l

Add the first instruction to CANDS
Perform constant folding if possible

Fig. 3. The Allen-Cocke-Kennedy algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

610 • K. D. Cooper et al.

an expression, it generates a temporary name. Subsequent calls with the same
arguments return the name already generated for the expression.

The candidate instruction is replaced with a COPY operation from the tempo-
rary name associated with the expression on the candidate’s right-hand side.
Next, the algorithm must insert instructions to compute the value of that
temporary. These must be placed immediately before each instruction that
defines either the induction variable or the region constant. To find these in-
sertion points, the algorithm follows the use-definition chains for each of the
operands [Kennedy 1978]. It inserts the instructions needed to initialize or up-
date the reduced temporary’s value, as appropriate. To determine the specific
instructions that it inserts, the algorithm examines both the definition site and
the current candidate instruction. Some of these new instructions may them-
selves be candidates for reduction. These are added to the worklist. Some of the
instructions placed on the worklist in this way are subsequently deleted when
they are removed from the worklist and processed.

To manage the insertion of instructions cleanly and to prevent the algorithm
from inserting duplicate updates, ACK introduces the notion of a macro block.
The collection of all instructions inserted at a point p is called the macro block
for p. ACK only inserts an instruction at p if there is no definition of the same
variable in p’s macro block. This simple check ensures that the algorithm ter-
minates. As long as the macro block stays small, this search should be fast.

To illustrate how ACK operates, we will apply it to the intermediate code in the
middle column of Figure 1. The RC set contains {1, 4, a, 100}. ACK determines
that IV = {i, t1}. It initializes CANDS to {“t1 ← i − 1”, “t2 ← t1 × 4”}. Assume
that the algorithm processes the instruction defining t1 first. The call to getName
creates a new temporary name, t5, to hold the value of i−1. Next, ACK replaces
the candidate instruction with “t1 ← t5.” It follows the use-definition chains
to the assignments that define i. The first such definition is in the prolog, so
ACK inserts “t5← 0” at the end of the prolog (simplified from “t5← i − 1”). The
next definition increments the value of i at the bottom of the loop. After folding
constants, ACK inserts two instructions:

t5← i − 1
t5← t5+ 1

It adds the first instruction to the worklist and processes it next. This causes
ACK to delete the instruction and follow the use-definition chains for i. ACK finds
that the macro block for each definition already contains a definition of t5, so
it does not add any more instructions.

Next, ACK removes “t2← t1× 4” from the worklist. It invents a new tempo-
rary, t6, to hold the value of t1× 4. It replaces the candidate instruction with
“t2← t6” and follows the use-definition chains to the assignment of t1. ACK

inserts the instruction “t6← t5× 4,” and adds it to the worklist.
Processing “t6← t5× 4,” creates a new temporary, t7, to hold the value of

t5× 4. ACK replaces the candidate instruction with “t6← t7” and follows the
use-definition chains for t5. The first definition is in the prolog, so ACK inserts
“t7← 0” at the end of the prolog. The next definition increments the value

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 611

of t5 at the bottom of the loop. After constant folding, two instructions are
inserted here:

t7← t5× 4
t7← t7+ 4

The first instruction is added to the worklist and processed next. ACK deletes the
instruction and follows the use-definition chains for t5. Since the macro block
for each definition already contains a definition of t7, the algorithm terminates.

This example illustrates three shortcomings of ACK. First, it inserted two in-
structions that were subsequently removed. The instructions “t5← i − 1” and
“t7← t5× 4” were removed when the algorithm discovered that the left-hand
side was the temporary name associated with the expression on the right-
hand side. Second, it had to search each macro block before inserting an in-
struction. If the macro blocks grow large, this search might become expensive.
The third shortcoming is more subtle. ACK has not yet reduced the instruction
“t3← t2+a”. The variable t2 is now an induction variable; it was not one when
ACK began. To reduce this instruction, the compiler must re-apply the algorithm
to the transformed program. In this example, the unrecognized candidate in-
struction is an addition. In more complicated examples, ACK can leave behind
more expensive unreduced operations. To ensure that ACK reduces all possible
candidates, the compiler must repeatedly apply the algorithm until it finds no
further reductions.

4. THE OSR ALGORITHM

In deriving a new strength reduction algorithm, our goal was to clarify and
to simplify the process [Vick 1994]. We wanted an algorithm that was easy to
describe, easy to implement, reasonably efficient, and produced results compa-
rable to ACK. The OSR algorithm achieves these goals. Where ACK operates on the
procedure’s CFG, OSR works, primarily, with the SSA graph.

OSR is driven by a simple depth-first search of the SSA-graph, using Tarjan’s
[1972] strongly-connected component finder. The SCC-finder lets OSR discover
induction variables in topological order and process them as they are discovered.
As the SCCs are discovered, they are processed by a set of mutually-recursive
routines that test for induction variables and region constants, and then reduce
the appropriate operations.

4.1 Preliminaries

Like ACK, our algorithm assumes that some prior optimization has been per-
formed. Done correctly, this can simplify strength reduction by encoding cer-
tain facts in the code’s shape. For example, after invariant code has been moved
out of loops, region constants are easily identified by looking at where they are
defined. We assume that the compiler performs the following transformations
before OSR:

(1) Constant propagation: Sparse conditional constant propagation has been
applied to identify and fold compile-time constants [Wegman and Zadeck

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

612 • K. D. Cooper et al.

1991]. This discovers a large class of constant values and makes them tex-
tually obvious. It can increase the size of both the RC set and the IV set.

(2) Code motion: Lazy code motion [Knoop et al. 1992; Drechsler and Stadel
1993; Knoop et al. 1994], or one of its successors [Gupta et al. 1998; Bodik
et al. 1998] has been applied to accomplish both loop invariant code motion
and common subexpression elimination.2 Applying global reassociation and
global renaming prior to code motion can increase theRC set as well [Briggs
and Cooper 1994].

Constant propagation and code motion improve the results of strength reduc-
tion by rewriting known values as literal constants and by moving invariant
code out of loops. Both of these can expose additional opportunities for strength
reduction.

After code motion and constant propagation, the algorithm builds the pruned
SSA form of the program [Choi et al. 1991; Cytron et al. 1991; Briggs et al. 1998].
In SSA form, each name is defined exactly once and each use refers to exactly
one definition. To reconcile these rules, the SSA construction inserts a special
kind of definition, called a φ-function, at those points where control flow brings
together multiple definitions for a single variable name. After φ-functions have
been inserted, it systematically rewrites the name space, subscripting origi-
nal variable names to ensure a unique mapping between names and defini-
tion points. Pruned SSA form includes only φ-functions that are live—that is,
φ-functions whose values are used.

OSR operates on a graph that represents the SSA-form. In the program’s SSA
graph, each node represents either an operation or a φ-function, and edges flow
from uses to definitions. The SSA graph can be built from the program in SSA

form by adding use-definition chains, which can be implemented as a lookup
table indexed by SSA names. The SSA graph provides a sparse representation
of traditional use-definition chains. It also allows a more efficient method for
identifying induction variables and region constants. Figure 4 shows the SSA

graph for our example.
Even though it operates on the SSA graph, OSR needs to test specific properties

defined on the procedure’s CFG. These tests are couched in terms of two relation-
ships on the CFG: dominance [Lengauer and Tarjan 1979] and reverse-postorder
(RPO) numbering [Kam and Ullman 1976]. Dominance information is computed
during the SSA construction. Our compiler computes a reverse-postorder num-
bering during CFG construction. OSR assumes that it can efficiently map any
node in the SSA graph back into the CFG node that contains the corresponding
operation.

4.2 Finding Induction Variables and Region Constants

OSR uses simple and effective tests to identify induction variables and region
constants. These two tests form the first half of the algorithm.

2Lazy code motion will not move conditionally executed code out of loops. The later algorithms will.
This can lead to a larger RC set.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 613

����1 i0

����φ i1

6��

��6��
��

+ i2

6

���

����≤@@I �����
��
100

����goto
@@I �����
��

L

����1
����– t10

���@@I ��
��

1

����*t20

���@@I ��
��

4

����+t30

���@@I ��
��

a

����loadt40

@@I

����0.0sum0

����φsum1

6��

��6��
��

+sum2

6

@
@
@I

Fig. 4. SSA graph for the example.

4.2.1 Induction Variables. OSR finds induction variables by isolating and
examining each strongly connected component (SCC) in the SSA graph. We dif-
ferentiate between an SCC and an SCR, as used in the description of the ACK

algorithm. In our description of ACK, we used SCR to mean a single loop in the
CFG. An SCR may be nested inside other loops. An SCC for OSR is a maximal collec-
tion of nodes in the SSA graph with the property that a path exists between any
two nodes in the SCC. These are related ideas, but with some critical distinctions.

—An SCR contains CFG nodes; thus, it may include updates to an arbitrary set
of variables. Induction variables are found in SCRs, but the SCR also contains
updates to other variables.

—An SCC contains SCA-graph nodes and edges; since these edges model the flow
of values, the SCC describes a cyclic chain of dependences in the program.

Any induction variable, by definition, has a cyclic chain of SSA-graph edges.
Thus, the set of SCCs in the SSA-graph must include all the induction variables.

OSR finds induction variables by inspecting each SCC. If all of the updates in
the SCC have one of the allowed forms (i.e., IV ±RC, IV −RC, a COPY operation,
or a φ-function3), then the SCC is an induction variable. Not every SCC represents
an induction variable. In Figure 4, the SCC containing sum1 and sum2 does not
represent an induction variable because t40 is not a region constant.

The code that finds induction variables is shown at the top of Figure 5. The
routine, ClassifyIV, examines each operation in an SCC to see if it has one of
the allowed forms. If the SCC is an induction variable, it labels each SSA node
in the SCC with a header value. The header is the node in CFG that heads the

3For φ-nodes, each argument must be either a member of the SCC or a region constant.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

614 • K. D. Cooper et al.

ClassifyIV(SCC)
for each n ∈ SCC

if header→RPOnum > n.block→RPOnum
header← n.block

for each n ∈ SCC
if n.op 6∈ {φ,+,−, COPY}

SCC is not an induction variable
else

for each o ∈ {operands of n}
if o 6∈ SCC and not RegionConst(o, header)

SCC is not an induction variable
if SCC is an induction variable

for each n ∈ SCC
n.header← header

else
for each n ∈ SCC

if n is of the form x ← iv× rc, x ← rc× iv, x ← iv± rc, or x ← rc+ iv
Replace(n, iv, rc) (see Figure 7)

else
n.header← NULL

RegionConst(name, header)
return name.op = LOAD IMMEDIATE or name.block� header

Fig. 5. Finding region constants and induction variables.

outermost loop, or SCR, in which the SSA node is an induction variable. (This will
be the CFG node associated with the SCC that has the smallest reverse-postorder
number, RPOnum.) If the SCC is not an induction variable, it re-examines each
node and either reduces it by calling Replace or labels it with the value NULL to
indicate that it is not an induction variable. The header labels play a critical
role in the test for region constants.

4.2.2 Region Constants. After constant propagation and code motion, OSR

can use a simple test to determine if an operand is a region constant. An operand
is a region constant if it is a compile-time constant, or if its definition strictly
dominates every block in the CFG loop that contains the operation. (We use
the notation B1� B2 to denote that B1 strictly dominates B2.) Compile-time
constants can be recognized syntactically, since constant propagation rewrites
them in a standard form, such as a load immediate operation. For values that
are defined outside the CFG loop and never modified inside it, the SSA construction
ensures that the CFG block containing its definition will dominate the CFG block
that is the loop’s header.

These observations lead to a constant-time test for region constants, shown
in the routine RegionConst at the bottom of Figure 5. It checks whether the
operand results from a LOAD IMMEDIATE. It uses the labels computed during
ClassifyIV to relate individual definitions in the SSA graph back to the CFG.
If the CFG node containing the value’s definition dominates the CFG node given
by the header label of the value’s use, then the value is loop invariant. (The
dominance relation is computed during the SSA construction.) Because these

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 615

OSR(SSAgraph)
while there is an unvisited node n in SSAgraph

DFS(n) (see Figure 6)

ProcessSCC(SCC)
if SCC has a single member n

if n is of the form x ← iv× rc, x ← rc× iv, x ← iv± rc, or x ← rc+ iv
Replace(n, iv, rc) (see Figure 7)

else
n.header← NULL

else
ClassifyIV(SCC)

DFS(node)
node.DFSnum← nextDFSnum++
node.visited← TRUE

node.low← node.DFSnum
PUSH(node)
for each o ∈ {operands of node}

if not o.visited
DFS(o)
node.low← MIN(node.low, o.low)

if o.DFSnum < node.DFSnum and o ∈ stack
node.low← MIN(o.DFSnum, node.low)

if node.low = node.DFSnum
SCC← ∅
do

x ← POP()
SCC← SCC ∪ {x}

while x 6= node
ProcessSCC(SCC)

Fig. 6. High-level code for OSR.

tests take constant time, it does not pay to instantiate the RC set. Thus, OSR

tests for membership in RC on demand.

4.2.3 Putting It Together. To drive the entire process, OSR uses Tarjan’s
[1972] algorithm for finding SCCs. The algorithm, shown as routine DFS at the
bottom of Figure 6, is based on depth-first search. It pushes nodes onto an
internal stack as it visits them. The order in which the nodes are popped from
the stack groups them into SCCs. A node that is not contained in any cycle is
popped by itself, as a singleton SCC. The algorithm pops all the nodes in a multi-
node cycle as a group, or a multi-node SCC.

Tarjan’s algorithm has an interesting property: it pops the SCCs from the
stack in topological order. Thus, when an SCC is popped from the stack, any
operand referenced inside the SCC is either defined within the SCC itself or else
it is defined in an SCC that has already been popped. OSR capitalizes on this
observation and processes the nodes as they are popped from the stack. Thus,
the SCC-finder drives the entire strength reduction process.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

616 • K. D. Cooper et al.

The top of Figure 6 shows the driver routine, OSR. It invokes DFS on each
disjoint component of the SSA-graph. As DFS identifies each SCC, it invokes
ProcessSCC on the SCC. If the SCC contains a single operation, ProcessSCC tries
to reduce it—checking its form and invoking Replace (described in Section 4.3)
if it can be reduced. Since this process transforms x into an induction variable,
Replace labels x as an induction variable with the same header block as i. This
allows further reduction of operations using x. If the SCC contains more than one
operation, then ProcessSCC invokes ClassifyIV to determine if it is an induc-
tion variable and performs the appropriate reductions if it is not an induction
variable.

The idea of finding induction variables as SCCs of the SSA graph is not original.
Wolfe [1992] used it in his work on induction variables and dependence analysis,
and suggested in the accompanying talk that the idea was obvious and had
occurred to others in the field. Like OSR, Wolfe’s work relies on the fact that
Tarjan’s algorithm discovers the SCCs in topological order.

4.3 Code Replacement

Once OSR has found a candidate instruction of the form x← i× j , it must update
the code so that the multiply is no longer performed inside the loop. The compiler
creates a new SCC in the SSA graph to compute the value of i× j and replaces
the instruction with a COPY from the node representing the value of i× j . This
process is handled by three mutually recursive functions as shown in Figure 7:

Replace rewrites the current operation with a COPY from its reduced
counterpart.

Reduce inserts code to strength reduce an induction variable and returns the
SSA name of the result.

Apply inserts an instruction to apply an opcode to two operands and returns
the SSA name of the result. Simplifications such as constant folding
are performed if possible.

The Replace function is straightforward. It provides the top-level call to the
recursive function Reduce and replaces the current operation with a COPY. The
resulting operation must be an induction variable.

The Reduce function is responsible for adding the appropriate operations to
the procedure. The basic idea is to create a new induction variable with the same
shape as the original, but possibly with a different initial value or a different
increment. The first step is to check the hash table for the desired result. Access
to the hash table is through two functions:

search looks up an expression (an opcode and two operands), and returns the
name of the result.

add adds an entry containing an expression and the name of its result.

If the result is already in the hash table, then no additional instructions are
needed, and Reduce returns the SSA name of the result. The single definition
property of SSA lets OSR conclude that any name found in the table is already

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 617

Replace(node, iv, rc)
result← Reduce(node.op, iv, rc)
Replace node with a COPY from result
node.header← iv.header

SSAname Reduce(opcode, iv, rc)
result← search(opcode, iv, rc)
if result is not found

result← inventName()
add(opcode, iv, rc, result)
newDef← copyDef(iv, result)
newDef.header← iv.header
for each operand o of newDef

if o.header = iv.header
Replace o with Reduce(opcode, o, rc)

else if opcode = × or newDef.op = φ
Replace o with Apply(opcode, o, rc)

return result

SSAname Apply(opcode, op1, op2)
result← search(opcode, op1, op2)
if result is not found

if op1.header 6= NULL and RegionConst(op2, op1.header)
result← Reduce(opcode, op1, op2)

else if op2.header 6= NULL and RegionConst(op1, op2.header)
result← Reduce(opcode, op2, op1)

else
result← inventName()
add(opcode, op1, op2, result)
Choose the location where the operation will be inserted
Decide if constant folding is possible
Create newOper at the desired location
newOper.header← NULL

return result

Fig. 7. Code replacement functions.

defined. If the result is not found in the table, Reduce invents a new SSA name.4

The copyDef function then copies the operation or φ-node that defines the in-
duction variable and assigns the new name to the result.

Next, Reduce considers each argument of the new instruction. If the argu-
ment is defined inside the SCC, Reduce invokes itself recursively on that argu-
ment. (ACK handles this by inserting an operation and adding it to the worklist.
This is the source of the operations that were added and then removed in the
earlier example.)

Arguments defined outside the SCC are either the initial value of the induc-
tion variable or the value by which it is incremented. The initial value must be

4This hash lookup replaces the linear search through a macro block used by ACK to detect that it
has already inserted the needed code.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

618 • K. D. Cooper et al.

an argument of a φ-node, and the increment value must be an operand of an in-
struction. The reduction is always applied to the initial value, but the reduction
is only applied to the increment if we are reducing a multiply. In other words,
when the candidate is an add or subtract instruction, our algorithm modifies
only the initial value, but if the candidate is a multiply, it modifies both the
initial value and the increment. Therefore, Reduce invokes Apply on arguments
defined outside the SCC only if it is reducing a multiply, or if it is processing the
arguments of a φ-node.

The Apply function is conceptually simple, although there are a few details
that must be considered. The basic function of Apply is to create an operation
that computes the desired result. Apply relies on the hash table to determine
if such an operation already exists. It is possible that the operation Apply is
about to create is a candidate for strength reduction in an enclosing loop. If
so, it performs the reduction immediately by calling Reduce. (ACK inserts an
instruction that gets reduced when the outer loop is processed.) This case often
arises from triangular loops—where the bounds of an inner loop are a function
of the index of an outer loop.

Before inserting the operation, the algorithm must select a legal location.
ACK assumes that all induction variables are defined in the loop’s prolog [Allen
et al. 1981, p. 93]. Therefore, it inserts all initializations of temporaries at the
end of the prolog block. Our algorithm relies on dominance information created
during SSA construction to find a legal location for the initialization. Intuitively,
the instruction must go into a block that is dominated by the definitions of
both operands. If one of the operands is a constant, the algorithm may need to
duplicate its definition to satisfy this condition. Otherwise, both operands must
be region constants, so their definitions dominate the header block. One operand
must be a descendant of the other in the dominator tree, so the operation can be
inserted immediately after the descendant. This eliminates the need for landing
pads; it may also place the operation in a less deeply nested location than the
landing pad.

4.4 Applying OSR to the Example

As an example of how code replacement works, we will apply it to the SSA

graph in Figure 4. OSR invokes DFS on the graph. No matter where it starts,
DFS will find a small number of singleton SCCs, followed by the SCC {i1, i2}.
It labels this SCC as an induction variable. Next, it finds the SCC containing
just t10.

OSR identifies this operation as a candidate instruction, because one argu-
ment is an induction variable and the other is a region constant. It invokes
Replace with iv= i1 and rc= 1. The call to search in Reduce will fail, so the first
SSA name invented will be osr0. Reduce adds this entry to the hash table and
creates a copy of the φ-node for i1. Next, it processes the arguments of the new
φ-node. Since the first argument, i0, is a region constant, it is replaced with the
result of Apply, which will perform constant folding and return the SSA name
osr1. The second argument, i2, is an induction variable, so it invokes Reduce
recursively.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 619

����1 i0

����φ i1

6��

�
6��
��

+ i2

6

�����
��

1

����0 osr1

����φ osr0

6��

�
6��
��

+ osr2

6

�����
��

1

����COPY t10

@@I

����0 osr4

����φ osr3

6��

�
6��
��

+ osr5

6

�����
��

4

����COPY t20

@@I

����a osr7

����φ osr6

6��

�
6��
��

+ osr8

6

�����
��

4

����COPY t30

@@I

����load t40

@@I

����0.0sum0

����φsum1

6��

�
6��
��

+sum2

6

@@I

����≤
6
���
����100

����goto
@@I ���
����L

- - - -

- - - -

Fig. 8. SSA graph after applying OSR.

Since the hash table contains no match, Reduce invents a new SSA name,
osr2, adds an entry to the hash table, and copies the operation for i2. The first
argument is the region constant 1, which will be left unchanged. The second
argument is i1, which is an induction variable. The recursive call to Reduce will
produce a match in the hash table with osr0 as the result. At this point, the
calls to Reduce finish, and the SSA name osr0 is returned to Replace. Replace
rewrites the operation defining t10 as a COPY from osr0. It labels t10 as an
induction variable to enable further reductions.

As subsequent SCCs pop from the stack, this same process creates two more
reduced induction variables. The multiply labelled t20 gives rise to another new
induction variable, as does the add labelled t30. The load operation cannot be
reduced because it is not a candidate instruction. Similarly, the operations in
the SCC that define sum are not candidates.

Figure 8 shows the SSA graph that results from applying OSR to our ongoing
example program. The sequence of reductions unfolds from left to right, with the
creation of the reduced induction variables involving osr0, osr3, and osr6. The
dashed gray lines show this derivation. The induction variables containing osr0
and osr3 are dead. The sole remaining use for the induction variable defining i
is the≤ operation that governs the branch.

4.5 Complexity of OSR

The time required to identify the induction variables and region constants in
an SSA graph is O(N+E), where N is the number of nodes and E is the number
of edges. The Replace function performs work that is proportional to the size of
the SCC containing the induction variable, which can be as large as O(N). Since
Replace can be invoked O(N) times, the worst case running time is O(N 2). This
seems expensive; unfortunately, it is necessary. Figure 9 shows a program that

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

620 • K. D. Cooper et al.

i← 0

while (P0) do
if (P1) then

i← i + 1
k← i × c1

if (P2) then
i← i + 2
k← i × c2

· · ·
if (Pn) then

i← i + n
k← i × cn

end

i← 0 t2 ← 0
t1 ← 0 · · ·

tn ← 0
while (P0) do

if (P1) then
t1 ← t1 + c1 tn ← tn + cn

t2 ← t2 + c2 i← i + 1
· · · k← t1

if (P2) then
t1 ← t1 + 2× c1 tn ← tn + 2× cn

t2 ← t2 + 2× c2 i← i + 2
· · · k← t2

· · ·
if (Pn) then

t1 ← t1 + n× c1 tn ← tn + n× cn

t2 ← t2 + n× c2 i← i + n
· · · k← tn

end

Original code Transformed code

Fig. 9. A worst-case example.

generates this worst case behavior in the replacement step. It requires intro-
duction of a quadratic number of updates. Note that this behavior is a function
of the code being transformed, not any particular details of our algorithm. Any
algorithm that performs strength reduction on this code will have this behavior.
Experience with strength reduction suggests that this problem does not arise
in practice. In fact, we have not seen an example with this behavior mentioned
in the literature. Since the amount of work is proportional to the number of
instructions inserted, any algorithm for strength reduction that reduces these
cases will have the same, or worse, complexity.

4.6 Follow-up Transformations

OSR is intended to operate in a compiler that performs a suite of optimizations.
To avoid duplicating functionality and to provide for a strong separation of
concerns, our algorithm leaves much of the “cleaning up” to other well-known
optimizations that should run after OSR.

OSR can introduce equal induction variables. Thus, the compiler needs a
global value numbering algorithm to detect and remove common subexpres-
sions. It must be a global technique that can handle values flowing along back
edges in the CFG, as induction variables do. The partitioning technique of Alpern
et al. will discover identical values [Alpern et al. 1988; Click and Cooper 1995],
as will other global algorithms [Cooper and Simpson 1995; Briggs et al. 1997].

The SSA graph in Figure 8 contains a great deal of dead code. Many of the
use-definition edges in the original SSA graph have been changed, producing
“orphaned” nodes. OSR depends on a separate dead code elimination pass to
remove these instructions [Cytron et al. 1991, Sect. 7.1].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 621

Many of the copies introduced by OSR can be eliminated. For example, the
COPY into t30 in Figure 8 can be eliminated if the load into t40 uses the value
of osr6 directly. Our compiler relies on the copy coalescing phase of a Briggs-
Chaitin register allocator to accomplish this task [Chaitin et al. 1981; Briggs
et al. 1994].

4.7 Comparing OSR with Allen-Cocke-Kennedy

OSR has several advantages over the classic ACK algorithm.

(1) OSR operates on SSA form. It uses the properties of SSA and data-structures
built during SSA-construction to eliminate the passes needed by ACK to rec-
ognize the code’s loop structure and to identify region constants. Using
SSA also leads to a strategy that avoids instantiating the IV and RC sets.
SSA-form also lets it iterate more efficiently over the code. For example, to
find an induction variable, OSR examines only those operations that update
the potential induction variable, where ACK visits all the operations in the
loop.

(2) OSR reduces candidate instructions as they are encountered, rather than
maintaining a worklist of candidates. This lets it directly reduce new in-
duction variables as it creates them. ACK reduces new induction variables
that it inserts by placing them on the worklist. It cannot, however, recog-
nize when one reduction converts an existing variable into an induction
variable. To find and reduce these variables, ACK must be invoked again on
the entire SCR.5

(3) OSR produces results quite similar to those produced by ACK. The primary
difference in the results lies in the placement of initializations. ACK creates
a prolog block, or landing pad, for each loop to hold the initializations that
it inserts. OSR inserts initializations after the definition of an operand that
is closest to its use. This can place the operation in a less deeply nested
location than the loop’s landing pad, where it should execute fewer times.

(4) OSR removes a couple of subtle restrictions that apply to ACK. Since it largely
ignores the CFG, OSR handles multiple-entry loops in a natural way. Similarly,
ACK assumes that induction variables are defined in the loop’s prolog block;
OSR makes no similar assumption.

(5) OSR is easier to understand, to teach, and to implement than the ACK algo-
rithm. It has been implemented in several research and production compil-
ers, and used as an implementation exercise in a second-semester compiler
course.

5. LINEAR FUNCTION TEST REPLACEMENT

After strength reduction, the transformed code often contains induction vari-
ables whose sole use is to govern control flow. In that case, linear function

5The data-flow methods also fail to reduce some newly-created induction variables. The analysis
cannot address these variables since they are created after the analysis runs. Iterating the analysis
and transformation should allow the data-flow methods to catch them.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

622 • K. D. Cooper et al.

test replacement may be able to convert them into dead code. The compiler
should look for comparisons between an induction variable and a region con-
stant. For example, the comparison “if (i2 ≤ 100) goto L” in the ongoing ex-
ample (see Figure 1) could be replaced with “if (osr8 ≤ 396+ a) goto L”. This
transformation is called linear function test replacement (LFTR).

Previous methods would search the hash table for an expression containing
the induction variable referenced in the comparison. In the example in Figures 4
and 8, a “chain” of reductions was applied to node i2. If LFTR is to be effective, it
must follow the entire chain quickly. To facilitate this process, Reduce can record
the reductions it performs on each node in the SSA graph. Each reduction is
represented by an edge from a node to its strength-reduced counterpart labeled
with the opcode and the region constant of the reduction. In Figure 8, these
edges are the dashed gray arrows. They would be labelled as follows:

i1
−1−→ osr0

×4−→ osr3
+a−→ osr6

i2
−1−→ osr2

×4−→ osr5
+a−→ osr8

When the compiler identifies a candidate for LFTR, it can traverse these edges,
insert code to compute the new region constant for the test, and update the
compare instruction. Our implementation uses two procedures to support this
process:

FollowEdges follows the LFTR edges and returns the SSA name of the last one in
the chain.

ApplyEdges applies the operations represented by the LFTR edges to a region
constant and returns the SSA name of the result.

The ApplyEdges function can be easily implemented using the Apply func-
tion described in Section 4.3. For each LFTR candidate, it replaces the induc-
tion variable with the result of FollowEdges, and replaces the region constant
with the result of ApplyEdges. Notice that LFTR renders the original induction
variable dead; subsequent optimizations should remove the instructions used
to compute it.

To transform the test i2≤ 100 in Figure 8, LFTR replaces i2 with the re-
sult of FollowEdges, osr8. Next, it replaces 100 with the result obtained
from ApplyEdges, (((100− 1)× 4)+a) = 396+a. The original induction vari-
able, {i1, i2}, is no longer needed; it will be removed by optimizations performed
later.

6. CONCLUSIONS

This paper presents OSR, a simple and elegant new algorithm for operator
strength reduction. OSR produces results that are similar to those achieved
by the Allen, Cocke, and Kennedy algorithm. It relies on prior optimizations
and properties of the SSA graph to produce an algorithm that (1) is simple to
understand and to implement, (2) avoids instantiating the sets of induction
variables and region constants required by other algorithms, and (3) greatly

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 623

simplifies linear function test replacement. Rather than performing a separate
analysis to discover the loop structure of the program, it relies on dominance
information computed during the SSA construction. The result is an efficient
algorithm that is easy to understand, easy to teach, and easy to implement.

ACKNOWLEDGMENTS

Our colleagues on the Massively Scalar Compiler Project at Rice have con-
tributed to this work in many ways. Tim Harvey acted as a sounding board for
many of the ideas presented here. Linda Torczon and Tim Harvey served as
diligent proof readers of this text. The Advanced Compiler Construction class
at Rice University implemented the algorithm for their class project. They pro-
vided us with a great deal of insight into how to present these ideas. Cliff Click
provided the example shown in Figure 9. The anonymous referees and the edi-
tors of TOPLAS provided valuable suggestions, comments, and insights.

Vivek Sarkar of IBM provided support for Taylor Simpson through an IBM
graduate fellowship; Reid Tatge of TI provided support for both Chris Vick and
Keith Cooper. All of these people deserve our sincere thanks.

The staff of TOPLAS displayed infinite patience with our slow turnaround time.
Any delay in publication is solely the fault of the first author.

REFERENCES

ALLEN, F. E. 1969. Program optimization. Annual Review in Automatic Programming 5, 239–308.
ALLEN, F. E., COCKE, J., AND KENNEDY, K. 1981. Reduction of operator strength. In Program Flow

Analysis: Theory and Applications, S. S. Muchnick and N. D. Jones, Eds. Prentice-Hall, Englewood
Cliffs, NJ, USA.

ALPERN, B., WEGMAN, M. N., AND ZADECK, F. K. 1988. Detecting equality of variables in programs.
In Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages. ACM, San Diego, California, 1–11.

BERNSTEIN, R. 1986. Multiplication by integer constants. Software—Practice and Experience 16, 7
(July), 641–652.

BODIK, R., GUPTA, R., AND SOFFA, M. L. 1998. Complete removal of redundant computations.
SIGPLAN Notices 33, 5 (May), 1–14. Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation.

BRIGGS, P. AND COOPER, K. D. 1994. Effective partial redundancy elimination. SIGPLAN
Notices 29, 6 (June), 159–170.

BRIGGS, P., COOPER, K. D., HARVEY, T. J., AND SIMPSON, L. T. 1998. Practical improvements to the
construction and destruction of static single assignment form. Software—Practice and Experi-
ence 28, 8 (July), 859–881.

BRIGGS, P., COOPER, K. D., AND SIMPSON, L. T. 1997. Value numbering. Software—Practice and
Experience 27, 6, 710–724.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1994. Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst. 16, 3 (May), 428–455.

BRIGGS, P. AND HARVEY, T. J. 1994. Multiplication by integer constants. This is a “web”, a literate
programming document. See http://softlib.rice.edu/MSCP.

CAI, J. AND PAIGE, R. 1991. “Look Ma, no hashing, and no arrays neither”. In Conference Record
of the Eighteenth Annual ACM Symposium on Principles of Programming Languages. ACM,
Orlando, Florida, 143–154.

CHAITIN, G. J., AUSLANDER, M. A., CHANDRA, A. K., COCKE, J., HOPKINS, M. E., AND MARKSTEIN, P. W.
1981. Register allocation via coloring. Computer Languages 6, 47–57.

CHASE, D. R. 1988. Personal communication in the form of an unpublished report.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

624 • K. D. Cooper et al.

CHOI, J.-D., CYTRON, R., AND FERRANTE, J. 1991. Automatic construction of sparse data flow
evaluation graphs. In Conference Record of the Eighteenth Annual ACM Symposium on Prin-
ciples of Programming Languages. ACM, Orlando, Florida, 55–66.

CLICK, C. AND COOPER, K. D. 1995. Combining analyses, combining optimizations. ACM Trans.
Program. Lang. Syst. 17, 2 (Mar.), 181–196.

COCKE, J. AND KENNEDY, K. 1977. An algorithm for reduction of operator strength. Communica-
tions of the ACM 20, 11 (Nov.), 850–856.

COCKE, J. AND MARKSTEIN, P. 1980a. Measurement of program improvement algorithms. In
Proceedings of Information Processing 80. North Holland Publishing Company, Tokyo, Japan.

COCKE, J. AND MARKSTEIN, P. 1980b. Strength reduction for division and modulo with application
to a multilevel store. IBM J. Res. Dev. 24, 6, 692–694.

COCKE, J. AND SCHWARTZ, J. T. 1970. Programming languages and their compilers: Preliminary
notes. Tech. rep., Courant Institute of Mathematical Sciences, New York University.

COOPER, K. D. AND SIMPSON, L. T. 1995. SCC-based value numbering. Tech. Rep. TR95636, Center
for Research on Parallel Computation, Rice University. Oct.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13, 4 (Oct.), 451–490.

DHAMDHERE, D. M. 1979. On algorithms for operator strength reduction. Communications of the
ACM 22, 5 (May), 311–312.

DHAMDHERE, D. M. 1989. A new algorithm for composite hoisting and strength reduction. Int.
J. Comput. Math. 27, 1, 1–14.

DRECHSLER, K.-H. AND STADEL, M. P. 1993. A variation of Knoop, Rüthing, and Steffen’s “lazy code
motion”. SIGPLAN Notices 28, 5 (May), 29–38.

EARLY, J. 1974. High level iterators and a method of automatically designing data structure repre-
sentation. Tech. Rep. ERL-M416, Computer Science Division, University of California, Berkeley.
Feb.

FONG, A. C. 1979. Automatic improvement of programs in very high level languages. In
Conference Record of the Sixth Annual ACM Symposium on Principles of Programming Lan-
guages. ACM, San Antonio, Texas, 21–28.

FONG, A. C. AND ULLMAN, J. D. 1976. Induction variables in very high level languages. In
Conference Record of the Third ACM Symposium on Principles of Programming Languages.
ACM, Atlanta, Georgia, 104–112.

GRANLUND, T. 1995. Private communication with P. Briggs. Discussion of his work in building the
routine synth mult for the Gnu C Compiler.

GRANLUND, T. AND MONTGOMERY, P. L. 1994. Division by invariant integers using multiplication.
SIGPLAN Notices 29, 6 (June), 61–72.

GUPTA, R., BERSON, D. A., AND FANG, J. Z. 1998. Path profile guided partial redundancy elimina-
tion using speculation. In Proceedings of the IEEE 1998 International Conference on Computer
Languages. IEEE Computer Society, Chicago, IL., USA, 230–239.

HAVLAK, P. 1997. Nesting of reducible and irreducible loops. ACM Trans. Program. Lang.
Syst. 19, 4 (July), 557–567.

ISSAC, J. AND DHAMDHERE, D. M. 1980. A composite algorithm for strength reduction and code
movement. Int. J. Comput. Info. Sci. 9, 3, 243–273.

KAM, J. B. AND ULLMAN, J. D. 1976. Global data flow analysis and iterative algorithms.
J. ACM 23, 1 (Jan.), 158–171.

KENNEDY, K. 1973. Reduction in strength using hashed temporaries. SETL Newsletter 102,
Courant Institute of Mathematical Sciences, New York University. Mar.

KENNEDY, K. 1978. Use-definition chains with applications. Computer Languages 3, 163–
179.

KNOOP, J., RÜTHING, O., AND STEFFEN, B. 1992. Lazy code motion. SIGPLAN Notices 27, 7 (July),
224–234.

KNOOP, J., RÜTHING, O., AND STEFFEN, B. 1993. Lazy strength reduction. J. Program. Lang. 1, 1,
71–91.

KNOOP, J., RÜTHING, O., AND STEFFEN, B. 1994. Optimal code motion: Theory and practice. ACM
Trans. Program. Lang. Syst. 16, 4 (July), 1117–1155.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

P1: IBD
CM043A-01 ACM-TRANSACTION February 19, 2002 16:32

Operator Strength Reduction • 625

LENGAUER, T. AND TARJAN, R. E. 1979. A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1, 1 (July), 121–141.

LIU, Y. A. AND STOLLER, S. D. 1998. Loop optimization for aggregate array computations. In IEEE
1998 International Conference on Computer Languages. IEEE CS Press, Los Alamitos, CA, 262–
271.

MARKSTEIN, P. W., MARKSTEIN, V., AND ZADECK, F. K. 1994. Reassociation and strength reduction.
Chapter from an unpublished book, Optimization in Compilers.

MOREL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial redundancies.
Communications of the ACM 22, 2 (Feb.), 96–103.

PAIGE, R. AND KOENIG, S. 1982. Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. 4, 3 (July), 402–454.

PAIGE, R. AND SCHWARTZ, J. T. 1977. Reduction in strength of high level operations. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages. ACM, Los
Angeles, California, 58–71.

SANTHANAM, V. 1992. Register reassociation in PA-RISC compilers. Hewlett-Packard Journal 14, 6
(June), 33–38.

SCARBOROUGH, R. G. AND KOLSKY, H. G. 1980. Improved optimization of FORTRAN object
programs. IBM J. Res. Dev. 24, 6 (Nov.), 660–676.

SITES, R. L. 1979. The compilation of loop induction expressions. ACM Trans. Program. Lang.
Syst. 1, 1 (July), 50–57.

TARJAN, R. E. 1972. Depth first search and linear graph algorithms. SIAM J. Comput. 1, 2 (June),
146–160.

TARJAN, R. E. 1974. Testing flow graph reducibility. J. Comput. Syst. Sci. 9, 355–365.
VICK, C. A. 1994. SSA based reduction of operator strength. M.S. dissertation, Rice University,

Department of Computer Science.
WEGMAN, M. N. AND ZADECK, F. K. 1991. Constant propagation with conditional branches. ACM

Trans. Program. Lang. Syst. 13, 2 (Apr.), 211–236.
WOLFE, M. 1992. Beyond induction variables. SIGPLAN Notices 27, 7 (July), 162–174.
WU, Y. 1995. Strength reduction of multiplications by integer constants. SIGPLAN Notices 32, 2

(Feb.), 42–48.

Received March 1998; revised July 2001; accepted July 2001

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 5, September 2001.

