
Optimal Code Motion: Theory and Practice

JENS KNOOP and OLIVER RUTHING

Universitat Kiel

and

BERNHARD STEFFEN

Universitat Passau

An implementation-oriented algorithm for lazy code motion is presented that minimizes the

number of computations in programs while suppressing any unnecessary code motion in order to

avoid superfluous register pressure. In particular, this variant of the original algorithm for lazy

code motion works on flowgraphs whose nodes are basic blocks rather than single statements,
since this format is standard in optimizing compilers. The theoretical foundations of the modified

algorithm are given in the first part, where t-refined flowgraphs are introduced for simplifying
the treatment of flow graphs whose nodes are basic blocks. The second part presents the “basic
block” algorithm in standard notation and gives directions for its implementation in standard
compiler environments.

Categories and Subject Descriptors: D.3.4. [Programming Languages]: Processors—code gen-
eration; compilers; optimization; F.2.2. [Analysis of Algorithms and Problem Complexity]:

Nonnumerical Algorithms and Problems

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Code motion, computational optimahty, critical edges, data

flow analysis (bit-vector, unidirectional, bidirectional), elimination of partial redundancies, life-

time optimality, lifetimes of registers, nondeterministic flowgraphs, t-refined flow graphs

1. INTRODUCTION

Code motion is a technique for improving the efficiency of a program by

avoiding unnecessary recomputations of a value at runtime. This is achieved

by replacing the original computations of a program by temporary variables

(registers) that are initialized correctly at suitable program points.

In order to preserve the semantics of the original program, code motion

must also be safe, i.e., it must not introduce computations of new values on

This research was partly supported by the Deutsche Forschungsgemeinsch aft under grants La
426/9-2 and La 426/11-1.
Authors’ addresses: J. Knoop and O. Ruthing, Institut ftir Informatik und Praktische Mathe-
matik, Christian-Albrechts-Universitat Kiel, Preu13erstrat3e 1-9, D-24105 Kiel, Germany; B.

Steffen, Lehrstuhl ftir Program miersysteme, Fakultat fur Mathematik und Informatik, Univer-
sitat Passau, D-94032 Passau, Germany.
Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.
01994 ACM 0164-0925/94/0700-1117 $03.50

ACM Tran~actions on Programming Languages and Systems, Vol 16, No. 4, July 1994, Pages 1117-1155.

1118 . Jens Knoop et al.

paths. In fact, under this requirement it is possible to obtain computationally

optimal results, i.e., results where the number of computations on each

program path cannot be reduced anymore by means of safe code motion (cf.,

Theorem 3.13). The central idea to obtain computational optimality is to place

computations as early as possible in a program, while maintaining safety (see

Dhamdhere [1988; 1991], Dhamdhere et al. [1992], Knoop and Steffen [1992b],

Morel and Renvoise [1979], Steffen [1991]). This strategy, however, moves

computations even if it is unnecessary, i.e., there is no runtime gain.1 In fact,

this can cause superfluous register pressure, which is a major problem in

practice.

In Knoop et al. [1992] we presented a lazy computationally optimal code

motion algorithm, which suppresses any unnecessary code motion in order to

avoid superfluous register pressure. The point of this algorithm is to place

computations as late as possible in a program, while maintaining computa-

tional optimality. In fact, this placement strategy minimizes the lifetimes of

the temporary that must be introduced for a given expression by any code

motion algorithm that places this expression computationally optimally.

Note that we are separately dealing with the different syntactic terms here,

which is the state of the art in code motion since Morel and Renvoise’s [1979]

seminal paper. In contrast to the notion of computational optimality, this

separation affects lifetime considerations, an observation which to our knowl-

edge did not yet enter the reasoning on the register pressure problem in code

motion papers: all these papers, which mainly proposed some heuristics, are

based on the “separation paradigm” of Morel\ Renvoise-like code motion (cf.,

“Related Work”). Our notion of lifetime optimality characterizes the optimal

solution to the register pressure problem under these circumstances. We

therefore consider lifetime optimality, which can be obtained very efficiently,

as an adequate approximation of the expensive (probably NP-hard) global

notion of register pressure optimality.

Despite its optimality, the algorithm of Knoop et al. [1992] has a surpris-

ingly simple structure: it is composed of four purely unidirectional analyses.

This guarantees efficiency since the standard bit-vector techniques dealing

with all program terms simultaneously can be applied [Aho and Unman
1975; Graham and Wegman 1976; Hecht and Unman 1973; 1977; Kam and

Unman 1976; Kennedy 1975; Tarjan 1979; 1981a; 1981b; Unman 1973].

In this article, we emphasize the practicality of lazy code motion by giving

explicit directions for its implementation in standard compiler environments.

In particular, we present a version of the algorithm here which works on
flowgraphs whose nodes are basic blocks rather than single statements, since

this format is standard in optimizing compilers.

Our presentation is split into two parts which can be read and understood

independently.

Theoretical Part. Here, the lazy-code-motion transformation is stepwise
developed for flowgraphs whose nodes are basic blocks, and its correctness

LIn Dhamdhere [1991], unnecessary code motions are called redundant.

ACM TransactIons on Programming Languages and Systems, VOI 16, No 4, July 1994,

Optimal Code Motion . 1119

and optimality are proved. Important is the introduction of t-refined flow-

graphs, which provide an appropriate framework for concise specifications of

program properties and optimality criteria in the presence of basic-block

nodes. The theoretician may be satisfied reading this part.

Practical Part. Here, the algorithm realizing the transformation specified

in the first part is presented in a style which allows a direct and efficient

implementation. In fact, the practitioner can find all relevant information for

an implementation in this second part.

As in Knoop et al. [1992] the key observation is the decomposability of the

known (bidirectional) placement algorithms into a sequence of purely unidi-

rectional components .2 This conceptual simplification, which can be main-

tained for lazy code motion, led us to the following two-step structure:

(1) Obtain computational optimality while maintaining safety by means of
the “as-early-as-possible” placement strategy.

(2) Avoid unnecessary code motion while maintaining computational optimal-
ity by means of the “as-late-as-possible” placement strategy.

Each step only requires two unidirectional data flow analyses. This guaran-

tees the efficiency of the standard bit-vector techniques. However, compared

with Knoop et al. [1992] the earliestness and isolation analyses are modified

here in order to decouple the two analyses of each step, which now become

independent and therefore parallelizable. Moreover, only minor modifications

of implementations based on the algorithm of Morel and Renvoise [1979] are

necessary, which supports a simple integration into standard compiler envi-

ronments.

Figure 1 displays an example, which is complex enough to illustrate the

essential features of our approach. It will be discussed in more detail in

Section 4.2. For now just note that our algorithm is unique in performing the

optimization displayed in Figure 2, which is exceptional for the following

reasons: it eliminates the partially redundant computations of “a + b” inside

the nodes 4 and 8 by moving them to node 7 and to a new synthetic node

which is introduced on the edge from node 3 to 5, but it does not touch the

computations of a + b in node 2 and 9 that cannot be moved with runtime

gain. Thus our algorithm only moves computations when it is profitable.

Related Work

Morel and Renvoise [1979] proposed a bit-vector algorithm for the suppres-

sion of partial redundancies. The bidirectionality of their algorithm became

model in the field of bit-vector-based code motion (see Chow [1983], Dhamd-

here [1983; 1988; 1989; 1991], Drechsler and Stadel [1988], Joshi and

Dhamdhere [1982a; 1982b], Morel [1984], Morel and Renvoise [1981], and

Sorkin [1989]). Bidirectional algorithms, however, are in general conceptually

and computationally more complex than unidirectional ones: e.~., in contrast

2See “Related Work” for details.

ACM Transactions on Programming Languages and Systems, Vol. 16, No 4, July 1994.

1120 . Jens Knoop et al.

d
1

y =a+b

2 a=c

x .=a+b

Fig. 1. The motivating example,

%!/9 .r. =a+b

10I J

Flg.2 Lazy-code-motion transformation.

J

J-L/

‘w
10I I

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No, 4, July 1994

Optimal Code Motion . 1121

to the unidirectional case, where reducible programs can be dealt with in

O(nlog(n)) bit-vector steps, where n characterizes the size of the argument

program (e.g., number of statements), the best known estimation for bidirec-

tional analyses is 0(n2) (see Dhamdhere [1991], Dhamdhere and Khedker

[1993], and Dhamdhere and Patil [1991]).3 Dhamdhere et al. [1992] showed

that the original transformation of Morel and Renvoise [1979] can be solved

as easily as a unidirectional problem. However, they do not address the

problem of unnecessary code motion. This problem was first addressed in

Chow [1983], and Dhamdhere [1988; 1991] and more recently in Dhamdhere

and Patil [1993]. However, the first three proposals are of heuristic nature,

i.e., code is unnecessarily moved, or redundancies remain in the program, and

the latter one is of limited applicability: it requires the reducibility of the

flowgraph under consideration.

In Knoop et al. [1992] the first structurally unrestricted algorithm was

presented yielding computationally optimal results while completely avoiding

unnecessary code motion.4 This result, as well as the fact that it is composed

of unidirectional analyses,5 carries over to the version presented in this

article. Thus, estimations for the worst-case time complexity of unidirectional

analyses apply (for details see Aho and Unman [1975], Graham and Wegman

[1976], Hecht and Unman [1973; 1977], Kam and Unman [1976], Kennedy

[1975], Tarjan [1979; 1981a; 1981b], and Unman [1973]). Moreover, our

algorithm is conceptually simple. It only requires the computation of four

global predicates D-Safe, U-Safe, Delayed, and Isolated in two sequential

steps.

2. PRELIMINARIES

2.1 Terms and Flowgraphs

We consider terms inductively built of variables, constants, and operators,

and directed flowgraphs G = (N, E,s, e) with node set N and edge set E.

Nodes n ~ N represent basic blocks (see Hecht [1977]) consisting of a linear

sequence of assignments of the form u 1= t,where u is a variable and t a

term. An assignment is called a modification of t,if it assigns to one of t’s

operands.G Edges (m, n) G E represent the nondeterministic branching struc-

3In Dhamdhere and Khedker [1993], the complexity of bidirectional problems has been estimated

by O(n * u), where w denotes the width of a flowgraph. In contrast to the well-known notion of

depth (see Hecht [1977]) traditional estimations are based on, width is not a structural property
of a flowgraph, but varies with the bit-vector problem under consideration. In particular, it is
larger for bidirectional problems than for unidirectional ones, and in the worst case it is linear in

the size of the flowgraph.
4A variant of this algorithm which inserts computations on edges rather than in nodes was

recently proposed in Drechsler and Stadel [1993].
5Such an algorithm was first proposed in Steffen [1991] which later on was interprocedurally

generalized to programs with procedures, local and global variables, and formal value parame-
ters in Knoop and Steffen [1992b]. Both algorithms realize an “as-early-as-possible” placement.
‘As usual every modification is assumed to change the value of t.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1122 . Jens Knoop et al

ture of G,7 and s and e denote the unique start node and end node of G,

which are assumed not to possess any predecessors and successors, respec-

tively. Moreover, succ(n) = ~f {ml(n, m) G E} and pred(n) = ~~ {ml(m, n) e E}

denote the set of all immediate successors and predecessors of a node n,

respectively. A finite path of G is a sequence (nl, nh) of nodes such that

n,, ~ E succ(n,) for all 1 < i < k. e denotes the empty path, and the length of

a path p is denoted by hP. For a given path p and an index 1 < i < hP the i th

component of a path is addressed by p,. A path q is said to be a subpath of p,

in signs q L p, if there is an index 1 < i < hP such that i + h~ – 1 s Ap and

q~ =PL+J-l for all 1 ~.i s ~~. In particular, for any path p and indices i,

j < AP we denote the subpath which is induced by the sequence of nodes from

p, Up to p] h P[i, j].8 Moreover, if i or j is excluded from this subpath we
will write p] i, j] or p[i, j[, respectively. The set of all finite paths of G

leading from a node n to a node m is denoted by P[n, m]. Finally, every node

n G N is assumed to lie on a path from s to e.

2.2 Critical Edges

It is well known that in completely arbitrary graph structures the code

motion process may be blocked by critical edges, i.e., by edges leading from

nodes with more than one successor to nodes with more than one predecessor

(see Dhamdhere [1988; 1991], Drechsler and Stadel [1988], Rosen et al.

[19881, and Steffen et al. [1990; 1991]).
In Figure 3(a’) the computation of “a + b“ at node 3 is partially redundant

with respect to the computation of “a + b” at node 1. However, this partial

redundancy cannot safely be eliminated by moving the computation of “a + b”

to its preceding nodes, because this may introduce a new computation on a

path leaving node 2 on the right branch. On the other hand, it can be

eliminated safely after inserting a synthetic node Sz, ~ in the critical edge

(2, 3), as illustrated in Figure 3(b). We will therefore restrict our attention to

programs, where every critical edge has been split by inserting a synthetic

basic block.g After this simple transformation every flowgraph G satisfies the

following structural property:

LEMMA 2.1 (Control Flow Lemma).

(1) Vn ~ N. Ipred(n)l >2 = succ(pred(n)) == {n}

(2) Vn G N. Isucc(n)l >2- wed(succ(d) = {n}

For the proof of the first property consider a predecessor m of a node n with

Iprecl(n)l >2. Now, if m is a synthetic basic block then n is the unique

7We do not assume any structural restricting on G. In fact, every algorithm computing the

fixed-point solution of a unidirectional bit-vector data flow analysis problem may be used to

compute the predicates U-Safe, D-Safe, Latest, and Isolated (see Hecht [1977]). However,

application of the efficient techniques of Aho, Graham, Hecht, Kam, Kennedy, Tarj an, Unman,
and Wegman reqmres that G satisfies certain structural restrictions,
81f i > J the subpath p[L,~] means c,
‘This differs from Knoop et al. [1992], where every edge leading to a node with multiple
predecessors has to be split.

ACM Transactions on Programming Languages and Systems. Vol 16, No 4, July 1994

optimal Code Motion . 1123

a)

1

a)

4---

~y :=a+b~

,~:=di
.—— —.-..

(u := &&j.. ,.
..

Fig. 3. Critical edges.

b) ~----~

P
lx:= b*cl

,d:=bl
\a :=j4g$l

)-.
/u ;=.a-i-d..,,

.,
.

c)

L
-—--—

I x := b*c ‘1
,(j:=b 1

/.__— —..
...

--- Entry Part ~~j Entry (Exit) Computation

---- Exit Part -+ Entry (Exit) Point

Fig. 4. Entry and exit parts of a basic block with respect to a + b

successor of m by construction. Thus we can assume that m is not synthetic.

This implies that the edge (m, n) is uncritical, and hence m cannot have a

successor different from n. The proof of the second property is similar.

2.3 t-refined Flowgraphs

Given a computation t,a basic block n can be divided into two disjoint parts:

—an entry part consisting of all statements up to and including the last

modification of t,

—an exit part consisting of all remaining statements.

Note that a nonempty basic block always has a nonempty entry part, whereas

its exit part may be empty (for illustration see Figure 4).

For a fixed term t,the t-refined flowgraph Gt = (Nt, Et, S~, et) is obtained

straightforwardly by splitting the nodes of a usual flowgraph into their entry

and exit parts. Obviously, St and et are the entry part ofs and the exit part of

e, respectively.

t-refined flowgraphs are not relevant for the purpose of implementation.
Rather they provide a convenient framework for the theoretical foundations

of code motion. In particular, they simplify the specification and verification

of correctness and optimality.

ACM Transactions on Programming Languages and Systems, Vol. 16, No 4, July 1994.

1124 . Jens Knoop et al.

In order to distinguish nodes of the flowgraph G, i.e., basic blocks, and

nodes of the flowgraph Gf, i.e., basic-block parts, we use boldface notation like

n G N for the former and italic notation like n = iVt for the latter. Finally, to

support easy switching between both representations we introduce the follow-

ing notational convention: for a given basic block n G N the corresponding

entry and exit parts in Nt are denoted by n~ and n~., respectively, and

conversely n ● Nt refers to n c N.

2.4 Local Redundancies

In the sequel, we will concentrate on the global effects of code motion.

Therefore, it is assumed that all local redundancies are already eliminated

by means of some standard techniques for common-subexpression elimination

on basic blocks [Aho et al. 1985; Cocke and Schwartz 1970]. This guarantees

the following two properties:

(1) Every entry part contains at most one computation of t before the first
modification, which then is denoted as the entry computation.l” Further

computations of t are encapsulated by two modifications, and are there-

fore irrelevant for global redundancy elimination (Figure 4(a)). The entry

computation determines the insertion point of the corresponding entry

part: it is the point immediately before the entry computation if existent.

Otherwise it is immediately before the first modification if existent, or it

is at the end of the entry part if there is neither an entry computation nor

a modification (Figure 4(c)). This guarantees that the lifetimes of regis-

ters are kept locally minimal.

(2) Exit parts contain at most one computation of t,which then is denoted as
the exit computation. The insertion point of an exit part is immediately

before the exit computation if existent, or at the end of the exit part under

consideration otherwise.

2.5 Conventions

Following Morel and Renvoise [1979], we assume that all right-hand-side

terms of assignment statements contain at most one operation symbol. This

does not impose any restrictions, because assignment statements can be

canonically decomposed into sequences of assignments of this form according

to the inductive structure of terms. 11As a consequence of this assumption it is

enough to develop our algorithm for an arbitrary but fixed term here, because

a global algorithm dealing with all program terms is just the independent

combination of all the “term algorithms” in this case. This allows us to apply
the efficient bit-vector algorithms dealing with all terms simultaneously (see

Aho and Unman [1975], Graham and Wegman [1976], Hecht and Unman

[1973; 1977], Kam and Unman [1976], Kennedy [1975], Tarjan [1979; 1981a;

198 lb], and Unman [1973]) as well as to interleave code motion with copy

propagation using the slotwise approach of Dhamdhere et al. [1992].

10Note, e.g., in “a .= a + b,” that the computation of “a + b“ is prior to its modification.

11Note that rearranging the term structure exploiting, e.g., associativity and commutativity of

some operators, may offer new opportunities for code motion.

ACM Transactions on Programming Languages and Systems, VO1 16, No 4, July 1994

Optimal Code MotIon . 1125

In the following, we therefore develop our algorithm for an arbitrary but

fixed flowgraph G and a given term t, which avoids a highly parameterized

notation. Moreover, we denote the entry and exit computations as code

motion candidates.

3. THEORY

In this section the lazy-code-motion transformation is stepwise developed for

flowgraphs whose nodes are basic blocks, and its correctness and optimality

are proved. Important is the introduction of t-refined fl!owgraphs, which

provide an appropriate framework for the concise formalization of the rele-

vant aspects of code motion, e.g., admissibility requirements and optimality

criteria.

Section 3.1 presents the basic concepts of code motion. Central are the

notions of safety and correctness, because they guarantee that code motion

preserves the semantics of the argument program. Computational and life-

time optimality, which are discussed afterward, characterize the quality of

code motion. Sections 3.2 and 3.3 specify transformations for computationally

and lifetime-optimal code motion, respectively. As we will show, there is a

variety of computationally optimal code motions, among which there is a

unique lifetime-optimal representative. The known code motion algorithms

focus on computational optimality and treat the lifetime aspect, at most,

heuristically. In fact, lifetime optimality was first achieved in Knoop et al.

[1992].

3.1 Code Motion

A code motion transformation CM is completely characterized by two predi-

cates on nodes in N.

—Insertc~, determining in which nodes computations have to be inserted,

and

—Replc~, specifying the nodes where code motion candidates have to be

replaced.

It is assumed that Replc~ implies Comp. Moreover, in order to avoid the

introduction of new local redundancies ReplcM must be implied by the

conjunction of Insertc~ and Comp. Obviously this does not impose any

restriction on our approach. We only avoid transformations that keep a code

motion candidate even after an insertion into the corresponding node.
The transformation itself comprises the three steps summarized in Table I.

We will denote the set of code motion transformations with respect to t by

$3X.

For each n = N we define two local predicates:

—Comp(n): n contains a code motion candidate of t.

—Transp(n): n is transparent, i.e., it does not contain a modification of t.

These local predicates are the basis for the definition of all global predicates

introduced in this article, which always refer to the insertion point of the part

ACM Transactions on Programmmg Languages and Systems, Vol 16, No. 4, July 1994

1126 . Jens Knoop et al.

Table I. General Pattern ofa Code Motion Transformation

I 1 Introduce anew temporary variable hckf for t. I
2. Insert assignments hCM:=t at the insertion points of all n E N

satisfying InsertCM.

3. Replace the(unique) code motion candidate oft by hcM inevery nE N

satisfying Replchf.

under consideration. In order to address program points that have a computa-

tion of t after applying a code motion transformation CM, we use the

following indexed version of the predicate Comp:

Compc~ (n) =~f Insertc~l (n) V Comp(n) A T Replc~(n)

Logical formulas are built according to the following priority @ of operations

and quantifiers: ~(n) > 4(A) > +(V) > 4(+) = 4(~) > +(’d) = +(2). Fi-

nally, any local or global predicate Predicate defined for nodes n E N is

extended to path arguments in two ways: 12

—PredicateV(p) = ‘dl < i < hP. Predicate(p,)

—Predicate7(p) - 31< i < AP. Predicate(p,)

3.1.1 Safety and Correctness. In order to guarantee that the semantics of

the argument program is preserved, we require that code motion transforma-

tions are admissible. Intuitively, this means that every insertion of a compu-

tation is safe, i.e., on no program path is the computation of a new value

introduced at initialization sites, and that every substitution of a code motion

candidate by hcM is correct, i.e., hcM always represents the same value as t

at use sites. This requires that hcM is initialized on every program path

leading to some use site in a way such that no modification occurs afterward.

This gives rise to the following definition, which states when it is safe to

insert a computation of t at the insertion point of n G N, or when it is correct

to replace a code motion candidate of t by hcl[in n, respectively.

Definition 3.1 (Safety and Correctness). Let n ~ N. We define:

(1) Safe(n) ~~f Vp ~ P[s, e] Vi < AP. p, = n +

(i) 3j < i. Comp(p,) A Transp”(p[j, i [) V

(ii) 3j 2 i. Comp(p,) A Transpv(p[i,.j [)

(2) Let CM E !3/8. Then:

Correcte}~ (n) ~ ~~

Vp =P[s, rz] ~i < AP. Insertc}l(p,) A Transpv(p[i, AP[)

Restricting Definition 3. l(l) to either condition (i) or (ii) leads to the notion

of up-safe and down-safe basic block parts, respectively.

—
lZ Note that ~ Predicatev(p) and ~ Predlcateg(p) are now abbreviations for 31 s i s Ap. T Pre-

dLcate(p,) and VI <1< hP. ~ Predzcate(p,), respectively.

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No 4, July 1994.

Optimal Code Motion . 1127

Definition 3.2 (Up-Safety and Down-Safety).

(1) ‘dn G N. U-Safe(n) ~ ~f

‘dp ● P[s, n] 3i < &. Cornp(p,) A Transpv(p[i, AP[)

(2) Vn e N. D-Safe(n) e ~f

kfp = P[n, e] qi < A,. Cornp(p,) A Transpv(p[l, i[)

We have:

LEMMA 3.3 (Safety Lemma).

Vn. G iV. Safe(n) ~ D-Safe(n) V U-Safe(n).

Whereas the backward direction is obvious, the converse implication is

essentially a consequence of the fact that we are only considering nondeter-

ministic branching: every path leading to a node can be completed by every

path starting at that node. In particular, every path violating the up-safety

condition at a node n can be linked to every path violating the down-safety

condition at n. This yields a path violating the safety condition at n and

proves the contrapositive of the forward implication.

Now we can define the class of admissible code motion transformations,

which are guaranteed to preserve the semantics of the argument program.

Definition 3.4 (Admissible Code Motion). A code motion transformation

CM = iZ@ is admissible if and only if for every n G N the following two

conditions are satisfied:

—InsertcM(n) * Safe(n)

—Replc~(n) ~ Correctc~(n)

The set of all admissible code motion transformations is denoted by %.~?~~~.

We have:

LEMMA 3.5 (Correctness Lemma)

The proof can be found in Appendix A. 1.

3.1.2 Computational Optimality. The primary goal of code motion is to

minimize the number of computations on every program path. This intent is

reflected by the following relation. A code motion transformation CM =

E@Adm is computationally better 13 than a code motion transformation CM’

G %’.~~~~ if and only if

Vp ● P[s, e]. l{ilCompcM(p,)}l Sl{ilCompcMr(pL)}l.

Definition 3.6 (Computationally Optimal Code Motion). An admissible

code motion transformation CM = ~.t’~~ is computationally optimal if and

13Note that this relation is reflexive. In fact, computatzonally at least as good would be the more
precise but uglier term.

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994.

1128 . Jens Knoop et al

only if it is computationally better than any other admissible code motion

transformation. We denote the set of computationally optimal code motion

transformations by t%X’c~PoP~.

3.1.3 Lifetime Optimality. The secondary goal is to avoid unnecessary

code motion, which can cause superfluous register pressure. This requires us

to minimize the lifetimes of temporary variables that are introduced by a

computationally optimal code motion transformation. Locally, i.e., within a

basic-block part, this is guaranteed when using the insertion points (cf.,

Section 2.4) for initialization. Globally, lifetime optimality means minimal

lifetime ranges for temporary variables in terms of paths through the flow-

graph. Formally, it is defined relative to the following (reflexive) relation:

CM E f7.& is lifetime better than a code motion transformation CM’ = %’.& if

and only if

kip E LtRg(CM) 3q = LtRg(CM’). P E q

where LtRg(CM) denotes the set of lifetime ranges of CM, which is defined

by:

LtRg(CM) =,f (plInsertc~(pl) A Replc~(pAP) A ~ Insert~~(p]l, ~,])).

Definition 3.7 (Lifetime-Optimal Code Motion). A computationally opti-

mal code motion transformation CM = %ffcm ~oP~ is lifetime optimal if and

only if it is lifetime better than any other computationally optimal code

motion transformation. The set of lifetime-optimal code motion transforma-

tions is denoted by %Z?’~oP~.

Intuitively, lifetime optimality guarantees that no computation has unnec-

essarily been moved, i.e., without runtime gain. Hence, any superfluous

register pressure due to unnecessary code motion is avoided. Clearly, a

simultaneous investigation of all variables of a program may allow us to

reduce the register pressure in a program even further. However, to our

knowledge, this problem has not yet been investigated (cf., Section 3.3. 1).

In contrast to computational optimality, which in fact can be achieved by

different code motion transformations, there exists at most one lifetime-opti-

mal code motion transformation.

THEOREM 3.8 (Uniqueness of Lifetime-Optimal Code Motion)

PROOF. Let CM, CM’ ● %4’~~oP~. To prove that CM = CM’ we must show:

Vn c N. Insertc~f (n) ~ Insertc~, (n) (1)

Vn E N. ReplchI (n) * ReplchI, (n) (2)

For symmetry reasons it is sufficient to prove only one direction of the logical

equivalences. Starting with (1), the computational optimality of CM delivers

the following proposition which is immediate from the fact that any other

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 4, July 1994

Optimal Code Motion . 1129

kind of initialization could be suppressed without affecting the admissibility

of CM:

lnsertc~(n) + 3m ● N 3p E P[n, m]. p ELtRg(CM).

Due to the lifetime optimality of CM there is a path q = LtRg(CM’) such

that p E q. Now, assuming ql + n the lifetime optimality of CM’ would yield

a lifetime range p’ 6 LtRg(CM) with q E p’, which according to the defini-

tion of lifetime ranges would imply = lnsertc~(n) in contradiction to the

premise of the implication under consideration. Thus, n = ql, which directly

yields the validity of lnsert~~(n). Eq. (2) is a consequence of the following

chain of implications:

Replc~ (n)

(CM E t3’A’A~~) * Comp(n) A Correctc~ (n)

(1) ~ Comp(n) A eorrectc~(n)

D

Finally, we introduce the set of first-use-lifetime ranges of a code motion

transformation CM, which are particularly useful when arguing about com-

putation points of different code motion transformation (Lemma 3.12):

FU-LtRg(CM) ‘~~{p E LtRg(CM)lVq c LtRg(CM). (q EP) * (q ‘P)}.

Obviously, we have:

LEMMA 3.9 (First-Use-Lifetime Range Lemma). Let CM ● %?’4, p =

P[s, e], il, iz,jl,jz indices such that p[il, jl] G FU-LtRg(CM), and p[iz,~~]

G FU-LtRg(CM). Then

—eitherp[il, J”l] andp[iz, jz] coincide, i.e., il = iz and J”l =Jz, or

—P[il, jll andp[iz, jzl are disjoint, i.e., jl < iz orjz < il.

A formal proof is given in Appendix A.2.

3.2 Busy Code Motion

In this section we present the busy-code-motion transformation which, as in

Knoop et al. [1992], realizes the “as-early-as-possible strategy” by means of a

backward and a forward analysis.

However, the formulation given here characterizes earliest program points

in terms of up-safety and down-safety. 14 This reduces the computation of

earliestness to two well-known data flow analyses that are likely to be

already implemented in many commercial compiler systems, and therefore

simplifies the implementation of our algorithm. Moreover, this new charac-

terization makes our approaches for busy and lazy code motion conceptually

symmetric: whereas earliest placement points can be seen as the entry points

into safe program areas, latest placement points are the exit points of
program areas where a computationally optimal placement is possible.

14Asimilar modification was also proposed by Drechsler and Stadel [1993]

ACM Transactions on Programming Languages and Systems, Vol 16, No. 4, July 1994.

1130 . Jens Knoop et al.

We will now proceed by first characterizing earliestness in terms of up-

safety and down-safety, and subsequently presenting the busy-code-motion

transformation together with its main properties.

3.2.1 Earliestness. The busy-code-motion transformation computes t at

those program points that are safe, and where an “earlier” computation of t

would not be safe. Thus, earliest program points are defined as follows:

Definition 3.10 (Earliestness).

Vn G N. Earliest(n) =~f Safe(n)

1
true ifn=s

A v TTransp(m) v ~ Safe(m) otherwise
m =pred(n)

Lemma 3.11 summarizes some basic properties of earliestness. Whereas

the first part is essential for proving the correctness of the busy-code-motion

transformation, the remaining two parts give alternative characterizations of

earliest computation points.

The characterization in the second part states that the safety condition and

the disjunction over properties of the predecessors can be strengthened to

down-safety and a conjunction, respectively. Intuitively, the first strengthen-

ing is clear, because it does not make sense to initialize after usage, and the

second strengthening is essentially a consequence of the Control Flow Lemma

2.1.

The characterization in the third part directly reflects the intuition of

earliestness, i.e., no admissible code motion transformation can initialize

strictly earlier than in program points that are earliest (in the sense of

Definition 3.10).

LEMMA 3.11 (Earliestness Lemma). Let n ● N. Then we have:

(1) Safe(n) = Vp c P[s, n] ~i s A,. Earliest(p,) A Transpv(p[i, A,[)

(2) Earliest(n) ~ D-Safe(n) A A (T Transp(m) v m Safe(m))
m =pred(n)

(3) Earliest(n) @ Safe(n) A VC&l G %.Z~d~ . Correctc~(n) - lnsertc~(n)

The proof can be found in Appendix A.3.

3.2.2 The Busy-Code-Motion Transformation. The busy-code-motion
transformation (BCM-transformation) is specified in Table II. The intuition

behind this transformation is to move up computations as far as possible

while maintaining safety. This suggests that first-use-lifetime ranges of the

BCM-transformation are suitable for characterizing the computation points

of any admissible code motion transformation. The following lemma provides

such characterizations. 15

15In hoop et al. [1992], where first-use-lifetime ranges of the BCM-transformation are called
safe-earliest first-use paths (SEFU-paths), this lemma is called SEFU-Lemma.

ACM Transactions on Programming Languages and Systems, Vol. 16, No 4, July 1994

optimal Code Motion . 1131

Table H. Busy-Code-Motion Transformation

~

o ~nSerfBCM(?l)=dj ~arhest(n)

LEMMA 3.12 (Busy-Code-Motion Lemma). Let p = P[s, e]. Then we have:

(1)Vi s AP. Insert~c~ p,() ~ =.j > i. pi,.jl = FU-LtRg(BCM)

(2) VCM = $i%%”~~ Vi, j s AP. p[i, j] ● LtRg(13CM) = Comp~~(p[i, j])

(3) VCM ~ %lLcmPoPt Vi s A .
Compc~(pi) * lj s i < 1?p[j, 1] ● FU-LtRg(BCM)

Details of the proof are given in Appendix A.4. We are now able to prove the

main result about the BCM-transformation.

THEOREM 3.13 (Busy-Code-Motion Theorem). The BCM-transformation is

computationally optimal, i.e., BCM E %%?cm~oPt.

PROOF. The proof proceeds in two steps showing (1) BCM e %’&i’~~n and

(2) BCM G %’JZtCmpOp,.

The definition of earliestness and Lemma 3.11(1) yield that lnsert~c~

implies Safe and Repl~c~ implies Correct~c~, respectively, which proves

(l). For (2) let CM G &..ZAd~ and p G P[s, e]. Then we have as desired:

(Def. BCM)

(Lemma 3.9 and 3.12(1))

(Lemma 3.12(2))

3.3 Lazy Code Motion

l{i\Comp~c~(pz)}l

=l{ilInsert~c~(p,)}l

=l{ilElj. p[i, j] ● FU-LtRg(BCM)}l

<l{ilCompc~(p,)}l ❑

Busy code motion optimally minimizes the number of computations; however,

lifetimes of temporary variables are not taken into account. In fact, as a

consequence of Lemma 3.12(3) we obtain that the lifetimes introduced by the

BCM-transformation are even maximal.

LEMMA 3.14. b’CM c &&!2c~PoP, ~p G LtRg(CM) 3q G LtRg(BCM). p L q.

The formal proof is given in Appendix A.5.

In this section, we modify the BCM-transformation along the lines of

Knoop et al. [1992] in order to minimize the lifetimes of temporary variables.

The idea behind this modification is to successively move the insertions of the

BCM-transformation as far as possible in the direction of control flow while
maintaining computational optimality. It will be shown that this leads to a

lifetime-optimal code motion transformation, which according to Theorem 3.8

is even unique.

ACM Transactions on Programming Languages and Systems, Vol. 16, No, 4, July 1994,

1132 . Jens Knoop et al.

The section is organized in three parts. In the first part the predicate

Latest is introduced, which exactly characterizes how far the insertions of the

BCM-transformation can be moved in the direction of control flow without

violating computational optimality. Subsequently, the corresponding code

motion transformation is presented, which is lifetime optimal, except for

trivial uses of registers, i.e., registers may be used just to transfer a value to

the next statement. The lazy-code-motion transformation, which is presented

in the third part, suppresses also these trivial uses. This suffices to prove our

main result: the lifetime optimality of the lazy-code-motion transformation.

3.3.1 Latestness. Intuitively, the initializations of the BCM-transforma-

tion can be delayed on every program path reaching e as long as computa-

tional optimality is preserved. This leads to the notion of delayability:

Definition 3.15 (Delayability).

Vn G N. Delayed(n) = ~f

Vp=P[s, n]3i<AP. ~arliest(p,) A ~Cornp=(p[i, ~P[)

The following properties of delayability are important for the proof of

Theorem 3.18, which characterizes the “maximally delayed” code motion

transformation.

LEMMA 3.16 (Delayability Lemma).

(1) Vn ● N. Delayed(n) = D-Sa~e(n)

(2) Vp = P[s, e] Vi < hP. Delayed(p,) +
~j < i <1. p[j, 1] ● FU-LtRg(BCM)

(3) VCM = %7.&&PoP, Vn c N. CompC&l(n) * Delayed(n)

It is worth noting that Lemma 3.16(3) for the first time exactly character-

izes the program points, where computationally optimal placements may

insert computations. In fact, the set of computation points of a computation-

ally optimal placement is a subset of the set of delayed nodes. This observa-

tion supports the construction of computationally optimal code motion trans-

formations that satisfy additional optimality criteria, e.g., (1) code is not

unnecessarily moved, (2) the number of inserted computations is minimal,

i.e., the static code length becomes minimal, or (3) the overall register

occupancy (cf., Section 3.1.3) is minimized.
In the following this is demonfitrated for the goal of avoiding any unneces-

sary code motion. Intuitively, this means that computations are only moved if

this yields some runtime gain, which requires us to minimize the individual

lifetimes of temporaries introduced during the code motion process. Here the

predicate Latest, which characterizes the maximally delayed program parts,

is central:

(‘dn ~ N. Latest(n) =~f Delayed(n) A Comp(n) v V T Delayed(m)
mEsucc(n) 1

ACM Transactions on Programming Languages and Systems, Vol. 16, No 4, July 1994

Optimal Code Motion . 1133

Table III. Almost-Lazy-Code-Motion Transformation

I 1

I O @/,4LcM(ll)=df c07Tlp(71) I

The proof of the following properties of latest program points can be found

in Appendix A.7.

LEMMA 3.17 (Latestness Lemma).

(1) VP G LtRg(BCM) 3i < h,. Latest(p,)

(2) Vp E LtRg(BCM) Vi < AP. Latest(p,) + 1 Delayed3(pli, A,])

3.3.2 The Almost-Lazy-Code-Motion Transformation. Like earliestness

latestness induces also a code motion transformation, called almost lazy code

motion (ALCM-transformation), which replaces all code motion candidates

(see Table III).
The ALCM-transformation moves the initializations of the BCM-transfor-

mation in the direction of control flow as far as possible without losing

computational optimality. As we will see, this is almost sufficient to yield

lifetime optimality except for the presence of unnecessary trivial lifetime

ranges. In fact, the following, slightly weaker notion of lifetime optimality

holds.

CM G ~.z’&PoPt is called almost lifetime optimal if

~p E LtRg(CM). /iP >2 ~ VCM’ E 27.&&PoP, 3q E LtRg(CM’). p L q

Note that this definition coincides with the definition of lifetime optimality

except for the treatment of lifetime ranges of length 1, which are not

considered here at all. Thus, lifetime optimality implies “almost lifetime

optimality.” Denoting the set of almost-lifetime-optimal-code-motion transfor-
mations by F. E~L~oP~, we obtain:

THEOREM 3.18 (Almost-Lazy-Code-Motion Theorem). The ALCM-transfor-
mation is almost lifetime optimal, i.e., ALCM ● ~~YALtopt.

PROOF. We proceed in three steps: (1) ALCM G &YZ~~n, (2) ALCM =

%Udcmpopt, and (3) ALCM ~ ~JALtOpt.

(1) Obviously, due to the definition of latestness and Lemma 3.16(1) every

n = IV with InsertA~c~(n) is safe. Thus it remains to show:

Vn G N. ReplALc~(n) + CorrectAL~~(n)

Clearly, ReplALc~ implies Repl~ ~~, which because of the admissibility of

the BCM-transformation implies Correct~c~. Hence, applying Lemma 3. 17(1)

we also obtain CorrectA~c~ (n) as desired.

ACM Transactions on Programming Languages and Systems, Vol. 16, No 4, July 1994.

1134 . Jens Knoop et al.

(2) For any p ~P[s, e] the following sufficient sequence of inequations

holds:

l{ilcompALcM(pL)}l

(Def. ALCM) = l{il~nsert~~c~(p,)} I

(*) <I{(i,.j)l=p[i, jl ● Fu-LLRg(BcM)}l

(Def. LtRg(BCA4), Lemma 3.9) = [{illnsert~c~ (p,)} I

(Def. BCM) = l{ilCOWBCM(P,)} I

The inequation marked by (*) needs a short explanation. Due to Lemma

3.16(2) we are able to map every index i with lnsert~~c~(p,) (which in

particular implies Delayed(p,)) to a lifetime range p[j, 11 E FU-LtRg(BCM)

with j s i < 1. Following 3.17(2) this mapping is injective, which justifies (*).

(3) Let P G LtRg(ALCM) with AP >1, and CM c ~.flc.PoP,. Then we
have:

P E LtRg(ALCM)

(Lemma 3.14) ~ ~q = LtRg(BCM). p E q

(Lemma 3.17(2)) - ~ Delayedq(p]l, ~,])

(AP >1 and Lemma 3.16(3)) + Replc~(pAP) ~ 1 lnsert~~(p]l, API)

3.3.3 The Lazy-Code-Motion Transformation. The ALCM-transformation

still replaces every code motion candidate. It therefore has to insert initializa-

tions, even if they can be used only immediately after the insertion point

itself. In order to avoid this drawback, such trivial lifetime ranges must be

detected. This leads to the following definition.

Definition 3.19 (CM-Isolation). VCM E @.@ Vn E N.

Isolatedc~ (n) H ~~

Vp ~P[n, e] V1 <i < AP. Replc~(p,)

- lnsert~~(p]l, i])

The following lemma states two important properties of isolation. The first

part gives an alternative characterization of isolation by means of the notion

of lifetime ranges, and the second part deals with the parameter CM in the

definition of the isolation predicate. For latest program points the isolation

property coincides for all computationally optimal code motion transforma-

tions CM. This allows us to choose the earliest-dependent isolation predicate
for our lazy-code-motion transformation, which is advantageous in practice

(cf., “Pragmatic” at the end of Section 4.1). The proof of Lemma 3.20 can be
found in Appendix A.8.

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No 4, July 1994

optimal Code MotIon .

Table IV. Lazy-Code-Motion Transformation

o ~~,$e~t~c~(n)cdj Latest(n) A qlsolatedBCM(n)

● ~eP~~CM(n)Gdf Comp(n) A =(Latest(n) A ~so/UfedBC&f(~))

LEMMA 3.20 (Isolation Lemma).

(1) VCM G %’#’ Vn c N. Isolatedc~(n) ~

Vp E LtRg(CM). (n) Lp * hP = 1

(2) VCM s i%#&PoP, Vn = N. Latest(n) ~

(lsolatedc~(n) = lsolated~c~(n))

1135

The lazy-code-motion transformation (LCM-transformation) is specified in

Table IV. In fact, it is the unique lifetime-optimal-code-motion transformation

(Corollary 3.22).

THEOREM 3.21 (Lazy-Code-Motion Theorem). The LCiW-transformation is

lifetime optimal, i.e., LCi14 E t%z?~toPt.

PROOF. Here the proof is divided into four parts, namely (1) LCM G %X’,

(2) LCAI G %’/4”Ad. > (3) LCM = %’&?~~PoP~, and (4) LCM E Z%#Z~toPt.

(1) In contrast to the BCM- and the ALCM-transformation, where all code

motion candidates are replaced, it is not obvious that the LCi14-transforma-

tion does not introduce local redundancies. Thus, we have to show that the

conjunction of Insert~c~ and Comp implies RePILcM. Obviously, InsertLcM

implies 1 Isolated~ ~~, and together with Comp this finally yields RePILcM.

(2) The same argument as for the ALCM-transformation yields that ln-

sertL~~ implies Safe. Thus, we are left with showing that RePIL~M implies

(hrrdLcJ,f,which is proved by the following case analysis.

Case 1. Latest(n) holds. By definition (Table IV) the conjunction of

Repl~c~(n) and Latest(n) implies m IsOZated~cM(n) and therefore

InsertLc~(n), which trivially establishes Correct~cM(n).

Case 2. Latest(n) does not hold. Clearly, RePILcM implies ReplALc~. The

admissibility of the ALCM-transformation together with 1 Latest (n) delivers

VpGP[s, n]3i<AP. InsertALc~(p,) A Transpv(p[i, AP[).

Choosing i as the maximal index satisfying hse~t~LcJ,f(p,) this can be

strengthened as follows:

Vp G P[s, n] Sli < AP. p[i, AP] ~LtRg(ALCM) A Transpv(p[i, AP[).

Applying Isolation Lemma 3.20(1) yields

Vp ~ P[S, n] ~i < Ap. -kteSt(PZ) A 7 kOlated~LCM(Pl)

A Transpv(p[i, AP[)

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1136 . Jens Knoop et al.

which also implies according to the second part of the Isolation Lemma 3.20:

Vp GP[s, n] 3i <Ap. Latest(p,) A ~ Isolated~c~(p,) A Transpv(p[i, AP[).

This finally establishes Correct~c~(n) as desired.

(3) Obviously, the number of computations in every n G N is the same for
both the LCM- and the ALCM-transformation.

(4) Since Insert~c~ implies InsertA~c&I, and Repl~c~ implies Repl~~c~

for any n E N, we have:

LtRg(LC’M) c LtRg(ALCM)

Thus, the “almost lifetime optimality” of ALCM carries over to LCM (see

Theorem 3.18). It remains to show for any CM G 8’Yt’c~PoPt:

Y(n) ~LtRg(LCM) 3p ~LtRg(CM). (n) LP. (3)

Let (n) e LtRg(LCM). According to the definition of the LCM-transforma-

tion 7 Isolated~c~(n) holds. Thus Lemma 3.20(2) implies m IsoZatedALcM (n),

and Lemma 3.20(1) guarantees the existence of a lifetime range q G

LtRg(ALCM) satisfying

A~22A(n)Eq.

Now the almost lifetime optimality of the ALCM-transformation completes

the proof. ❑

Applying Theorem 3.8 the previous theorem can even be strengthened as

follows:

COROLLARY 3.22. The LCM-transformation is the unique lifetime-optimal-

- {LCM}.code-motion transformation, i.e., %~L ~o ~t —

4. PRACTICE

In the previous section, transformations for busy and lazy code motion were

presented with respect to t-refined flowgraphs. The goal of this section is to

present practice-oriented algorithms realizing the BCM- and LCM-transfor-

mation, which do not require the construction of t-refined flowgraphs. This is

achieved in three steps. First, the implementation-relevant information about

the algorithms is summarized in a concise and self-contained way. Second, a

detailed discussion of the introductory example is given. And third, the gap

between the theoretical and the practical presentations of the transforma-

tions is closed, showing that the practical versions do in fact satisfy the

optimality criteria of Section 3.

4.1 Implementing Lazy Code Motion

In this section, we present our algorithms for busy and lazy code motion

using standard notation (see Morel and Renvoise [1979]), where “ +”, “.”, and

“overlining” denote disjunction, conjunction, and negation, respectively.

Moreover, predicates defined on complete basic blocks will be distinguished

from predicates defined on basic-block parts using boldface notation. Working

directly on the argument flowgraph requires the refinement of the predicates

introduced in Section 3, e.g., Comp defined for basic-block parts is split into

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

Optimal Code Motion . 1137

Table V. General Pattern of a Code Motion Transformation

1. Introduce a new temporary variab~e hcM for t

2. (a)

(b)

3. (a)

(b)

Insert assignments h CM := t at the insertion point of the entry part
of all n G N satisfying N- INSERTcM

Insert assignments hc~ := t at the insertion point of the exit part
of all n G N satisfying X-I NSER’TCM

Replace the (unique) entry computation of t by hc~ in every
n E N satisfying N-R EPLACEcM

Replace the (unique) exit computation of t by hcM in every
n E N satisfying X- REPLACEcM

an entry-predicate N-COMP and an exit-predicate X-COMP for nodes n E

The predicates for the local properties of-a basic block n are:lG

—TRANSP~: n is transparent for t.

—N-COMP~: n has an entry computation of t.

—X-COMP~: n has an exit computation of t.

Finally, like in Section 3 (see Table I) the insertion and replacement

predicates of Tables VI and VII specify a code motion transformation in the

way described in Table V. Remember that all predicates of Tables VI and VII

refer to the uniquely determined insertion points of a basic block (c f., Section

2.4).

Pragmatic

The two analyses involved in the BCM-transformation are completely inde-

pendent of each other. Thus, they can be computed in parallel in order to

achieve a further speedup of the algorithm. In fact, the choice of the earliest-

dependent isolation predicate also allows the parallel computation of the

other two analyses 17 of the LCM-transformation (see Section 3.3). Thus, the

LCM-transformation can be computed in only two sequential steps, which

improves on our presentation in Knoop et al. [1992], where all four computa-

tion steps must be determined sequentially.

Remark 4.1. It is worth noting that the delay analysis of the LCM-trans-

formation can also be fed with the insertion points delivered by the original

algorithm of Morel and Renvoise [1979]. Due to the specialties of their

framework, which assumes that the result of every computation is written to

a (symbolic) register,18 computations cannot be isolated by definition, and

16In Morel and Renvoise [1979] N-COMP is called ANTLOC, and a predicate COMP is used in
place of the slightly different X-COMP.
“Note that Table VII (Part 3) does not specify a data flow analysis!
18The isolation analysis determines whether it is advantageous to initialize a register, which is
justified whenever the considered value may be used twice.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1138 . Jens Knoop et al.

Table VI. Busy-Code-Motion Transformation

1. Safety Analyses:

a) Down-Safety Analysts

N-D-SAFE. = N-COMP. + TRANSP. X-D-SAFE.

{

false tfn=e

X-D-SAFEn = X-COMPn +
~ N-D-SAFEm othemmse

xn~succ(n)

I -.-+ Greatest fixed point so]ution: IV-D-SAFE* and X-D-SAFE*

b) Up-Safety Analysts

[

false zfn=s

N-U-SAFEn =
~ (X-COMPm + X-U-SAFEm) otherwzse

m:pred(n)

II X-U-SAFEn = TRANSPn (N-COMPn + N-L!-SAFEn)

11-+ Greatest fixed point solution: N-U-SAFE* and X-U-SAFE*

2. Computation of Earltesiness: (No data flow analysts!)

N-EARLIESTm =~j N-D-SAFE: ~ (X-U-SAFE&+ X-D-SAFE:)

tn~prc~(n)

X-EARLIEST. =~, X-D-SAFE; TRANSPn

3. Insert ton and Replacement Points of the Busy Code h~otzon Transformation:

N-I NSERT:cM =df N-EARl,l ESTn

X-I NSERT:cM =dj X-EARL IESTn

N- REPLACE:cM =d, N-COMPn

X-R EPLACE~cM =d, X-COMPn

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No, 4, July 1994

Optimal Code Motion . 1139

Table VII. Lazy-Code-Motion Transformation

. Perform steps 1) and 2) of Table 6.

‘. Delay ability Analysis:

{

false if n=s

N-DELAYEDn = N-EARLIEST. +
~ X-COMPm ~X-DELAYEDm othenois

m~pred(n)

X-DELAYED. = X-EARLIEST. + N-DELAYEDn . N-COMPn

+ Greatest fixed point solution: N-DELAYED* and X-DELAYED*

‘. Computation of Latest ness: (No data flow analysis!)

N-LATEST. =d, N-DELAYED;, N-COMPm

X-LATESTn =dj X-DELAYED: (X-COMPn + ~ N-DELAYED:)

mcsucc(n)

Isolatton Analysts:

N-lSOLATEDn = X-EARLIESTn + X-ISOLATED.

X-lSOLATEDn = ~ N-EARLIESTm + N-COMPm N-lSOLATEDm

mesucc(n)

-+ Greatest fixed point solution: N-ISOLATED* and X-ISOLATED*

Insert ton and Replacement Points of the Lazy Code A40tzon Transformation:

N-INSERT:cM =d, N-LATESTn N-ISOLATED:

X-I NSERT:cM =df X-LATEST,, . X-ISOLATED:

N-REPLACE:cM =dj N-COMPn N-LATEST,, N-ISOLATED;

X-REPLACE::M =d, X-COMPn X-LATESTn X-ISOLATED: ..
t

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994,

1140 . Jens Knoop et al.

Fig 5. The motivating example

1[

Y =a+b

2 a,=c

,r, =a+b

31
v

I

Jb

I +
7 y = a+b

2%’10

hence, the isolation analysis can be dropped. Minor modifications of the delay

and latestness analyses due to the different choice of where to insert compu-

tations in a basic block are straightforward and similar to those of Drechsler

and Stadel [1993]. Hence, the effect of lazy code motion can be achieved by

completely retaining a possibly existing implementation of Morel and Ren-

voise’s algorithm. Note, however, that the overall complexity of an upgraded

implementation of their algorithm is worse than that of our LCi14-transfor-

mation, since their algorithm requires the computation of the four predicates

up-safe, down-safe,lg partial available, and placement possible, which is even

bidirectional, whereas our LCM-transformation is only based on the

(unidirectional) computation of up-safety and down-safety.

4.2 Example

In this section we illustrate the computation of the entry- and exit-predicates

defined in Section 4.1 for the introductory example of Figure 1. As described

in Section 2.2, we assume that every critical edge of the original flowgraph is

split by inserting a synthetic node. This step transforms the flowgraph of
Figure 5 to the one of Figure 6. Here a synthetic node inserted on an edge

leading from a basic block n to a basic block m is represented by a dashed box

with name S. ~.
Figure 7 shows how entry- and exit-earliestness are determined according

to the results of the down-safety and up-safety analysis. Intuitively, the

‘g In Morel and Renvoise [1979] up-safety and down-safety are called avadability and antlcipabil-

ity, respectively.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 4, July 1994

Optimal Code Motion . 1141

Q
1

y:=a+b

2 a:=c s,,;- --1
--- ,

X = a+b

3

.
s ,-KI
35I --—- 4

++

4 y=a+b 5

s,,,;- --1
--,---

s ,-’L -- -k-l
3.61_ -,-- 59; --F- J

Fig. 6. Synthetic nodes inserted.

up-safety (down-safety) analysis propagates information in the (opposite)

direction of control flow starting with program points containing a code

motion candidate of t as long as t is not modified. Here and in the following

entry- and exit-predicates are represented by markings which are pinned at

the entry and exit of the basic blocks satisfying the predicate under consider-

ation.

Clearly, every basic block, which is not transparent, but exit-down-safe, is

exit-earliest. This holds for the basic blocks 2 and 8. Additionally, basic block

2 and the synthetic nodes S~, ~ and S3, ~ are entry-earliest, because they are

entry-down-safe due to an entry computation, and none of their immediate

predecessors is exit-down-safe or exit-up-safe. Figure 8 shows the result of

the busy-code-motion transformation.zo

Figure 9 illustrates the entry- and exit-latestness predicates, which result

from moving the initializations from the earliest program points in the

direction of control flow until any further movement would destroy the

computational optimality. Thus, every entry-delayable basic block with an

entry computation is entry-latest. In Figure 9 these are the basic blocks 2, 7,

and 9. Moreover, an exit-delayable basic block is exit-latest, if it has an exit

20Synthetic nodes without computations can always be suppressed.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1142 . Jens Knoopet al.

Fig.7. Computation ofearliestness.

G-
1

y:=a+b

2 (JI~ s,,:- --l—.I
x.=a+b

4

e U-Safe*

~ D-Safe’ &

d

9 x :=.a+b

o Earliest
10

computation like the basic block 2, or if one of its immediate successors is not

entry- delayable like the synthetic node S~, ~.

As illustrated in Figure 10, the corresponding almost-lazy-code-motion

transformation inserts entry and exit initializations h = a + b in every basic

block being entry-latest and exit-latest, respectively, and replaces all code

motion candidates of a + b by h.

Note that both initializations in basic blocks 2 and 9 are unnecessary, since

they are only used immediately afterward in the same block. This effect is

finally suppressed by means of the isolation analysis.

Figure 11 displays the result of the backward analysis for entry- and

exit-isolation. Intuitively, this analysis propagates the isolation information,

which is obviously valid at the exit of the program as well as immediately
before a reinitialization at an earliest program point, toward the start node
until an initialization would cover a code motion candidate of t later on. For

example the entry-latest basic block 9 is also entry-isolated, whereas the

entry-latest basic block 7 is not. The lazy-code-motion transformation pre-

sented in Figure 12 differs from the almost-lazy-code-motion transformation

of Figure 10 in that (1) isolated initializations are suppressed and (2) the

corresponding code motion candidates remain in the program. This concerns
all initializations in entry or exit parts that are marked both isolated and

latest.

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 4, July 1994,

optimal Code Motion . 1143

a1

h:=a+b

~ y:,; h

a–c

h = a+b
X:=h

3

Fig. 8. Busy-code-motion transformation.

4.3 Combining Theory and Practice

In this section the gap between the theoretical and the practical presenta-

tions of the busy and lazy code motion transformations is closed by proving

the equivalence of their corresponding predicates. Clearly, this is sufficient to

establish the optimality results of the theoretical Section 3 for the implemen-

tation-oriented algorithms specified in Tables VI and VII. The equivalence of

the local predicates is trivial:

LEMMA 4.2. Let n G N. then we have:

(1) Trarzsp(n~) ~ TRANSPm

(2) Comp(n~) ~ N-COMP.
Cornp(nx) ~ X-COMP~

The proof for the global predicates is more involved:

THEOREM 4.3 (Implementation Theorem). Let n G N. Then we have:

(1) D-Safe(n~) ~ N-D-SAFE:

D-Safe(nx) ~ X-D-SAFE:

(2) U-Sczfe(n~) ~ N-U-SAFE:
U-Safe(nx) ~ X-U-SAFE;

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1144 . Jens Knoop et al.

!$2
1

Y’=a+b ~,~:- --1
2 a:=c ---- J

x:=a+b

3

~ .4,, r-&_-: &,o>--,
351_ _J

?

3,61_ --—- .

. ..

4+

6

@)

~,,: - -1
___ ,

0 Earliest

@ Delayed*

O Latest
101

Fig. 9. Computation of latestness

(3) Earliest(n~) ~ N-EARLIEST.
Earliest (nx) ~ X-EARLIEST.

(4) Delayed(n~) -= N-DELAYED:
Delayed ~ X-DELAYED:

(5) Latest(n~) + N-LATESTn
Latest(nx) ~ X-LATEST.

(6) Isolated BCII (niv) ~ N-ISOLATED*
Isolated~c~(nx) + X-ISOLATED~

PROOF. (3) and (5) are simple consequences of (l), (2), (4), and (6), where

in the case of(3) also Lemma 3.11(2) is used. Central for the “ + “-direction of

the remaining proofs is to derive an invariant for the predicates of the theory

part from their definition. 21 Conversely, the “ e= “-direction can be proved by

21This is straightforward, except for the case of (6) Here we have:

Isolated~c~ (n) w A Earliest(m) v T Comp(m) A Zsolated,c.,(m~
In Eszcc (n)

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No 4, July 1994

Optimal Code Motion . 1145

1]

h:=a+b

~ y.=h

n,=c

h:=a+b
x:=h

\ 1

31 I

8
~:=h
a=c

h:=a+b
9 X,=h

lo~ 1

Fig. 10. Almost-lazy-code-motion transfor-

mation.

means of a suitable induction showing that the fixed-point characterization of

the practical part implies the path condition stated in the theoretical part.

Since the proofs for all remaining parts are analogous, we only evolve the

first part here.

“ ~ “. Here, the definition of down-safety directly yields as the appropriate

invariant:

/

false ifn = e

D-Safe(n) = Comp(n) v Transp(n) A A D-Safe(m) otherwise
m =succ(n)

(4)

Additionally, D-Safe induces two global predicates on basic blocks N-FIX and

X-FIX defined by N-FIX. = ~f D-Safe(n~) and X-FIX. = ~~ D-Safe(nx) for

any n G N.

N-D-SAFE* and X-D-SAFE* are defined as the greatest fixed-point solu-

tion of the equation system of part (a) of Table VI. In order to complete the

proof of the first implication it suffices to show that N-FIX and X-FIX define

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1146 . Jens Knoop et al.

Fig. 11. Isolation analysis

S@&A41

() Latest
.

@$ lsolated- lom

a fixed-point solution of this equation system. We have:

N-FIX.

- D-Safe(n~)

(Eq. (4)) -= Cornp(n~) V l“ransp(n~) A D-S’afe(n.Y)

(Lemma 4.2) ~ N-COMP. V TRANSP. A D-Safe(nx)

~ N- COMP~ V TRANSP~ A X-FIXn

Obviously we have X-FIX, = X-COMP~. Thus, let n G N \ {e}, where we

have:

X-FIX.

* D-Safe(nAY)

(Eq. (4)) * Comp(nx) v 7’ransp(nx) A A D-Safe(m)
mEsucc(nx)

* C’omp(nx) V A D-Safe(m~)
m=succ(n)

Lemma 4.2) = X-COMPn v A N-FIXm
m ● succ(n)

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994

Optimal Code Motion . 1147

/

Fig. 12. Lazy-code-motion transforma-

tion.

?42
8h

~ ,.=
~:=c

gx:=a+b

10

“ ~”. This implication is an immediate consequence of the following propo-

sition that can be shown for every node n = N and path p G P[n, e] by

means of an induction on AP – i:

VI < i < AP. N-D-SAFE;i V X-D-SAFE;i

= ~j > i.comp(~l) A ~lTZ7ZSp(p[2, j[). ❑

5. CONCLUSIONS

We have presented a practice-oriented adaptation of the computationally and

lifetime-optimal code motion algorithm of Knoop et al. [1992], which is

composed of unidirectional standard analyses, and works on flowgraphs

whose nodes are basic blocks rather than single statements. As the original

algorithm it yields optimal results and is as efficient as the well-known

algorithms for unidirectional bit-vector analysis.

The modularity of our algorithm supports further extensions: in Knoop et

al. [1993] we present an extension of our lazy-code-motion algorithm which,

in a similar fashion as in Dhamdhere [1989] and Joshi and Dhamdhere

[1982a; 1982b], uniformly combines code motion and strength reduction, and
following the lines of Knoop and Steffen [1992a; 1992b] a generalization to

programs with procedures, global and local variables, and formal value

parameters is straightforward. We are also investigating an adaptation of the
as-early-as-necessary but as-late-as-possible placement strategy to the se-

mantically based code motion algorithms of Steffen et al. [1990; 1991].

ACM Transactions on Programming Languages and Systems,Vol 16,No 4, July 1994.

1148 . Jens Knoop et al,

Moreover, the two extreme placing strategies of generating computationally

optimal programs, which are realized by our algorithms for busy and Iaz y

code motion, offer a well-founded platform for developing a variant that also

minimizes the overall register pressure of a program.

A. APPENDIX: PROOFS

A.1 Proof of the Correctness Lemma 3.5

CorrectcfiI (n)

(Def. 3.1(2)) s Vp G P[s, n] 3Z s A,. Insertc.f(pz) A Trcmspv(p[i, AP[)

(CM= %&’’’~~) ~ Vp G P[s, n] =i < AP. Safe(p,) A Transpv(p[i, AP[)

(Lemma 3.3) == Vp = P[s, n] =i s A,. (D-Safe(p,) V U-Safe(pL))

A !i”ranspv(p[i, AP[)

(Def. 3.2(l)) s Vp G P[s, n] 3i s Ap. (lI-Safe(p,) v Conzp(p,))

A Trcmspv(p[i, Ap[)

(Def. 3.2) * D-Sczfe(n) v U-Safe(n)

(Lemma 3.3) * Safe(n)

A.2 Proof of the First-Use-Lifetime-Range Lemma 3.9

Assume that p[i ~, jl] and p[i ~, jz] neither coincide nor are disjoint. In the

case where one of the lifetime ranges, say p[il, jl], is properly contained

inside the other, the definition of first-use-lifetime ranges delivers p[i ~, jl] =

p[i ~, jz], which contradicts our assumption. Thus we can assume without loss

of generality that p[i ~, J“l] and p[Zz, J“z] intersect in a way such that i ~ < i ~ <

~1 ~ ~Z. In this case, the definition of P[i~,j21 as a lifetime range implies that
lnsertcl~ (n,,) holds, which excludes p[z~, jl] from being a lifetime range. ❑

A.3 Proof of the Earliestness Lemma 3.11

(1) This is a consequence of the following proposition which can be shown for
each node n G IV and path p G P[s, n] by means of an induction on i.

Vi s AP. Safe(p,) * 3j s i. Earliest A Transpv(p[j, i[)

(2) Since “~” is obvious, we concentrate on the other implication. For the

start node s this implication is trivially true. Otherwise, we are first going to

show:

Earliest (n) ~ D-Safe(n). (5)

ACM TransactIons on Progammmg Languages and Systems, Vol. 16, No 4, July 1994

Optimal Code Motion . 1149

We have:

Earliest (n)

(Def. 3.10) = sa~e(~) A v TTransp(m) V T Safe(m)
m ●preci(n)

(Lernrna 3.3) * Safe(n) A V ~Transp(m) v T U-Safe(m)
m spred(n)

A T D-Safe(m)

(Def. 3.2(2)) = Safe(n) A V T Transp(m) V T U-Safe(m)
m ●pred(n)

A T Comp(m)

(Def. 3.2(1)) * Safe(n) A = U-Safe(n)

(Lemma 3.3) = D-Sa~e(n)

Thus it remains to show:

Earliest (n) = A ~Transp(m) V T Safe(m)
m ●pred(n)

which can obviously be done by proving:

Earliest(n) + I pred(n)l <1.

In order to prove the contrapositive of this implication, let us fix an immedi-

ate consequence of the definition of the t-refined flowgraph: every node n = IV

with multiple predecessors is an entry part with all its predecessors being

exit parts. Thus we have:

Ipred(n)l >1 + A Transp(m) (6)
m =pred(n)

and therefore

I pred(n)l >1

(Lemma 2-1 and Eq. (6)) + s~cc(wed(n)) = {n} A A Transp(m)
m spred(n)

((Def. 3.2(2)) + D-Safe(n) = A Transp(m) A D-Safe(m)
)m ●pred(n)

(Def. 3.10) = (D-Safe(n) = = Earliest(n))

(Eq. (5)) s = Earliest(n)

(3) Since this is trivial for s, let n = N\ {s}. Moreover, Earliest implies
Safe, which allows us to complete the proof for “ = “ by showing

Earliest (n) = (Correctc~ (n) * lnsertc~ (n))

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1150 . Jens Knoop et al.

for an arbitrary code motion transformation CM ~ %’.RAd~. Thus, let us

assume that Eczrliest(n) holds. Then we have as desired:

Correctc~ (n)

(Def. 3.1(2)) = lnsertc~(n) v A Transp(m) A Correctc. (m)
m ●pred(n)

(Lemma 3.5) = InsertcJI (n) V A Transp(m) ~ Safe(m)
rn●pred(n)

(Def. 3.10) - lnsertc~ (n) V m Earliest(n)

(Earliest (n)) = Insertc~ (n)

For the proof of” ~” consider the admissible code motion transformation CM

that

—inserts initialization statements at any node in IV being earliest and

—replaces none of the code motion candidates except those at nodes with an

initialization statement.

Although CM is useless as a concrete code motion transformation, the first

part of this lemma directly delivers the following property

Vn ● N. Safe(n) * Correctc~ (n) (7)

which allows us to complete the proof

(Safe(n) A (Correctc~ (n) - Insertc~ (n)))

* Safe(n) A T eorrectc~(n) V Safe(n) A Insertc~(n)

(Eq. (7)) - Safe(n) A m Safe(n) V Safe(n) A ~nsertc~(n)

- lnsertc~ (n)

(Def. CM) * Earliest(n) ❑

A.4 Proof of the Busy-Code-Motion Lemma 3.12

(l) Letp~P[s,e]andl<i<AP. Since the implication backward is a trivial

consequence of the definition of lifetime ranges we are left with the other

implication. Suppose that Insert~c~ (p,) holds. According to the down-safety

of p, that is granted by Lemma 3.11(2), there is an index j > i such that

Comp(p,) A ~Comp3(p[i, j[) A Trczrzspv(p[i, j[)

holds. Together with Definition 3.2(2) and the down-safety of p, this implies

D-Safev(p[i, j]) A Transpv(p[i, j[)

and therefore because of Lemma 3.11(2):

~ Earliest3(p]i, j])

meaning p[i, j] G FU-LtRg(BCM),

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 4, July 1994

Optimal Code Motion . 1151

(2) Let CM ● %.fl~~m and p ● LtRg(BCM). Without loss of generality we

can assume the code motion candidate in PAP to be replaced, i.e., Re@cM (PAP)

holds. Hence, due to the admissibility of CM we have

Correctc~ (phP). (8)

Moreover, according to Lemma 3.11(2) the earliestness of p ~ yields

Vn = pred(pl). - Transp(n) v T Safe(n)

and therefore together with Lemma 3.5

Vn G pred(pl). _Transp(n) V T Correctc~(n)

which immediately delivers by means of the definition of correctness (Def.

3.1(2)):

Vi S hP. Correctc~(p,) * 3j s i. Insertc~ (p]).

Exploiting (8) this delivers as desired:

Insert~~ (p).

(3) Let CM ~ ~~~cmpOp,, p e J?[S, e] and i be an index such that

ComPcM (p,) is valid. Then the assumption

Vj < i <1. p[j,l] E FU-LtRg(BCM)

would contradict the computational optimality of CM:

l{ilComPcM(P,)}l

(Lemmas 3.9 and 3.12(2)) >I{il=j. p[i, j] ● J’U-LtRg(BCM)}l + 1

(Lemmas 3.9 and 3.12(1)) = l{illnsert~c~(p,)}l + 1

> l{i[lnsert~c~(pl)} I

‘/{ilComP~cM(P,)}l ❑

A.5 Proof of Lemma 3.14

Let CM ~ ~~~c.PoPt and p = P[s, e] such that p[i, j] = LtRg(CM). Then

the definition of p[i, j] as a lifetime range implies

1 Insert~M (p] i, j]),

and according to Lemma 3.12(2) we have:

Moreover, the third part of Lemma 3.12 yields an index 1 s i such that p[1, i]

is a subpath of a first-use-lifetime range in FU-LtRg(BCM), i.e., in particular
we have

~nsert~~M(n~) A 1 ~nse@CM(P]z, d).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1152 . Jens Knoop et al.

Summarizing, for p[1, j] we obtain

(1) P[l, j] = LtRg(13CM) and

(2) p[i,.jl Ep[l, jl ❑

A.6 Proof of the Delayabllity Lemma 3.16

The first part is a consequence of the following sequence of implications:

Delayed(n)

(13ef. 3.15) = Vp = P[s, n] =i < Ap. Earliest(p,)

A ~C’omp](p[i, AP[)

(Lemma 3.11(2)) = qp ~ P[s, n] ~i < AP. D-Safe(p,)

A ~Comp3(p[i, AP[)

(Def. 3.2(2)) - D-Safe(n)

For the second part, let p G P[s, e] and i be an index such that Delayed(p,)

is satisfied. Then according to the definition of delay ability there exists an

index j < i with

Earliest ~ m Contp3(p[j, i[).

Thus, Lemma 3.12(1) guarantees the required existence of an index / > i

with

p[j, 11 G FU-LtRg(BCM).

Finally, the third part is proved by

CompcM (n)

(Lemma 3.12(3)) s (Vp = P[s, e] Vi < AP. (p, = n) =

~j < i s 1. p[j,l] ● FU-LtRg(BCM))

(Def. FU-LtRg(BCM)) = Vp ~ P[s, n] 3j < A,. Earliest(p,)

A ~Comp3(p[j, AP[)

(Def. 3.15) * Delczyed(n) ❑

A.7 Proof of the Latestness Lemma 3.17

The first part directly follows from the slightly more general proposition
below, which can be proved by means of a simple induction on hP – i:

Vi s AP. Delayed(p,) ~ ~j > i. Latest(p~).

For the proof of the second part, let p G LtRg(BCM) and i be an index

satisfying Latest(p,). If i = AP the lemma is trivial. Thus we are left with the

case that i < AP. Due to the definition of a lifetime range we have in

particular:

~Earliest3(p]i, AP]). (9)

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No, 4, July 1994

optimal Code MotIon . 1153

To show that Latest(p,) implies ~ Delczyed(p,. ~) we have to examine two

cases according to the definition of latestness: provided the case that

l-dest(p,) is due to Comp(p,) the definition of delayability together with

~ Earliest(p,, ~) implies ~ Delayed(p,, ~) as desired; if Latest (p,) is due to

~ Delayed(m) for some successor m of p,, we have nothing to show if

m = p,+ ~ otherwise the Control Flow Lemma 2.1(2) and the definition of

delayability (Def. 3.15) deliver Comp(p,) like in the first case. Thus, we have

In the presence of property (9) the definition of delayability finally implies:

~ Delayed2(p]i, j]). ❑

A.8 Proof of the Isolation Lemma 3.20

Since the first part is a trivial consequence of the definitions of isolation and

lifetime ranges, we are left with the proof of the second part. Thus let

CM = %lL&cP~~P~ and n = IV such that Latest(n) holds. Then it remains to

show:

Isolatedc~ (n) - lsolated~c~ (n)

For the proof of “ + “ we show the contrapositive. Here 1 IsolatedB ~~ (n)

delivers:

~p c P[n, e] 3i >1. Repl~c~(p,) A l~nsert~cM(p]l, i])

which, according to the admissibility of BCM, implies

qp ~P[n, e] ~i > l~q =LtRg(BCM). p[l, i] ~q.

Since Latest(n) holds, we are able to apply the Latestness Lemma 3.17(2),

yielding

3p e P[n, e] 3i >1. ~Delayed=(p]l, i]).

Thus, the third part of the Delay ability Lemma 3.16 delivers

3p = P[n, e] qi >1. h?eplc~(p,) A m~nsert~~(p]l,i])

which proves 1 IsolatedcM (n) as desired.

For the converse implication “ =”, we have according to the definition of

isolation:

VP = P[n, e] Vi >1. RePZ~~~(P,) ‘~nsert~~M(P]l,i]).

Obviously, this can be rewritten:

Vp = P[n, e] Vi >1. Repl~c~(p,) + 31 <j < i. p[j, i] ~LtRg(BCM).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1154 . Jens Knoop et al.

Using the Busy-Code-Motion Lemma 3.12(2) and the fact that Replc~[im-

plies Repl~c~, we obtain:

Vp = P[rz, e] Vi >1. Replc~(n,) * ~nsert~~(p]l, i])

which shows Isolatedcb~ (n) by definition. ❑

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their conscien-

tious and fast reviews and their constructive criticism, which improved the

presentation of the article.

REFERENCES

AHo, A. V. ANDULLMAN,J. D. 1975. Node listings for reducible flow graphs. In Proceechngs of

the 7th ACM Symposium on the Theory of Computzng. ACM, New York, 177-185.
AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1985. Compilers: Principles, Techruques and Tools.

Addison-Wesley, Reading, Mass,
CHOW, F. 1983. A portable machine independent optimizer—Design and measurements Ph.D.

thesis, Tech. Rep. 83-254, Computer Systems Lab,, Dept. of Electrical Engineering, Stanford
Univ., Stanford, Calif. Stanford University.

COCKE, J. AND SCHWARTZ,J. T. 1970. Programming languages and their compilers. Courant
Inst. of Mathematical Sciences, New York Univ., New York.

DHAMDHERE, D. M. 1991. Practical adaptation of the global optimization algorithm of Morel

and Renvoise. ACM Trans. Program. Lang Syst. 13, 2, 291–294,

DHAMDHERE,D. M, 1989. A new algorithm for composite hoisting and strength reduction

optimmation (+ Corrigendum), Int. J. Comput Math. 27, 1, 1–14, 31–32.

DHAMDHERE, D. M. 1988. A fast algorithm for code movement optimization. ACM SIGPLAN

Not. 23, 10, 172-180.
DHAM~HERE, D. M, 1983. Characterization of program loops m code optimization J. Comput.

Lang. 8, 2, 69-76.

DHAMDHERE, D. M. AND KHEDKER, U. P. 1993. Complexity of bidmectional data flow analysis.

In Conf, Record of the 20th ACM Symposium on the Pnnclples of Programming Languages.

ACM, New York, 397-409.
DHAMDHERE, D. M. AND PATIL, H. 1993. An elimination algorithm for bidirectional data flow

problems using edge placement. ACM Trans. Program. Lang. Syst. 15, 2 (Apr.), 312-336
DHAMDHERE, D. M., ROSEN, B. K., AND ZADECK, F, K. 1992. How to analyze large programs

efficiently and informatively. In Proceedings ACM SIGPLAN Conference on Programmz ng

Language Design and Implementation ’92. ACM SIGPLAN Not. 27, 7, 212-223.
DRECHSLER,K.-H. AND STADEL,M. P. 1993. A variation of Knoop, Ruthing and Steffen’s lazy

code motion. ACM SIGPLAN Not. 28, 5, 29–38.

DRECHSLER,K.-H. ANDSTADEL,M. P. 1988. A solution to a problem with Morel and Renvoise’s

“Global optimization by suppression of partial redundancies.” ACM Trans. Program. Lang.
Syst. 10, 4, 635-640.

GRAHAM,S. L. ANDWEGMAN,M. N 1976. A fast and usually linear algorithm for global flow

analysis. J, ACM 23, 1,172–202.

HECHT,M. S. 1977. Flow Analyszs of Computer Programs. Elsevler, North-Holland, Amster-

dam.

HECHT, M, S. AND ULLMAN, J. D. 1977. A simple algorithm for global data flow analysis

problems. SIAM J. Comput. 4, 4, 519-532.

HECHT, M. S. AND ULLMAN, J. D. 1973. Analysis of a simple algorlthm for global flow problems.
In Conference Record of the 1st ACM Symposium on the Principles of Programming Languages.

ACM, New York. 207–217.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

Optimal Code Motion . 1155

JOSHI,S. M. ANDDHAMDHERE,D. M. 1982a. A composite hoisting-strength reduction transfor-

mation for global program optimization—Part I. In t. J. Comput. Math. 11, 1,21–41.
JOSHI,S. M. ANDDHAMDHERE,D. M. 1982b. A composite hoistmg-strength reduction transfor-

mation for global program optimization—Part II. Znt. J. Comput. Math. 11, 2, 111–126.

KAM, J. B. AND ULLMAN, J. D. 1976. Global data flow analysis and iterative algorithms. J.
ACM 23, 1, 158-171.

KENNEDY, K. 1975. Node listings applied to data flow analysis. In Conference Record of the

2nd ACM Symposium on the Principles of Programming Languages. ACM, New York. 10-21.
KNOOP, J. AND STEFFEN, B. 1992a. The interprocedural coincidence theorem. In Proceedings of

the 4th Conference on Compi/er Construction (CC). Lecture Notes in computer science, VO1.
641. Springer-Verlag, Berlin, 125-140.

KNOOP, J. AND STEFFEN, B. 1992b. Optimal interprocedural partial redundancy elimination.

Extended abstract. In Addenda to proceedings of the 4th Conference on Compiler Construction

(CC). Lecture Notes in Computer Science. Springer-Verlag, Berlin. Also, Tech. Rep, 103, Dept.

of Computer Science, Univ. of Paderborn, Germany, 36–39.

KNOOP, J., RUTHING, O., AND STEFFEN, B. 1993. Lazy strength reduction. J. Program. Lang. 1,

1,71-91.
KNOOP, J., RUTHING, O., AND STEFFEN, B. 1992. Lazy code motion, In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation ’92. ACM
SIGPLAN Not. 27, 7, 224-234.

MOREL, E. 1984. Data flow analysis and global optimization, In Methods and Tools for

Compder Construction, B. Lorho, Ed. Cambridge University Press, Cambridge, Mass., 289-315.
MOREL, E. AND RENVOISE, C. 1981. Interprocedural elimination of partial redundancies. In

Program Flow Analysis: Theory and Applications, S. S. Muchnick and N. D. Jones, Eds.

Prentice Hall, Englewood Cliffs, N.J., 160-188.

MOREL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial redundan-
cies. Commun. ACM 22, 2, 96–103.

ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1988. Global value numbers and redundant

computations. In Conference Record of the 15th ACM Sympostum on the Principles of Program-

ming Languages. ACM, New York, 12–27.

SORKIN, A. 1989. Some comments on a solution to a problem with Morel and Renvoise’s
“Global optimization by suppression of partial redundancies.” ACM Trans. Program. Lang.

Syst. 11, 4, 666-668.

STEFFEN,B. 1991. Data flow analysis as model checking. In Proceedings of the International

Conference on Theoretical Aspects of Computer Software (TACS ’91) (Sendai, Japan). Lecture
Notes in Computer Science, vol. 526. Springer-Verlag, New York, 346-364.

STEFFEN, B., KNOOP, J., AND RfJTHING, O. 1991. Efficient code motion and an adaption to
strength reduction. In Proceedings of the 4th International Joint Conference on Theory and

PractLce of Software Development (TAPSOFT) (Brighton, U.K.). Lecture Notes m Computer

Science, vol. 494. Springer-Verlag, Berlin, 394-415.
STEFFEN, B., KNOOP, J., AND RtlTHING, O. 1990. The value flow graph: A program representa-

tion for optimal program transformations. In Proceedings of the 3rd European s~mposl um on
Programming (ESOP) (Copenhagen, Denmark). Lecture Notes in Computer Science, vol. 432.
Springer-Verlag, Berlin, 389-405.

TARAN, R. E. 1981a. Fast algorithms for solving path problems. J. ACM 28, 3, 594-614

TAIWAN, R. E. 1981b. A unified approach to path problems. J. ACM 28, 3, 577-593.
TARJAN, R. E. 1979. Applications of path compression on balanced trees. J. ACM 26. 4,

690-715.
ULLMAN, J. D. 1973. Fast algorithms for the elimination of common subexpressions. Acts

Informatica 2, 3, 191-213.

Received March 1993; revised August 1993 and September 1993; accepted September 1993

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

