Problem C

THIS WAS SO ANNOYING. The cases whether either a, b, c or d are equal to 0 was very
difficult to handle.

| spent so much time trying to solve a misunderstood version of the problem. A few things |
didn't realise was that it was subsequences and not substrings. This means it doesn't have
to be contiguous. This misunderstanding took me a while to clear up and it was getting late
after thinking about the question for a while so | slept on it.

Before sleeping coming up with a few of the important observations. For a given 0, every 0
you add after will contribute to adding up to the value of a. This is the same for b, ¢ and d.

This then becomes just counting the number of "matching pairs" (3121 task reference) and
so to count the number of these pairs it's just n(n — 1)/2. You can equate this to a and if you
solve for n that will give the amount of:

nn—1)/2=a = n=(1++v1+8a)/2

You could just increment n from 0 until it becomes above or equal to a or just use the
formula.

And then using the ideas from above, if we add a 0, any 1 we add after will contribute to b.
So if b is larger than the amount of 1's we have left, we need to add that mean's you need to
add a 0 so that you can achieve the total b necessary. Same idea works in reverse for c.

It also turns out that b > numones then ¢ < numzeros i think so the condition just becomes
and if else.

| think at this point, the main algorithm was working but the annoying part was figuring out
the annoying base cases mentioned above. | think | tried a lot here, coding up cases for
b+c==0,a+b+c+d==0and it became a mess. After a lot of testing different
implementations for this turns out | also missed the fact that the strings can't be empty.

There are more notes on this problem in my code solution but | found this problem very
annoying. Personally did not enjoy it and think there are better problems that could have
been chosen.

