
Problem C: Jumbled String 

Thought process 
The number of "00" substrings in a string with 𝑛 zeros is 𝑛𝐶2 = 𝑛(𝑛−1)

2
, and this is also true for the 

number of "11" substrings in a string with 𝑛 ones. 
 
From the inputs 𝑎 and 𝑑, and by rearranging the above, the number of zeroes in the string 𝑧 can be 

calculated by solving 𝑧2 − 𝑧 − 2𝑎 = 0 and the number of ones in the string 𝑦 can be calculated by 

solving 𝑦2 − 𝑦 − 2𝑑 = 0 with the quadratic formula in 𝑂(1) time. If there is no positive integer solution 
then it is impossible. 
 
From there, I first thought about what happens as we insert 1s between the 0s, but such a heuristic 
would be tricky to implement. However, I did find a pattern for how the position of inserting the 1s 
changed the current number of "01" and "10" substrings, and also discovered a way to check if such 
a string is possible (for a string with 𝑥 zeros and 𝑦 ones, if 𝑏 + 𝑐 ≠ 𝑥𝑦 then it is impossible). 
 
While the above would be tricky to implement, I changed the approach to revolve around starting 
with all the 0s, then all the 1s at the rightmost positions (e.g., 00000111), and then moving the 1s to 
the left. Moving a 1 to the left, from after the 𝑗th zero to after the 𝑖th zero, decreases 𝑏 and increases 
𝑐 by the number of zeroes it was moved past. 

Challenges 
The approach above did not correctly handle edge cases such as 𝑎 = 1, 𝑏 = 𝑐 = 𝑑 = 0 where the 
correct answer is "00" but my approach output "impossible". 
 


