Contest 2 Editorial

COMP4128 25T2

July 25, 2025

A Talent Show

Subtask Solutions

Since all students have the same skill, we simply want to select as many students as possible.

Forward solution

We reason that since every student has the same value, we try to place the most constrained students
(earliest departure time) first, and fit as many others around that.

We sort the students by increasing departure time, and one by one we add each student to the schedule
only if their departure time is greater than the number of students before them on the schedule.

Reverse solution

For the sake of fitting in as many students as possible, there is a pressure to make later-departing students
perform as late as possible.

We sort the students by decreasing departure time and one by one assign the student to the latest time
slot that they could perform at. We keep track of where we placed the last student so that we know
that the next one must go before them. Eventually we will place down all the students, or we will place
a student in the first time slot and be unable to place any more.

This process leaves gaps in the schedule, but nobody was able to perform in those gaps so we compress
the schedule down to remove them.

Full Solutions
Latest first

The end of the schedule is much easier to determine because there are fewer students around that are
valid options. So starting at the end of the schedule, we place the highest skill valid student into each
slot.

We keep a priority queue of the students who haven’t yet departed (currently empty), sorted such that
the highest skill student is on top

We start at time slot n and decrement until we reach 1. At each time slot ¢ we:
e Add the students who depart after performance ¢ to the priority queue

e Select the highest skill student (if any) from the priority queue and put them in the schedule at
this time.

We can prove this is optimal by exchange argument. Let’s name the greedy schedule G = (g1, 92, ..., gn)
and we will consider an alternate schedule A = (aq,as,...,a,). We will show that all such alternatives
can be transformed to A’ such that total(A’) > total(A) and repeated transformations will result in

G.
Find the latest student that differs: (ap # g but Vi € (k,n] : a; = g;).



e If g, doesn’t appear anywhere in A then set aj, = gi. Since g is the most skilful student who is
available at that time that isn’t used later, we know g > aj, and therefore total(A’) > total(A)

e If 3j such that a; = gi, then we swap (a},a}) = (ax,a;). We know a; can be slotted later because
the greedy does, and aj is always available earlier, so this is a valid assignment. This keeps the
total the same so total(A’) > total(A)

Each iteration of this transform makes one more student match the greedy schedule’s suffix, so after n
iterations, we can demonstrate that all alternative schedules have a total less than or equal to the greedy.
Thus the greedy is optimal

Most Skilful First

We definitely want to take the most skilled student. We want to take the second most skilled as long as
there’s still space. In order to leave as much space each time, we slot each student in the last remaining
time slot before they leave.

We keep a set<int> of which slots in the schedule are remaining, initially [1,...,n]. The set is reverse
ordered (using greater<int> rather than the default less) so that when we use set.lower_bound(d),
instead of returning the first number > d, it returns the first number < d.

We sort the students by decreasing skill. For each student:

e We use set.lower_bound(d) to find the last slot up to d that is still available, and we remove that
slot. If we don’t find any, then we do not put that student in.

The proof of correctness is left as an exercise to the reader. Use an exchange argument.
Alternatively, instead of a set, we could use the union-find data structure with path-compression only.
e We want root(d) to give us the last available slot < d.
e Initially, root(x) = x for all x as required.

e Each time we use the slot root(d), we want to enforce that next time we look for something that
leads to root(d), we should instead look for the next slot to the left - this is exactly defined by
root(root(d)-1). So we set par[root(d)] = root(root(d)-1).

e path compression ensures that the total runtime won’t exceed O(nlogn).

Earliest First

We try to fit in the most constrained students (earliest departure time) first, but if we come across a
student that can’t fit in the schedule, we find the lowest skill student in the current schedule and replace
them.

We keep the students on our schedule (currently empty) in a priority queue, arranged such that the
lowest skill student is on top.

We sort the students by increasing departure time, and one by one:
e add the student to the priority queue, and add their skill to the total

e if the size of the priority queue is larger than the student’s departure time we remove the lowest
skill student (top) and subtract their skill from the total.

This is equivalent to swapping the student with the previously least-skilled student — unless the
most recent student was the least-skilled, in which case he is summarily removed.

This guarantees that each student is added to the schedule at a time before their departure, and students
are only left out if there is insufficient space and nobody worse to cut.

How to check your greedy

A common error is to come up with a greedy solution, only to find out that it’s incorrect after writing and
submitting your code. Here are some strategies you can use to debug this before you start coding:



Reason about what information is necessary

To decide if a student should be put into the schedule, we want to know if there’s anyone better to put
in that slot. There are two ways that could happen:

e a more skilled student is competing for that slot, or
e a less skilled student is about to leave but they could perform if the current student performs later.

If your greedy doesn’t address these in some way, then it’s not going to be correct. This framing also
prompts us towards two greedy approaches:

e start with the latest slot and put in the best student you can, or

e start with the best students, and put them in the latest slot you can

Look for breaking cases

Knowing what your algorithm does, try to guide it into making what you know is the wrong decision.
Let’s try the greedy approach “Put the most skilled student in the first slot”.

We start by adding a student Alicia that we know the algorithm wants to take (skill = 999, departure =
10), and then we try to create a scenario where that student should not be taken first. We can do this
by only adding a student Bradley who needs to go first instead (skill = 1, departure = 1). Now we see
that the best schedule is (Bradley, Alicia), but our greedy will put Alicia first and leave Bradley out,
demonstrating that it’s suboptimal.

Implementation Notes

e any priority queue can be replaced with a multiset<int> or a set<pair<int, int>> where the
second int is a unique identifier to prevent duplicates from being ignored.

Reference Solution(s)

// Subtask solution by Raveen, reverse order
#include <algorithm>
#include <iostream>
using namespace std;

const int N = 200200;
int dep[N];

int main (void) {
int n;
cin >> n;
int end = 0;
for (int i =
int s, d;
cin >> s >> d;

0; i < n; i++) {

dep[d]++;
end = max(end, d);
}
long long ans = 0;
int cnt = 0;
for (int i = end; i >= 1; i--) {
cnt += deplil;
if (cnt '= 0) {
ans++;
cnt--;
}
}

cout << ans << ;

}

// Solution by Raveen, latest first
#include <algorithm>

#include <iostream>

#include <queue>

#include <vector>



using namespace std;

const int N = 200200;
vector<int> depl[N];
priority_queue<int> pq;

int main (void) {

int n;

cin >> n;

int end = 0;

for (int i = 0; i < n; i++) {
int s, d;
cin >> s >> d;
dep[d] . push_back(s);

end = max(end, d);
}
long long ans = 0;
for (int i = end; i >= 1; i--) {
for (int s : deplil) { pq.push(s); }
if (!pg.empty()) {
ans += pq.top();
pq.pop();
}
}

cout << ans << ’\n’;

// Solution by Gordon, most skilled first using set
#include <bits/stdc++.h>

using namespace std;

typedef long long 11;

int main() {
int n;
cin >> n;
vector<pair<int,int>> s;
set<int, greater<int>> taken; // reverse order
for (int i = 1; i <= n; i++) {
taken.insert(-1i);

}

for (int i = 0; i < n; i++) {
int x,y;
cin >> x >> y;
s.push_back({x,y});

}

sort(s.begin(), s.end());
reverse(s.begin(), s.end());
11 ans = 0;
for (auto p : s) {
auto it = taken.lower_bound(p.second);
if (it != taken.end()) {
ans += p.first;
taken.erase(it);

}

cout << ans << "\n'";

// Solution by Yiheng, most skilled first using union-find
#include <bits/stdc++.h>
using namespace std;

typedef long long 11;

#define f first
#define s second

const int N = 200200;

struct UnionFind {
int par[N];
UnionFind () {
for (int i = 0; i < N; i++) {



par[i]l = i;

}
}
int find(int x) {

return par[x] == x ? x : parl[x] = find(parl[x]);
}

void merge(int x, int y) {
x = find(x);
y = find(y);
parlyl = x;

};

int main() {
cin.tie(0)->sync_with_stdio (0);
cin.exceptions(cin.failbit);
int n; cin >> n;
vector<pair<int, int>> v(n);
for (int i = 0; i < n; i++) { cin >> v[il.f >> v[il.s; }
sort(begin(v), end(v), [&](const auto &x, const auto &y)
return x.f == y.f ? x.s < y.s : x.f > y.f;
DM
UnionFind uf;
11 ans = 0;

for (auto [s, d]l : v) {
if (uf.find(d) == 0) continue;
int x = uf.find(d);
uf .merge(x - 1, x);
ans += s;
}
cout << ans << ;

// Solution by Laeeque, earliest first
#include <algorithm>

#include <iostream>

#include <queue>

#include <vector>

using namespace std;

typedef long long 11;

const 11 N = 200200;
vector<pair<1ll, 11>> students;
priority_queue<1ll, vector<ll>, greater<l1l1>> schedule;

signed main (void) {
11 n;
cin >> n;
11 end = 0;
for (11 i = 0; i < n; i++) {
11 skill, departure;
cin >> skill >> departure;
students.push_back({departure, skill});
}
sort(students.begin(), students.end());
11 total = 0;
for (auto st : students) {
11 departure, skill; tie(departure, skill) = st;
total += skill;
schedule.push(skill);
if (schedule.size() > departure) {
total -= schedule.top();
schedule.pop();
}
}

cout << total << ;



B Enclosure

Subtask

When all the values are 1, a rectangular field (and therefore the minimum length of walls to divide it) is
entirely determined by its dimensions (width and height). For each rectangle, try every possible way to
split it into two rectangles using a single horizontal or vertical wall, solving the subrectangles recursively,
and select the decomposition with the cheapest total cost. The base case is a rectangle of area at most
T, for which the answer is 0. With memoisation, this takes O(n) time for each of n? different rectangle
shapes, for a total of O(n?) runtime.

Full

Each rectangle in the grid can be identified by its dimensions (width and height) and location (say, row
and column index of its top left corner). Each of these four parameters are up to n. As before, there are
up to 2n different ways to slice a rectangle into two smaller rectangles, and we can try each one to see
which is cheapest.

Subproblem
Let best(i, j,r,¢) be the cheapest way to cut the rectangle from (i, j) with height r and width ¢ into
smaller rectangles of at most weight 7', using only slices that cut rectangles into two smaller ones.

Base Cases

If the elements of the rectangle (i,j,7,¢) sum to less than T, then best(i, j,r,¢) should be set to 0.
Otherwise, initialize it to co. The sum of elements, say rectsum(i, j,r, ¢) can be calculated in O(1) time
by creating a 2D prefix sum for the grid, and using inclusion-exclusion to calculate the area of a specific
rectangle.

0 j—1 3 Jjt+e—1
0
A B
i — 1
i
C D
t+7r—1

Rectangle D can be calculated as
¢ A+ B+ C+ D (i+rrows and j + ¢ columns),
e less A+ B (i rows and j + ¢ columns) and A + C (i + r rows and j columns),

e plus back A (i rows and j columns), as it was included once and excluded twice.

// sum[r][c] contains the sum of all wvalues in the first r rows and c columns
// sum[r][c] = sum(values[0..7)[0..c))

// so sum[0][c] and sum[r][0] are O and sum[R][C] 4is the sum of the entire grid.
int values[MAXR] [MAXC], sum[MAXR+1][MAXC+1];

// The sum of the wvalues in the rectangle from (i, j) of height r and width c
// rectsum(t, j, r, c) = sum(values[t..%+7)[]..75+c))
inline int rectsum(int i, int j, int r, int ¢) {

return sum[i+r] [j+c] - sum[i][j+c] - suml[i+r][j] + sum[i][j];

}



This relies on precomputation of the 2D prefix sum. In this problem, that could be conducted naively
in O(n) as n is only up to 60, but it can be done in O(1) per entry (i.e. O(n?) overall) by noticing that
values[i-1] [j-1] should equal rectsum(i — 1,5 — 1,1,1) and rearranging the formula.

0 j—2 j—1

0
A B

i—2
i—1 C D

Rectangle A + B + C + D can be calculated as
e A+ B (i—1rows and j columns) plus A+ C (i rows and j — 1 columns),
e less A (i—1rows and j — 1 columns), which has been double-counted,

e plus the single entry in rectangle D .

for (int i = 0; i < R; i++) {
for (int j = 0; j < C; j++) {
cin >> values[il[j];

}
}
for (int i = 1; i <= R; i++) {
for (int j = 1; j <= C; j++) {
sum[i]1[j] = sum[i-11[j] + sum[il[j-1] - sum[i-1]1[j-11 + values[i-1]1[j-11;
}
}
Recurrence

Try every horizontal and vertical slice and add the cost of the slice to the cost of splitting up the remaining
2 subproblems. Find the one that is cheapest.

int tmp = INF;
for (int split = 1; split < dr; split++) { // horizontal walls

tmp = min(tmp, c¢ + dp[il[j][split] [c] + dpli+split][j] [r-split] [c]);
}
for (int split = 1; split < dc; split++) {// vertical walls

tmp = min(tmp, r + dpl[i][j][r] [split] + dpl[il [j+split] [r] [c-split]);
}
dplil [j]1[r][c] = tmp;

Order of Calculation, Final Answer and Time Complexity

As long as all smaller rectangles are already calculated, larger rectangles have all the information needed
to calculate the optimal split. So we can proceed bottom-up by increasing r and ¢, followed by any order
of i and j. Alternatively, top-down implementation is equally viable.

Final answer is best(0,0, R, C): the cheapest way to split the entire grid.

Each state takes O(n) time to calculate and there are n? states, for a time complexity of O(n®). With
input size of 60, this gives us 8 x 102, which is borderline too large. Fortunately, the number of states we
actually use is %n‘l and the average dp state relies on %n previous states: these constant factor reductions
make it fast enough to run in time.



Implementation Notes

If implementing bottom-up, take care to ensure that ¢ + r and j + ¢ do not extend beyond the edges of
the grid.

Reference Solution(s)

// Solution by Raveen for Subtask 1 (top-down)
#include <algorithm>
#include <iostream>
using namespace std;

const int N = 62;
int al[N][N];
int dp[N][NI[NI[N];

const int INF = 1000%1000%*1000+7;
int n, m, T;

int solve (int i, int j, int r, int c¢) {
if (dpl[il[jl[rllc] !'= INF) { return dpl[il[jl[rllcl; }
if (r * ¢ <= T) { return dplil[jl1[rllc]l = 0; %}
int ret = INF;
for (int k = 1; k < r; k++) {

ret = min(ret, c¢ + solve(i, j, k, c¢) + solve(itk, j, r-k, c));
}
for (int k = 1; k < c¢; k++) {

ret = min(ret, r + solve(i, j, r, k) + solve(i, j+k, r, c-k));
}

return dpl[il[jllr]llc]l = ret;

int main (void) {
cin >> n >> m >> T;

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> alilljl;
}
}

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
for (int 1 = 0; 1 < N; 1++) {
dp[il[jl[k1[1] = INF;
}

cout << solve(0, 0, n, m) <<

// Solution by Raveen (bottom-up)
#include <algorithm>
#include <iostream>
using namespace std;

const int N = 62;
int alN][N];

int b[N][N];

int dp[N][NI[NI[N];

const int INF = 1000%1000%1000+7;

int main (void) {
int n, m, T;
cin >> n >> m >> T;

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> alilljl;
}



for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
b[il[j]l = b[i-11[j]1 + bl[il[j-1] - bl[i-11[j-1]1 + ali-11[j-11;

}
}
for (int r = 1; r <= n; r++)
for (int ¢ = 1; ¢ <= m; c++)

for (int i = 0; i <= n-r; i++)
for (int j = 0; j <= m-c; j++) {
if (bli+rl[j+cl - bli+rl[jl - bl[illj+c]l + bL[il[j1 <= T) {
dpl[il[jl[rllc] = 0;
} else {
dpl[il[jl[rllc] = INF;
for (int k = 1; k < r; k++) {
dpl[il[jl1[rllc]l = min(dpl[il[jllrllc]l, ¢ + dplill[jl[k]l[c]l + dp
[i+k]1[jl1[r-k]1[cl);
}
for (int k = 1; k < c; k++) {
dplil[jl1[rllc] = min(dplil[jl[lrllc]l, r + dplil[jl1[r]1[k] + dp
[i1[j+k1[rllc-k1);

}

cout << dp[0][0][n][m] << H



C LinkedList

This problem was hard — well done to the 20 students who received a non-zero score, of which only 9
students solved this problem fully.

Algorithm

This problem was motivated by the workshop problem Restructuring Company. This problem can be
solved without the use of any graph algorithms at all.

General ideas

As hinted at by Update 1, to facilitate group-chat merges, we utilize the Union-find data structure.
Recall that if N groups are present, Union-find (with path-compression and union-by-size optimisation)
allows for find/merge operations to be performed in O(a(N)) time each.

If Union-find is applied naively to this problem:
e Update 1 and Query can be handled in O(«(N)) time.

e Update 2 can be handled at the time complexity of O(length of path-«(N)) per update. However,
length of path can be at most N — consider the case where the tree is a line and Update 2 is
applied to the endpoints — resulting in a worst-case time complexity of O(Na(N)) per Update 2.

When @ operations are present, the total worst-case time complexity is O(NQ«(N)) which will receive
Time Limit Exceeded for both Subtask 1 and Subtask 2 due to IV, Q < 500, 000.

To score points on this problem, a solution which involves more thought and ingenuity is required.

Subtask 1

Motivation for the solution of this Subtask can be gained by visualising Update 2 on some small hand-
cases. Consider the following tree.

Let us consider Update 2 only for now, maintaining group-chat information with a Union-find. We will

mark nodes merged into node 1’s group-chat as red.

Consider Update 2 on nodes 11 and 1.



Now consider a subsequent Update 2 on nodes 10 and 1.

(1) (1)

(2) (2)
GQ () —> —> ()
) O 0lo

Notice that the path from node 10 to node 1 can be split into the path from node 10 to 2, then the path
from node 2 to 1. Because node 2 had already been merged into 1 via a previous Update 2, there is no
point merging that path again. Thus, we can simply stop merging upwards after we reach node 2.

This holds in general for this subtask. Suppose a node is reached that had already been merged with
node 1 previously through an Update 2. All parents of that node must already have merged with node
1, so we can simply stop merging upward. We can maintain this information using a boolean array
merged, where merged[i] is true if node i had already been merged to node 1 via an Update 2, and
false otherwise. This ensures that each node is merged via an Update 2 operation at most once, allowing
for amortized O(«(N)) per operation.

Update 1 and Query is handled on top of this with the same Union-find at O(a(N)) per operation.

The total complexity of this solution is O((N + Q)a(N)), which is sufficient to pass within the given
constraints.

Subtask 2

Not all Update 2 operations are to node 1, so the Subtask 1 solution will no longer work. However, the
idea that ‘we shouldn’t do more work than we need to’ still remains present.

Recall that Union-find uses the path compression optimization, which alone allows for amortized O(log N')
find/merge operations. We explore the same path compression idea in the context of this problem.
Again, we maintain group-chat information with a Union-find.

Consider the same tree as in Subtask 1, performing Update 2 on nodes 8 and 3.



(1) (1)
() @ ONOI0I0
G OO — WO O
0l0I0) () ()

After traversing the path from node 8 to node 3 and merging those group chats, we rearrange the parents
of all nodes on this path to the lowest common ancestor of the endpoints. Note the algorithm to obtain
the LCA in O(log N) is not required, as we must still walk up to it to perform the merges — so naively
finding the LCA, by walking up the tree, is sufficient.

Consider another Update 2 on nodes 4 and 10.

©. (1)
OSNOI010
DO ©O-—00We O

() ()

We apply the same path compression idea to all nodes on this Update 2 path, moving the parent of node
10 to be node 2.

If we consider the given tree as another Union-find structure, the whole idea of this algorithm is that
each edge is only ‘inserted’ once by an Update 2, where after inserting previously un-inserted edges
into the tree, a find operation is called on the endpoints. This is virtually identical to a Union-find
data structure with only path compression applied, which allows for amortized O(log N) operations. A
merge in the external Union-find is also required to ensure accurate group-chat information, resulting in
amortized O(a(N)log N) per Update 2.

Update 1 and Query are still handled on top of this with the same external Union-find that handles
Update 2 group-chat merges, at O(a(N)) per operation.

The total complexity of this solution is O(Qa(N)log N), which will pass comfortably under the time
limit with the given constraints.

Implementation Notes
General

e The tree is given as a parent array, and so no extra DFS/BFS is required to preprocess the tree for
later path compression.

e The LCA used in an Update 2 can be found naively as aforementioned. Suppose Update 2 was
applied on nodes v and v. This can be done by walking u and v up the tree simultaneously, until
one walks to a node walked to by the other.

12



e Some solutions with the idea of path compression received a Memory Limit Exceeded verdict due
to inefficient handling.

— The lowered 128MB memory limit was to catch unintended O(N?) solutions that may slip
under the time limit, however was more than enough to solve the problem.

— The reference solution provided uses maximum 6MB.

Reference Solution(s)

// solution by Yiheng for subtask 1
#include <bits/stdc++.h>
using namespace std;

// standard union-find
struct UnionFind {
vector<int> par, sz;
UnionFind () {}
UnionFind(int _n) {
par.resize(_n);
iota(par.begin(), par.end(), 0);
sz.resize(_n);
fill(sz.begin(), sz.end(), 1);

}
int find(int x) {

return par[x] == x ? x : parl[x] = find(parl[x]);
}

void merge(int x, int y) {
x = find(x);
y = find(y);
if (x '= y) {
if (szlx] < szlyl) swap(x, y);
parlyl = x;
sz[x] += szlyl;

int main() {

ios_base::sync_with_stdio(false);

cin.tie(nullptr);

int n, gq; cin >> n >> q;

vector<int> par(n + 1, 0);

for (int i = 2; i <= n; i++) {
cin >> parl[il;

}

UnionFind uf(n + 1);

// array to check whether a node has already merged to root via an update 2
vector<bool> done(n + 1, false);
while (q--) {
int op, u, v; cin >> op >> u >> v;
if (op == 1) {
// if update 1, merge in union-find naively
uf .merge(u, v);
} else if (op == 2) {
// if update 2, keep merging upwards until Teaching a node previously merged
via an update 2
if (u !'= 1) swap(u, v);
while (v != 1 && !'donelv]) {
donel[v] = true;
uf .merge(v, 1);
v = parl[v];
}
} else if (op == 3) {
// if query, simply output whether u, v are in the same component
cout << (uf.find(u) == uf.find(v) ? "YES" : "NO") << "\n'";

13



// solution by Yiheng

#include <bits/stdc++.h>

using namespace std;

// standard union-find
struct UnionFind {

int

vector<int> par, sz;

UnionFind () {}

UnionFind(int _n) {
par.resize(_n);
iota(par.begin(), par.end(), 0);
sz.resize(_n);
fill(sz.begin(), sz.end(), 1);

}
int find(int x) {

return par[x] == x ? x : parl[x] = find(parl[x]);
}

void merge(int x, int y) {
x = find(x);
y = find(y);
if (x '= y) {
if (sz[x] < szlyl) swap(x, y);
parlyl = x;
sz[x] += szlyl;

main () {

ios_base::sync_with_stdio(0);

cin.tie(0);

int n, q; cin >> n >> gq;

vector<int> par(n + 1, 0);

for (int i = 2; i <= n; i++) cin >> parl[i];
UnionFind uf(n + 1);

// arrays to assist with finding the LCA
vector<int> seen_u(n + 1, -1), seen_v(n + 1, -1);
int idx = 0;
while (q--) {
int op, u, v; cin >> op >> u >> v;
if (op == 1) {
// if update 1, merge in union-find naively
uf . merge(u, v);

} else if (op == 2) {
// if update 2, find the lca by walking naively up the tree until paths meet
int tmp_u = u, tmp_v = v;
int lca = -1;

while (true) {
// to prevent needing to clear the seen arrays,
// current update tinstead of true/false

seen_ultmp_ul = idx;
seen_v[tmp_v] = idx;
if (seen_ultmp_v] == idx) {
lca = tmp_v;
break;
¥
if (seen_v[tmp_ul] == idx) {
lca = tmp_u;
break;
}
if (tmp_u) tmp_u = par[tmp_ul;
if (tmp_v) tmp_v = par[tmp_v];
}
idx++;
tmp_u = u, tmp_v = Vv;

// merge nodes to the lca
while (tmp_u != lca) {
uf .merge(tmp_u, lca);
int nxt = par[tmp_ul;

14

store a timer for the



// redirect parent pointers of all nodes on path to lca
parltmp_ul = lca;
tmp_u = nxt;

}

// merge mnodes to the lca
while (tmp_v !'= lca) {
uf .merge(tmp_v, lca);
int nxt = par[tmp_v];

// redirect parent pointers of all nodes on path to lca
par[tmp_v] = lca;
tmp_v = nxt;
}
} else if (op == 3) {
// if query simply output whether u, v are in the same component
cout << (uf.find(u) == uf.find(v) ? "VYES" : "NO") << "\n'";

15



	Talent Show
	Enclosure
	LinkedList

