
Ores
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

After a mining session, Steve and Alex gather a pile of n iron, m gold and k diamonds. Steve wants to
make anvils which require iron whilst Alex wants to make golden apples which require gold. However both
of them want diamonds.

So, they decide to play a game taking turns taking ores from the pile one at a time, beginning with Steve.
Steve can only take iron or diamonds, and Alex can only take gold or diamonds. Once an ore is taken
from the pile it cannot be put back. The first player who is unable to take an ore loses. Assuming both
players play optimally, determine who will win the game.

Input
The only line of input consists of three space-separated integers n, m, and k
(0 ≤ n,m, k ≤ 1, 000, 000, 000), representing the number of iron, gold, and diamond ores respectively.

Output
Output a single line containing either Steve or Alex, whoever will win the game assuming both players
play optimally.

Examples
standard input standard output

3 2 0 Steve

2 3 3 Alex

Note
In sample case 1, there are no diamonds, so Steve always takes 1 iron on his turn and Alex always takes
1 gold on her turn. So, Steve takes 1 iron, Alex takes 1 gold, Steve takes another iron, Alex takes another
gold, Steve takes the last iron, but then Alex is unable to take anything, so Steve wins.

In sample case 2, Alex can guarantee a victory regardless of Steve’s choices. One possible sequence of
moves is:

Turn Steve Alex
1 diamond gold
2 diamond diamond
3 iron gold
4 iron gold
5 nothing

Page 1 of 1

Eki Stamps
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Ruth has recently moved to Lineland. There is only one train line in Lineland, running in both directions
between the West and East of the city. This train line is so famous that every station has produced unique
stamps, provided to all passengers visiting that station (i.e. boarding and/or disembarking a train there).
Some stations even have several different stamps, in which case a passenger can choose which stamp they
want upon each visit to the station.

It has become a common hobby among train enthusiasts to collect all n different stamps. Ruth wants
to take part in this tradition, starting at any one of the stations, and taking a sequence of n − 1 train
trips, each yielding another one of the remaining stamps. However she is worried that these train trips
might eventually become boring. Therefore she insists that every train trip in the sequence cover at least
as much distance as each of the previous trips.

Help Ruth determine whether she can collect all the stamps, and if so, what order she can do it in.

Input
The first line of input consists of a single integer n (1 ≤ n ≤ 100, 000), the number of stamps.

The second line of input consists of n space-separated integers a1, . . . , an (−100, 000 ≤ ai ≤ 100, 000), the
ith of which represents the location of the station where stamp i is available (with positive for East, and
negative for West). The ai are not necessarily distinct.

Output
Output a single line consisting of n space-separated integers b1, . . . , bn (1 ≤ bi ≤ n, bi 6= bj), representing
an order in which Ruth can collect the stamps (i.e. stamp b1, then stamp b2, . . .).

If there are multiple valid orders, you may output any of them.

If there are no valid orders, output the single integer 0 instead.

Examples
standard input standard output

4
8 4 1 2

3 4 2 1

6
2 -5 1 5 3 2

1 6 3 5 4 2

Note
In sample case 1, Ruth can collect all stamps if she starts by collecting stamp 3. Then, Ruth can collect
stamp 4 (distance 1), then collect stamp 2 from there (distance 2 ≥ 1), and finally collect stamp 1 from
there (distance 4 ≥ 2), completing her collection.

In sample case 2, Ruth can again collect all stamps. She starts by collecting stamp 1, then collects stamp 6
(distance 0), then collects stamp 3 from there (distance 1 ≥ 0), then collects stamp 5 from there (distance
2 ≥ 1), then collects stamp 4 from there (distance 2 ≥ 2), and finally collects stamp 2 (distance 10 ≥ 2),
completing her collection.

Page 1 of 1

Snakes and Ladders
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Nigel has no friends, so he has to play board games by himself. Lately, he has taken up Snakes and
Ladders.

In this game, the board is a square of even side length n, divided into n2 squares. The squares are
numbered:

• left to right from 1 to n in the bottom row,

• right to left from n+ 1 to 2n in the second row from the bottom,

• left to right from 2n+ 1 to 3n in the third row from the bottom,

• . . . ,

• right to left from n2 − n+ 1 to n2 in the top row.

The player’s token begins on square 1. On each turn, the player rolls a six-sided die and moves their token
forward by the number of squares shown on the die. If the token reaches or passes square n2, it remains
at square n2 regardless of any subsequent die rolls.

As the name suggests, the game board also features snakes and ladders.

• A snake joins two grid squares: the higher-numbered is the head and the lower-numbered is the tail.
If a die roll would take the token to the head of a snake, it is immediately moved to the tail of that
snake instead.

• A ladder joins two grid squares: the higher-numbered is the top and the lower-numbered is the base.
If a die roll would take the token to the base of a ladder, it is immediately moved to the top of that
ladder instead.

Given the outcomes of Nigel’s rolls, report the final position of his token.

Input
The first line of input consists of two space-separated integers n and m (2 ≤ n ≤ 100, n is even,
0 ≤ m ≤ 10, 000) representing the side length of the game board and the number of die rolls respectively.

n lines follow, representing the rows of the game board, from top to bottom. Each of these lines contains
a string of n characters, representing the squares in that row. Each of these characters is either:

• a lowercase English letter, representing one endpoint of a snake,

• an uppercase English letter, representing one endpoint of a ladder, or

• the full stop character ‘.’, representing an ordinary square.

Each lowercase letter and each uppercase letter is guaranteed to appear either zero or two times in the
grid. Each lowercase letter and each uppercase letter appears at most once in any row of the grid. The
top left and bottom left squares are guaranteed to be full stops.

One line follows, containing m space-separated integers r1, r2, . . . , rm (1 ≤ ri ≤ 6), representing the
outcomes of the die rolls.

Page 1 of 2

Output
Output a single integer, the number of the square occupied by the token after all the die rolls.

Examples
standard input standard output

4 5
..s.
..L.
L...
...s
3 4 3 5 6

15

6 10
...A.b
.b...d
..B...
c...A.
..cd..
.....B
2 3 4 4 1 3 6 1 4 5

36

Note
In the first sample case, the squares are numbered as follows:

16 15 14 13
9 10 11 12
8 7 6 5
1 2 3 4

The token takes the path 1→ 4→ 11→ 4→ 9→ 15. In particular:

• the first roll takes the token to the tail of a snake (‘s’), which has no further effect because snakes
only transport the token from head to tail,

• the second roll takes the token to the base of a ladder (‘L’), which immediately moves it to the top
of the same ladder,

• the third roll takes the token to the head of a snake (‘s’), which immediately moves it to the tail
of the same snake,

• the fourth roll takes the token past the base of a ladder (imparting no effect) to an ordinary square,
and

• the fifth roll takes the token past the head of a snake (imparting no effect) to an ordinary square.

In the second sample case, the token takes the path 1→ 3→ 22→ 26→ 9→ 10→ 10→ 16→ 33→ 36→ 36.
In particular:

• the third roll takes the token to the tail of a snake (‘b’), which has no effect,

• the sixth roll takes the token from the tail of a snake (‘c’) to the head of that same snake, which
then moves it immediately back to the tail, and

• the ninth roll starts from square 33 and adds 4, which would take the token past the end of the
board (square 36), so instead the token is moved to square 36 and remains there until the end of
the game.

Page 2 of 2

Find the Word
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Shanise is a puzzle writer. In her newest puzzle, she presents a grid of letters and asks the puzzler to find
a specified word (which can be any string of letters, not necessarily a recognised English word). The word
must be identified in consecutive squares of the grid, along a row, column or diagonal, making an angle
of either 45◦ or 90◦ with a boundary of the grid.

Help Shanise determine the number of locations in which the word can be found in her grid.

Input
The first line of input consists of a single integer n (1 ≤ n ≤ 100), representing the side length of the grid,
followed by a string s (1 ≤ |s| ≤ n) of uppercase English letters, the word to be found.

n lines follow, representing the rows of the grid, from top to bottom. Each of these lines contains a string
of n uppercase English letters, representing the letters in that row.

Output
Output a single integer, the number of locations in which the word can be found in the grid.

Examples
standard input standard output

4 BUG
BAGO
UUBB
BOBG
GEGO

1

3 XYZ
XYZ
YYZ
ZZZ

3

Note
In the first sample case, there is only one instance of the word BUG.

Page 1 of 2

B A G O

U U B B

B O B G

G E G O

In the second sample case, the word XYZ can be found in the uppermost row, in the leftmost column, and
on the long diagonal.

Page 2 of 2

Duels
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Jonathan and Theodore are brothers who love to play Pokémon. They each have an even number of
monsters n, which are to be paired off for n simultaneous duels. Each monster has an integer-valued
Combat Power (CP):

• a monster with more CP will always beat a monster with less CP in a duel, and

• a duel between two monsters with equal CP will result in a draw.

Jonathan and Theodore will record one point for each duel their monsters win, half a point for each draw,
and no points for each loss.

However, there is one problem. Whichever of Jonathan and Theodore scores fewer points will cry
incessantly. Their parents would be very relieved if the brothers were to conveniently each earn the
same number of points.

Determine whether it is possible to organise the n duels so that Jonathan and Theodore get the same
number of points.

Input
The first line of input consists of an even integer n (2 ≤ n ≤ 5, 000).

The second line of input consists of n space-separated integers j1, . . . , jn (1 ≤ ji ≤ 100, 000), representing
the combat power of Jonathan’s monsters.

The third and final line of input consists of n space-separated integers t1, . . . , tn (1 ≤ ti ≤ 100, 000),
representing the combat power of Theodore’s monsters.

Output
If the brothers’ scores can be made equal, display Yes. Otherwise, display No. Case will be ignored.

Examples
standard input standard output

2
1 2
4 3

No

4
8 1 4 10
10 2 9 1

Yes

Note
In sample case 1, it is impossible for the brothers’ score to be made equal no matter how they duel their
monsters: Theodore will always score two points and Jonathan zero.

In sample case 2, the brothers can duel their monsters as follows:

Jonathan Monster Index Theodore Monster Index Outcome
Duel 1 2 4 Draw (1 = 1)
Duel 2 3 2 Jonathan Win (4 > 2)
Duel 3 4 1 Draw (10 = 10)
Duel 4 1 3 Theodore Win (8 < 9)

Page 1 of 2

At the end of the duels, each brother has one win and two draws, for a total of 1+ 1
2 +

1
2 = 2 points each.

Page 2 of 2

	A-Ores
	B-Eki-Stamps
	C-Snakes-and-Ladders
	D-Find-the-Word
	E-Duels

