
Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Data Structures II
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Term 3, 2023

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Table of Contents 2

1 Range Trees over Trees

2 Range Updates, Point Queries

3 Range Updates, Range Queries

4 Range Trees of Data Structures

5 Solving Problems in Subranges

6 Searching a Range Tree

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Tree on Trees 3

For this section, assume all trees are rooted with a
specified root.

We’ve seen how to do certain path queries using the LCA
data structure.

Another natural and useful question is how to do subtree
queries/updates.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Tree on Trees 4

Problem Statement Given a tree rooted at node 0, each
node has a value, all values are initially 0. Support the
following 2 operations.

Update: Of the form U i w. Change the value of node i to
i.
Query: Of the form Q i. What is the sum of values in the
subtree rooted at vertex i?

Input First line, n, q, number of vertices and operations.
1 ≤ n, q ≤ 100, 000. The next line specifies the tree. n − 1
integers, pi, the parent of vertex i (1-indexed).
The following q lines describe the updates and queries.
1 ≤ n, q ≤ 100, 000.

Output For each Query, an integer, the sum of values in
the subtree rooted at vertex i.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Tree on Trees 5

0

1

2 3

4

Sample Input:

U 3 1
U 4 2
Q 0
Q 1
U 4 3
Q 0

Sample Output:

3
1
4

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Tree on Trees 6

To support general subtree queries, we will extend our
range trees to work on trees.

The key here is to find an ordering of the vertices such
that every subtree corresponds to a range of indices.

Actually, any sensible DFS ordering already does this.

DFS processes all nodes in a subtree before returning from
the subtree. So as long as we’re assigning ids
consecutively, a whole subtree should get consecutive
indices.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Tree on Trees 7

Implementation: In your DFS that creates a
representation of the tree, also either preorder or postorder
the vertices. Each node should store the range of indices
that exists in its subtree.
Now build your range tree over these indices. Past this
point, you can forget about your tree and just work on
your array of indices.
To update node u, look up what its index is. Then just
update your range tree at indexInRangeTree[u].
To query a subtree rooted at v, look up the range of
indices in its subtree. Then just query your range tree for
the range [startRange[v], endRange[v]).
Moral: Queries on subtrees are essentially the same as
just normal range queries.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Tree on Trees 8

#include <vector>
using namespace std;

const int N = 100100;
// Suppose you already have your tree set up.
vector<int> children[N];
// A node is responsible for the range [startRange[v], endRange[v])
int indexInRangeTree[N], startRange[N], endRange[N];
int totId;
// A range tree that supports point update, range sum queries.
long long rangeTree[1<<18];
void update(int plc, int v);
long long query(int qL, int qR); // Query for [qL, qR)

void compute_tree_ranges(int c) {
indexInRangeTree[c] = startRange[c] = totId++;
for (int nxt : children[c]) {

compute_tree_ranges(nxt);
}
endRange[c] = totId;

}

void update_node(int id, int v) {
update(indexInRangeTree[id], v);

}

int query_subtree(int id) {
return query(startRange[id], endRange[id]);

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Table of Contents 9

1 Range Trees over Trees

2 Range Updates, Point Queries

3 Range Updates, Range Queries

4 Range Trees of Data Structures

5 Solving Problems in Subranges

6 Searching a Range Tree

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 10

Recall range trees. They were a data structure that for
many types of operations supported range queries and
point updates.

We will now extend this to also support range updates.

For simplicity, let us tackle the problem of range updates,
point queries first.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Range Updates, Point Queries 11

Given an array a[n], initially all zeros, support q
operations, each being one of the following forms:

Update: U l r v. Perform a[l,r) += v.

Query: Q x. Output a[x].

n, q ≤ 100, 000.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 12

Again, we can’t just individually update all elements of the
array: that would cost O(n) per operation.

So we are going to do the same as we did for range
queries.

Suppose our update tells us to perform a[l,r) += x.

This is the same as performing a[l,m) += x and
a[m,r) += x.

So we can partition our initial update into smaller ranges
however we wish.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 13

We will decompose [l, r) into ranges that correspond
directly to nodes in our range tree in the same way that
we do for range queries.

For each node we will store a lazy counter that keeps the
sum of all updates to that node’s range of responsibility.

To query an index, we need to know all updates to ranges
that contain said index.

For a range tree there are O(log n) of these ranges, and
they are exactly the ranges that appear on the path from
the root to the leaf corresponding to that index.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 14

Let’s update the range [2, 8) with v = 3.

0 [0, 8) [2, 8)

0 [4, 8)

0 [6, 8)

00

0 [4, 6)

00

0 [0, 4)

0 [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 15

As with range queries, we will push the update range down
into the applicable nodes.

0 [0, 8)

3 [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

0 [0, 4)

3 [2, 4) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 16

Now let’s assume we’ve been given a second update, for
the range [1, 5) with v = 7.

0 [0, 8) [1, 5)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

00

0 [0, 4)

3 [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 17

The range decomposition is [1, 2), [2, 4), [4, 5).

0 [0, 8)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

07

0 [0, 4)

3 + 7 [2, 4) [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 18

Note that we have not changed the value for the node
corresponding to the range [4, 8).

0 [0, 8)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

07

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 19

Let’s try to query what a[4] is.
The nodes responsible for a range containing i = 4 are the
ones from the leaf for i to the root.

0 [0, 8)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

07

0 [0, 4)

10 [2, 4) [2, 4)

00

0 [0, 2)

70

The sum of these is 0 + 3 + 0 + 7 = 10, hence a[4] = 10.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 20

const int N = 100100;
long long lazyadd[1<<18];

int n;

// The root node is responsible for [0, n). Update range [uL, uR)
// Compare to range query code.
void update(int uL, int uR, int v, int i = 1, int cL = 0, int cR = n) {

if (uL == cL && uR == cR) {
lazyadd[i] += v;
return;

}
int mid = (cL + cR) / 2;
if (uL < mid) update(uL, min(uR, mid), v, i * 2, cL, mid);
if (uR > mid) update(max(uL, mid), uR, v, i * 2 + 1, mid, cR);

}

long long query(int p, int i = 1, int cL = 0, int cR = n) {
if (cR - cL == 1) {

return lazyadd[i];
}
int mid = (cL + cR) / 2;
long long ans = lazyadd[i];
if (p < mid) ans += query(p, i * 2, cL, mid);
else ans += query(p, i * 2 + 1, mid, cR);
return ans;

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Point Queries 21

Complexity: Still O(log n) per operation, for the same
reasons as before.

Works for most operations that can be broken down into
smaller ranges.

You also need to be able to accumulate the operation so
that you can store all the information in the lazy counter.
So for example, the operation a[i] = a[i] mod vq is an
issue.

However, covers most operations you would naturally
think of, e.g: multiply, divide, xor, and, etc …

Can also sometimes do multiple different kinds of updates
but this is more finnicky and depends on the specific
updates and probably requires lazy propagation.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Dynamic Distance on a Tree 22

Problem Statement Given a weighted tree, all edges
initially 0. Support q operations, each one taking one of
the following forms:

Update U i j w: Add w to the weight of the edge
between i and j.

Query Q i j: Output the shortest distance between i and
j.

Input A tree described as n − 1 edges, followed by q
operations. 1 ≤ n, q ≤ 100, 000.

Output For each query, an integer, the shortest distance
from i to j.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Dynamic Distance on a Tree 23

0

1

2 3

4

Sample Input:

U 0 1 3
Q 4 3
U 0 1 -1
U 3 1 5
Q 3 4

Sample Output:

3
7

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Dynamic Distance on a Tree 24

Recall our solution for the static problem.

Let l = lca(i, j). We split the path from i to j into a path
from i to l followed by a path from j to l.

Let weight_sum(i) be the sum of weights from the root
to i. The answer is then just
weight_sum(i) + weight_sum(j) - 2*weight_sum(l).

Our updates don’t change the tree structure but change
weight_sum. So this is what we need to update.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Dynamic Distance on a Tree 25

When we update an edge, what weight sums do we
update?

Every node whose path to the root goes through said
edge. In other words, every node in the edge’s subtree.

So we should maintain weight_sum using a range tree
and update it using subtree updates.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Dynamic Distance on a Tree 26

using namespace std;

const int N = 100100;

// Suppose you already have your tree set up.
int depth[N]; // Depth in tree (ignores weight).
int lca(int a, int b);

// A node is responsible for the range [startRange[v], endRange[v])
int indexInRangeTree[N], startRange[N], endRange[N];
// A range tree supporting range updates of add, point queries of value.
long long rangeTree[1<<18];
void update(int uL, int uR, long long v); // value[uL,uR) += v
long long query(int q);

void update_edge(int i, int j, long long v) {
// To update the edge's subtree, we need to know which of the 2 nodes are

lower.
if (depth[i] > depth[j])

swap(i, j);
update(startRange[j], endRange[j], v);

}

long long get_tree_distance(int i, int j) {
int l = lca(i, j);
return query(indexInRangeTree[i]) + query(indexInRangeTree[j])

- 2*query(indexInRangeTree[l]);
}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Table of Contents 27

1 Range Trees over Trees

2 Range Updates, Point Queries

3 Range Updates, Range Queries

4 Range Trees of Data Structures

5 Solving Problems in Subranges

6 Searching a Range Tree

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 28

Now let’s try range updates and range queries.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Range Updates, Range Queries 29

Given an array a[n], initially all zeros, support q
operations, each being one of the following forms:

Update: U l r v. Perform a[l,r) += v.

Query: Q l r. Output
∑r−1

i=l a[i].

n, q ≤ 100, 000.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 30

We will support range updates in the same way we did for
point queries. Instead, we will change how we do range
queries.
In our earlier example, for each node we just stored the
lazy counter. This was enough as every query involved
walking from the root to a leaf.
However, recall to handle range queries in good time
complexity we terminate our recursion once we’ve found a
node that matches our current query range.
Hence for each node we will need to store 2 values, the
lazy counter and the sum of the node’s range of
responsibility.
2 major changes:

1 Maintain for each node its lazy counter and the sum of its
range.

2 Support updates through lazy propagation.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 31

Lazy propagation is the idea that whenever we touch a
node, we should propagate that node’s updates to its
children.

For our example, propagate means add the lazy counter of
node i to its two children and set the lazycounter of node i
to 0.

Essentially, instead of doing a[l,r) += v, we break the
update into a[l,m) += v and a[m,r) += v.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 32

0 [0, 8)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

07

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 33

Let’s try querying a[5].

0 [0, 8)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

07

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 34

Let’s try querying a[5].

0 [0, 8)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

07

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 35

Let’s try querying a[5].

0 [0, 8)

3 [4, 8)

0 [6, 8)

00

0 [4, 6)

07

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 36

Let’s try querying a[5].

0 [0, 8)

0 [4, 8)

3 [6, 8)

00

3 [4, 6)

07

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 37

Let’s try querying a[5].

0 [0, 8)

0 [4, 8)

3 [6, 8)

00

3 [4, 6)

07

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 38

Let’s try querying a[5].

0 [0, 8)

0 [4, 8)

3 [6, 8)

00

0 [4, 6)

310

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 39

Let’s try querying a[5].

0 [0, 8)

0 [4, 8)

3 [6, 8)

00

0 [4, 6)

310

0 [0, 4)

10 [2, 4)

00

0 [0, 2)

70

Hence a[5] = 3.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Lazy Propagation 40

This ensures when we read the sum of a range from a
node, we won’t be missing any updates that are stored in
the lazy counter of one of the node’s ancestors.

Complexity Overhead? No overhead, propagation is an
O(1) operation per node.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Storing Counter and Sum 41

To support range queries, for each node we also need to
store the sum of its range.
But because of range updates, we can’t literally do this
(else we’d need to update every node within the update
range).
Our invariant will be: Each node stores what the sum of
its range would be, accounting only for lazy counters
within its subtree.
All lazy counters above each node are ignored.
This way, an update only needs to modify the nodes
encountered in the update’s recursion.
This will suffice since lazy propagation ensures when we
actually query a node all its ancestors will have lazy
counter 0.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 42

Sum of a node’s range will always be shown.

Nonzero lazy counters will be written in brackets to the
right.

0 [0, 8)

0 [4, 8)

0 [6, 8)

00

0 [4, 6)

00

0 [0, 4)

0 [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 43

Let’s update the range [2, 8) with v = 3.

0 [0, 8) [2, 8)

0 [4, 8)

0 [6, 8)

00

0 [4, 6)

00

0 [0, 4)

0 [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 44

This is done recursively, just like queries, so we’ll
summarise.

0 [0, 8) [2, 8)

0 [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

0 [0, 4) [2, 4)

0 [2, 4) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 45

Let’s update the left side first.

We need to update the lazy counter and also the sum.

0 [0, 8) [2, 8)

0 [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

0 [0, 4) [2, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 46

We then return from this branch of the recursion.

As we’re returning we will update the nodes we passed
through in this branch.

0 [0, 8) [2, 8)

0 [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 47

Now our recursion enters the other branch. Same as
before.

0 [0, 8) [2, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 48

We now return from the right branch.

We now update the root node before returning.

18 [0, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 49

We now return from the right branch.

We now update the root node before returning.

18 [0, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 50

Let’s update a second update to the range [0, 8) with
v = 4.

18 [0, 8) [0, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 51

Since the root’s range matches we just update the root.

18 + 4*8(4) [0, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 52

Note how we did not modify any node but the root.

50(4) [0, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 53

Let’s now query the sum of the range [2, 8).

50(4) [0, 8) [2, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 54

Whenever we encounter a node, we lazy propagate out its
lazy counter.

50(4) [0, 8) [2, 8)

12(3) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6(0) [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 55

When we lazy propagate, we also need to change node
sums.

50(0) [0, 8) [2, 8)

12+4*4(7) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

6 + 4*4(4) [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 56

When we lazy propagate, we also need to change node
sums.

50(0) [0, 8) [2, 8)

28(7) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22(4) [0, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 57

Now we do the recursion for answering the query.

50 [0, 8) [2, 8)

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22(4) [0, 4) [2, 4)

6(3) [2, 4)

00

0 [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 58

Again, we need to lazy propagate.

50 [0, 8) [2, 8)

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22(4) [0, 4) [2, 4)

6(3) [2, 4)

00

0(0) [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 59

Again, we need to lazy propagate.

50 [0, 8) [2, 8)

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22 [0, 4) [2, 4)

14(7) [2, 4)

00

8(4) [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 60

Now we recurse again.

50 [0, 8) [2, 8)

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22 [0, 4) [2, 4)

14(7) [2, 4) [2, 4)

00

8(4) [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 61

For simplicity, we’ll just say we don’t lazy propagate when
we’ve found the right range.

50 [0, 8) [2, 8)

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22 [0, 4) [2, 4)

14(7) [2, 4) [2, 4)

00

8(4) [0, 2)

00

So we return the result we have obtained up the chain and
continue the query in the other branch.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 62

So we return the result we have obtained up the chain and
continue the query in the other branch.

50 [0, 8) [2, 8)

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22 [0, 4) [2, 4)

14(7) [2, 4) [2, 4)

00

8(4) [0, 2)

00

Note how all ancestors of the node responsible for the
range [2, 4) have lazy counter equal to 0.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 63

Now we continue in the second branch where we
immediately find the node with the right range.

50 [0, 8) [2, 8) 14 + ?

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22 [0, 4) [2, 4)

14(7) [2, 4) [2, 4)

00

8(4) [0, 2)

00

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 64

So we immediately return with the value.

50 [0, 8) [2, 8) 14 + 28

28(7) [4, 8) [4, 8)

0 [6, 8)

00

0 [4, 6)

00

22 [0, 4) [2, 4)

14(7) [2, 4) [2, 4)

00

8(4) [0, 2)

00

And we now return from the root with the answer 42.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 65

Implementation wise, it helps to introduce some
terminology.

In a recursion, call the “preorder procedure” the procedure
we call before recursing.

Call the “postorder procedure” the procedure we call after
we’ve returned from all children.

Then we will implement propagation as a preorder
procedure.

And for updates, recalculating a node’s sum is a postorder
procedure.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 66

using namespace std;

const int N = 100100;
long long lazyadd[1<<18], sum[1<<18];

// Procedure for recalculating a node's sum from its lazy and children.
void recalculate(int id, long long l, long long r) {

sum[id] = lazyadd[id] * (r - l);
if (r - l != 1) {

sum[id] += sum[id * 2];
sum[id] += sum[id * 2 + 1];

}
}

void update_lazy(int id, long long v, long long l, long long r) {
lazyadd[id] += v;
recalculate(id, l, r);

}

// Preorder procedure for propagation. Do NOT call it on leaves.
void propagate(int id, long long l, long long r) {

long long mid = (l + r) / 2;
update_lazy(id * 2, lazyadd[id], l, mid);
update_lazy(id * 2 + 1, lazyadd[id], mid, r);
lazyadd[id] = 0;

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 67

int n;

// The root node is responsible for [0, n). Update range [uL, uR)
void update(int uL, int uR, int v, int i = 1, int cL = 0, int cR = n) {

if (uL == cL && uR == cR) {
update_lazy(i, v, cL, cR);
return;

}
propagate(i, cL, cR);
int mid = (cL + cR) / 2;
if (uL < mid) update(uL, min(uR, mid), v, i * 2, cL, mid);
if (uR > mid) update(max(uL, mid), uR, v, i * 2 + 1, mid, cR);
recalculate(i, cL, cR);

}

long long query(int qL, int qR, int i = 1, int cL = 0, int cR = n) {
if (qL == cL && qR == cR) {

return sum[i];
}
propagate(i, cL, cR);
int mid = (cL + cR) / 2;
long long ans = 0;
if (qL < mid) ans += query(qL, min(qR, mid), i * 2, cL, mid);
if (qR > mid) ans += query(max(qL, mid), qR, i * 2 + 1, mid, cR);
return ans;

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Updates, Range Queries 68

Complexity: O(log n) per update/query still. We still visit
the same nodes; the extra propagation and computation is
just O(1) overhead per node.

It is important to make sure you have invariants in mind
when implementing range trees.

For example, we had the invariant that sum[i] represents
the sum accounting for all lazy updates in the subtree of i.
Everything else was dictated by maintaining this invariant.

You could instead have sum[i] account for all lazy
updates in the subtree, excluding the lazy counter at node
i itself.

Doesn’t matter, just stay consistent.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Setting Ranges 69

Problem Statement: Given an array of integers a[n],
initially all 0, support q operations of the forms:

Update U l r v. Set a[l, r) = v, v ≥ 0.

Query Q l r. What is the max of a[l, r)?

Input Format: First line, 2 integers, n, q. The following q
lines each describe an operation.

Constraints: 1 ≤ n, q ≤ 100, 000.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Setting Ranges 70

Sample Input:

5 7
U 1 3 5
U 2 4 1
Q 1 3
Q 2 3
U 3 4 3
Q 2 4
Q 1 5

Sample Output:

5
1
3
5

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Setting Ranges 71

We will use the same lazy propagation framework.

What our nodes store is dictated by the queries.

Each of our nodes needs to store the max for their range
of responsibility, ignoring all lazy values outside that
node’s subtree.

Our lazy values are dictated by the updates.

Each of our nodes needs to store the last update applied
to the node.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Setting Ranges 72

Question? For a given node in the range tree how do we
know which update most recently covered the node’s
range?

Key Observation: If we lazy propagate, it is the lazy
value of the highest ancestor with a lazy value set.

Why? Because whenever we apply an update, we lazy
propagate existing updates on the path to the node we’re
updating. So no ancestors of the node have lazy values
set. Hence the highest set lazy value is the most recent
update.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Setting Ranges 73

Now we know what we need.

Our lazy values store the most recent update to a range.
These will be lazy propagated. When we lazy propagate
we just overwrite our children since we know our update is
more recent than our children’s.

Each node stores the max of its range, based on only lazy
values within its subtree.

maxrt[i] = lazy[i] if lazy[i] is set, else it is the max
of i’s children.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Setting Ranges 74

using namespace std;

const int N = 100100;
const int UNSET = -1;
// Since A is 0 initially , the default values are correct.
int lazyset[1<<18]; // UNSET if no lazy is set
int maxrt[1<<18];

// Recalculates a node's values assuming its children are correct.
// do NOT call these on leaves.
void recalculate(int i) {

if (lazyset[i] != UNSET) // should never happen
maxrt[i] = lazyset[i];

else
maxrt[i] = max(maxrt[i*2], maxrt[i*2+1]);

}

void propagate(int i) {
if (lazyset[i] == UNSET)

return;
lazyset[i*2] = lazyset[i*2+1] = lazyset[i];
maxrt[i*2] = maxrt[i*2+1] = lazyset[i];
lazyset[i] = UNSET;

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Setting Ranges 75

int n;

void update(int uL, int uR, int v, int i = 1, int cL = 0, int cR = n) {
if (uL == cL && uR == cR) {

lazyset[i] = maxrt[i] = v;
return;

}
propagate(i);
int mid = (cL + cR) / 2;
if (uL < mid) update(uL, min(uR, mid), v, i*2, cL, mid);
if (uR > mid) update(max(uL, mid), uR, v, i*2+1, mid, cR);
recalculate(i);

}

int query(int qL, int qR, int i = 1, int cL = 0, int cR = n) {
if (qL == cL && qR == cR) {

return maxrt[i];
}
propagate(i);
int mid = (cL + cR) / 2;
int ans = -1; // note all values are >= 0 in the question.
if (qL < mid) ans = max(ans, query(qL, min(qR, mid), i*2, cL, mid));
if (qR > mid) ans = max(ans, query(max(qL, mid), qR, i*2+1, mid, cR));
return ans;

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Table of Contents 76

1 Range Trees over Trees

2 Range Updates, Point Queries

3 Range Updates, Range Queries

4 Range Trees of Data Structures

5 Solving Problems in Subranges

6 Searching a Range Tree

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Range Tree of Data Structures 77

So far we’ve just used range trees to support operations an
array of integers.

But the real power of range trees is in the way it
decomposes ranges.

The nodes can store anything.

For example other data structures (!!)

The most useful is probably a set or other SBBST.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Should I bring an Umbrella? 78

Problem Statement It’s 2200 and climatology is now the
most hectic job on earth. There is a constant deluge of
rain predictions concerning the towns in LineLand. There
are n towns in LineLand, in a line. Each prediction is of
the form U l r d saying that there will be rain in towns
[l, r) on day d. Interspersed among these updates, there
will be queries of the form Q a d, asking if there is a
predicted shower in town a on day d.

Input First line, n, q, the number of towns and operations.
1 ≤ n, q ≤ 100, 000. Towns are 0 indexed. The next q
lines are the operations in the specified format.

Output For each operation, 1 if there is forecasted rain
and 0 otherwise.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Should I bring an Umbrella? 79

Sample Input:

10 6
U 0 3 1
Q 1 1
Q 1 2
Q 3 1
U 1 4 1
Q 3 1

Sample Output:

1
0
0
1

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Should I bring an Umbrella? 80

We have the characteristic range updates that suggest
range tree.

But it no longer suffices to store a single integer for each
range.

To store our predictions we should use a set.

We will decompose the range of each prediction using the
range tree and update the sets of each of the
corresponding nodes.

To answer a query, we need the predictions corresponding
to each range containing the queried city. This is just the
nodes on the path from the leaf to the root.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Should I bring an Umbrella? 81

#include <set>
using namespace std;

const int N = 100100;
set<int> rt[1<<18];
int n;

// The root node is responsible for [0, MAX_N). Update range [uL, uR)
void update(int uL, int uR, int v, int i = 1, int cL = 0, int cR = n) {

if (uL == cL && uR == cR) {
rt[i].insert(v);
return;

}
int mid = (cL + cR) / 2;
if (uL < mid) update(uL, min(uR, mid), v, i * 2, cL, mid);
if (uR > mid) update(max(uL, mid), uR, v, i * 2 + 1, mid, cR);

}

// Does it rain in index qP on day qD?
bool query(int qP, int qD, int i = 1, int cL = 0, int cR = n) {

if (rt[i].find(qD) != rt[i].end())
return true;

if (cR - cL == 1)
return false;

int mid = (cL + cR) / 2;
if (qP < mid) return query(qP, qD, i * 2, cL, mid);
else return query(qP, qD, i * 2 + 1, mid, cR);

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Should I bring an Umbrella? 82

Complexity? O(n + q log2 n). Each update and query
accesses O(log n) nodes (this is a characteristic of the
range decomposition itself) but each access costs O(log n)
due to the sets.

Warning: We can’t lazy propagate in this example. This
is because the size of the data we are storing at each node
isn’t constant any more. So the cost of lazy propagation
per operation is potentially O(n log n) and this does not
amortize.

E.g: have 50000 updates to the entire range, then have
the next 50000 be queries forcing a O(n log n) set copy
each time.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Should I bring an Umbrella? 83

We can actually do much more.

We can support other things sets and maps and OSTs
support, like deleting predictions and finding the closest
rain day or counting the number of cities raining on a
given day in a range.

If the bounds were different (fewer cities) we could even
support updates affecting ranges of days, by storing a
range tree of days in each node of the original range tree.

Moral: If you need to store different kinds of data while
supporting range operations, consider a range tree of a
suitable data structure.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 84

Another classic problem, finding total area covered by a
set of rectangles.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 85

Problem Statement: It’s 2201 and you’re done with
Earth and its unpredictable rainfall. You’ve decided to
move to Neptune. After landing, you find out, to your
dismay, that not only does it rain on Neptune but it rains
diamonds. But it’s too late now to turn back so you’ll just
have to make do.
As we all know, Neptune is a n × n grid with bottom left
corner (0, 0). There are m diamond showers on Neptune,
each a rectangle. You now wish to find how much of
Neptune is covered by diamond showers.
Input: First line 2 integers, n,m. 1 ≤ n,m ≤ 100, 000.
The next m lines are each of the form x0 y0 x1 y1,
describing a diamond shower with bottom left corner
(x0, y0) and upper right corner (x1, y1).
Output: A single integer, the total area of Neptune
covered by the union of all the showers.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 86

Sample Input:

4 2
0 1 2 2
1 0 2 3

Sample Output:

4

Explanation:

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 87

2 common approaches for 2D problems. Either a 2D data
structure or a linear sweep in the y direction while
maintaining a data structure over x.

Latter is generally faster and easier.

For each row, what do we need to track?

Which columns currently have a rectangle.

Standard way of doing this is create 2 events per rectangle,
one at y0 instructing us to activate the rectangle, one at
y1 instructing us to deactivate the rectangle.

Suppose we have done this so we know which rectangles
are active. How do we track how many columns have a
rectangle?

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 88

An active rectangle covers a range of x coordinates so
…range tree!

The query we need to support is count the number of
indices that are covered.

We need to support the updates:
1 Add a range.
2 Remove a range.

So we have a range update, range query situation.

What do our nodes store and what are the lazy counters?

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 89

What our nodes store is dictated by the queries.

Each of our nodes needs to store the number of covered
indices in its range.

Our lazy counters are dictated by the updates.

Each of our nodes needs to store whether a range fully
covers that node’s range.

We can use a set for the lazy counter. Or we can use a
counter.

Warning: We can’t lazy propagate here. Else deleting a
range becomes a nuisance (this becomes more natural if
one thinks of the lazy counter as a set)

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 90

So we decompose each update range same as how we
always do.

After decomposing the range, we update the lazy counter
at the corresponding nodes.

In addition, each node stores freq[i], the number of
covered indices in its range of responsibility only
accounting for lazy counters in its subtree.

Then freq[i] = endRange[i] - startRange[i] if
lazy[i] > 0, otherwise, freq[i] is the sum of its two
children.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 91

#include <iostream>
#include <vector>
using namespace std;

const int N = 100100;
// Range tree
int lazycount[1<<18], freq[1<<18];
int n, m;

void recompute(int i, int left, int right) {
if (lazycount[i] > 0) freq[i] = right-left; // range directly covered
else if (right-left == 1) freq[i] = 0; // leaf
else freq[i] = freq[i*2] + freq[i*2+1]; // sum of children

}

// Update count of [uL, uR) by v
void update(int uL, int uR, int v, int i = 1, int cL = 0, int cR = n) {

if (uL == cL && uR == cR) {
lazycount[i] += v;
recompute(i, cL, cR);
return;

}
int mid = (cL + cR) / 2;
if (uL < mid) update(uL, min(uR, mid), v, i*2, cL, mid);
if (uR > mid) update(max(uL, mid), uR, v, i*2+1, mid, cR);
recompute(i, cL, cR);

}

int query_total() {
return freq[1];

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Mapping Neptune 92

struct Event {
int l, r, v;
Event(int _l, int _r, int _v) : l(_l), r(_r), v(_v) {}

};

// Convention: process events for a y before calculating that value of y.
// When calculating yi, we will count covered squares in [yi, yi+1]
vector<Event> events[N];

int main() {
cin >> n >> m;
for (int i = 0; i < m; i++) {

int x0, y0, x1, y1;
cin >> x0 >> y0 >> x1 >> y1;
events[y0].emplace_back(x0, x1, 1);
events[y1].emplace_back(x0, x1, -1);

}

long long ans = 0;
for (int i = 0; i < n; i++) {

for (const auto &e: events[i])
update(e.l, e.r, e.v);

ans += query_total();
}

cout << ans << '\n';
}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Table of Contents 93

1 Range Trees over Trees

2 Range Updates, Point Queries

3 Range Updates, Range Queries

4 Range Trees of Data Structures

5 Solving Problems in Subranges

6 Searching a Range Tree

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Solving Problems in Subranges 94

We can go further.

By picking the right state to store we can solve many
classic linear sweep problems except restricted to a
subrange.

Creating a range tree is kind of like applying divide and
conquer in this view.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Solving Problems in Subranges 95

Each node in our subtree stores the answer for queries
that are exactly the node’s range of responsibility [l, r).

As in divide and conquer, answers contained entirely
within the left half [l,m) or right half [m, r) of the range
are handled by the left and right child.

So the crucial (and difficult) part is accounting for possible
solutions that cross m.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Solving Problems in Subranges 96

For this, we will probably need to store additional
metadata.

Comes down to thinking about what a best solution
crossing m must look like.
A subarray crossing the midpoint will be composed of:

a suffix of the left half, and
a prefix of the right half.

But remember, any metadata we add must itself be
updated in our range tree.

Generally this is easier because the metadata is more
specific.
May need to keep adding more metadata until this
stabilises.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Solving Problems in Subranges 97

Suppose we now know how to recalculate a node from its
two children.

Then answering a query should be easy.

First break our query into subranges based on our range
tree, as usual.

Then use our recalculate procedure to merge these
O(log n) ranges.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 98

Problem Statement: Given an array of integers a[n],
initially all 0, support q operations of the forms:

Update U i v. Set a[i] = v.

Query Q i j. Consider the sum of every (contiguous)
subarray of a[i, j). What’s the maximum of these? Treat
the empty subarray as having sum 0.

Input Format: First line, 2 integers, n, q. The following q
lines each describe an operation.

Constraints: 1 ≤ n, q ≤ 100, 000.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 99

Sample Input:

5 7
U 0 -2
U 2 -2
U 1 3
Q 0 1
Q 0 5
U 3 3
Q 0 4

Sample Output:

0
3
4

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 100

Our end goal is a range tree where each node stores the
best answer for its range of responsibility.

The difficult part is merging two nodes.

Let’s say we have a node responsible for the range [l, r)
with children responsible for the ranges [l,m) and [m, r).

If the best subarray is solely in [l,m) or solely in [m, r)
then we are done. What can we say about subarrays
crossing m?

Observation: They should start at st such that [st,m)
has maximum possible sum. They should similarly end at
an en such that [m, en) has maximum possible sum.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 101

So for each node we should store the maximum possible
sum of a subarray of the form [l, x) and of the form [x, r).

Call this bestStart[i] and bestEnd[i].

But now we have the same problem. How do we update
bestStart[i] and bestEnd[i] from the 2 children of i?

Again, we follow the same approach.

If bestStart[i] is from a subarray contained entirely in
the left child then we are done.

Otherwise, what can it look like?

Observation: It is of the form [l,m) ∪ [m, x) where x
corresponds to bestStart[rightChild].

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 102

So
bestStart[i] = max(bestStart[leftChild],

sum[leftChild] + bestStart[rightChild])
where sum[i] is the sum of i’s entire range.

So we now need to maintain sum[i].

But this is easy, you’ve seen this many times.

Phew! We’re done now. Only needed to go 3 levels deep!

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 103

using namespace std;

const int MAXN = 100100;

struct state {
long long bestStart, bestEnd, sum, bestSubarray;

};

// Default value of state is all 0. This is correct for us.
state rt[1<<18];

state mergeStates(const state& left, const state& right) {
state ret;
ret.bestStart = max(left.bestStart, left.sum + right.bestStart);
ret.bestEnd = max(right.bestEnd, left.bestEnd + right.sum);
ret.sum = left.sum + right.sum;
ret.bestSubarray = max(max(left.bestSubarray , right.bestSubarray),

left.bestEnd + right.bestStart);
/* in C++11, can instead do ret.bestSubarray = max({left.bestSubarray ,

right.bestSubarray , left.bestEnd + right.bestStart}) */
return ret;

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 104

int n;

void update(int p, int v, int i=1, int cL = 0, int cR = n) {
if (cR - cL == 1) {

rt[i].sum = v;
rt[i].bestStart = rt[i].bestEnd = rt[i].bestSubarray = max(v,0);
return;

}
int mid = (cL + cR) / 2;
if (p < mid) update(p, v, i * 2, cL, mid);
else update(p, v, i * 2 + 1, mid, cR);
rt[i] = mergeStates(rt[i*2], rt[i*2+1]);

}

state query(int qL, int qR, int i = 1, int cL = 0, int cR = n) {
if (qL == cL && qR == cR) {

return rt[i];
}
int mid = (cL + cR) / 2;
if (qR <= mid) return query(qL, qR, i * 2, cL, mid);
if (qL >= mid) return query(qL, qR, i * 2 + 1, mid, cR);
return mergeStates(

query(qL, min(qR, mid), i * 2, cL, mid),
query(max(qL, mid), qR, i * 2 + 1, mid, cR));

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Example: Maximum Sum Subrange 105

Complexity? Still O(log n) for everything, mergeStates
is an O(1) operation.

Moral: While the solution seems involved, the general
strategy is very simple. Repeatedly consider what is
needed to merge 2 different states and see what additional
metadata is necessary. Then hope this stabilizes.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Solving Problems in Subranges 106

We can apply this technique for many simple problems on
a line.

We can also apply this to some DP problems that have
small state space at any point.

For these, your nodes store matrices detailing how to
transition between states.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Table of Contents 107

1 Range Trees over Trees

2 Range Updates, Point Queries

3 Range Updates, Range Queries

4 Range Trees of Data Structures

5 Solving Problems in Subranges

6 Searching a Range Tree

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Searching a Range Tree 108

For most data structures it suffices to treat them as a
black box.

Hopefully by now you’ve gotten the sense that this is less
true for range trees.

Sometimes it is useful to also modify how we traverse a
range tree.

This is mainly useful when we are searching for the
first/any value that satisfies some given constraint.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Searching a Range Tree 109

Let’s say we want to find any value that satisfies a
criterion X.
For concreteness, let’s say we want to find any value that’s
at least L.
In each node, we store enough data to determine if there
is a value in its range that satisfies X.
For our example, we can store the max of all values in
each range.
Once we have this, finding a value is easy. We know for
both children whether there is a value inside their range
that satisfies X. We then just recurse into whichever side
has a value that satisfies X.
To find the leftmost/rightmost such value, we just bias
our search towards the left or right child.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Searching a Range Tree 110

Suppose now we want to find if any value in a given range
[l, r) that satisfies criterion X.

Now we just decompose [l, r) into O(log n) ranges as we
usually do with a range tree.

We can then just repeat this for each of the nodes in our
decomposition.

Complexity? O(log n) if you implement correctly since we
actually only need to do this once, to the first node which
we know contains a value satisfying X.

Again, easy to find leftmost/rightmost.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: First Big Value 111

Problem Statement: Given an array, a[n], all initially 0.
Support q operations of the forms:

Update U i v. Set a[i] = v.

Query Q l r v. What’s the minimum index i ∈ [l, r) such
that a[i] > v, or −1 if no such index exists.

Input Format: First line, n, q. Next q lines describe the
operations.

Constraints: 1 ≤ n, q ≤ 100, 000.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: First Big Value 112

Sample Input:

4 7
U 0 2
U 1 3
Q 0 4 2
Q 0 4 3
Q 0 4 1
U 0 4
Q 0 4 2

Sample Output:

1
-1
0
0

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: First Big Value 113

To guide our search we need to know whether a range
contains a value that is at least v.

For this, it suffices to store the max of each range.

We know how to maintain this, it’s just a point update,
range query range tree.

Now to find a value that is at least v we just need to
search only nodes with max[i] > v and terminate our
search once we have found a value.

To find the first such i, just always search the left child’s
subtree first.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: First Big Value 114

Implementation Details:

So far we’ve only recursed into nodes we need to by
checking before recursing. For this it is a bit easier to
always recurse and return immediately if we’ve recursed
into a node whose range is disjoint from the query range.

To find an index we have to recurse down to the leaves.
So we no longer early exit when the query range is the
same as the node’s range.

Instead we early terminate once we have found a leaf. To
support this, our recursion will return a boolean indicating
if we have found an index.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: First Big Value 115

using namespace std;

const int N = 100100;
int maxrt[1<<18];
int n;

// Standard max range tree.
void update(int p, int v, int i = 1, int cL = 0, int cR = n) {

if (cR - cL == 1) {
maxrt[i] = v;
return;

}
int mid = (cL + cR) / 2;
if (p < mid) update(p, v, i*2, cL, mid);
else update(p, v, i*2+1, mid, cR);
maxrt[i] = max(maxrt[i*2], maxrt[i*2+1]);

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: First Big Value 116

bool query_rec(int qL, int qR, int v, int &foundPlc, int i = 1, int cL = 0, int
cR = n) {

// Query range does not intersect the node's range.
if (qL >= cR || qR <= cL) return false;
// Nothing in i's range is big enough
if (maxrt[i] <= v) return false;
if (cR - cL == 1) {

foundPlc = cL;
return true;

}
int mid = (cL + cR) / 2;
if (query_rec(qL, qR, v, foundPlc, i*2, cL, mid)) return true;
if (query_rec(qL, qR, v, foundPlc, i*2+1, mid, cR)) return true;
return false;

}

int query(int qL, int qR, int v) {
int ans = -1;
query_rec(qL, qR, v, ans);
return ans;

}

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: First Big Value 117

Complexity? Actually still O(log n) per operation.

Recall our previous recursions stopped whenever we
encountered a node whose range was entirely contained in
[qL, qR).

In this recursion, whenever we encounter such a node,
either its max value is too low and we stop anyways, or
the node contains the index we are looking for.

The latter case only occurs once and the search for the
index is O(log n) since we only recurse from a node if we
know for sure its range contains the desired index.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Searching a Range Tree 118

This trick is useful for finding if an event has occurred in
the array.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Rising Water 119

Problem Statement:
It is 2155 and Earth has been renamed Water. LineLand
with its constant showers has been particularly devastated.
LineLand consists of n towns in a row, each with a height
hi. Initially all of these have water level 0.
The climatologists of LineLand forecast there will be m
showers, the i-th raising the water levels of towns [li, ri) by
wi.
The mayor of LineLand wants to know how many towns
are underwater (total water level is greater than the height
of the town) after each shower.

Input Format: First line, 2 integers, n,m.
1 ≤ n,m ≤ 500, 000. Next line, n integers, the initial
heights of the towns. Next m lines each describe a shower.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Rising Water 120

Sample Input:

3 2
1 4 2
0 2 3
1 3 2

Sample Output:

1
2

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Rising Water 121

Observation 1: Once a town is underwater, it is always
underwater.

So we just need to find out what towns change from
above water to underwater after each operation.

What is the criterion for a town to be underwater?

That total_water[i] > height[i].

Alternatively that 0 > height[i] - total_water[i].

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Rising Water 122

So to know if there is a new town underwater, we just
need to know if mini(height[i]− total_water[i]) < 0.

We can then delete this town so we do not count it more
than once then repeat.

For this problem, setting a town’s height to infinity is as
good as deleting the town.

Data
Structures II

Range Trees
over Trees

Range
Updates,
Point Queries

Range
Updates,
Range Queries

Range Trees
of Data
Structures

Solving
Problems in
Subranges

Searching a
Range Tree

Problem: Rising Water 123

#include <iostream>
using namespace std;

const int N = 500500;
const int INF = 1000*1000*1000+7; // large height to never go underwater
int minrt[1<<20]; // standard range update min range tree
int n, m;

void update(int uL, int uR, int v); // standard function for a[uL, uR) += v
int query(int qL, int qR, int v); // returns index of any value < 0, or -1 if

none exist

int main() {
cin >> n >> m;
for (int i = 0; i < n; i++) {

int cH;
cin >> cH;
update(i, i+1, cH);

}

int ans = 0;
for (int i = 0; i < m; i++) {

int a, b, w, cInd;
cin >> a >> b >> w;
update(a, b, -w);
while ((cInd = query(0, n, 0)) != -1) {

ans++;
update(cInd, cInd+1, INF); // "delete" cInd

}
cout << ans << '\n';

}
}

	Range Trees over Trees
	Range Updates, Point Queries
	Range Updates, Range Queries
	Range Trees of Data Structures
	Solving Problems in Subranges
	Searching a Range Tree

