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Example problem: Crowd Surfing 3

Problem statement You want to crowd surf to the
southeast corner (+) of an m × n rectangle. Every other
cell will either move you south (v), move you east (>) or
drop you (*). No cell will move you outside the grid.

A cell is said to be good if the crowd will move you from
this cell to the southeast corner, and bad otherwise. How
many bad cells are there in a given grid?
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Input First line, m n, 1 ≤ m, n ≤ 1, 000. Following this, m
lines, the ith of which is a string si of length n representing
the cells in row i.

Output A single integer, the number of bad squares.

Source AIO 2008
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Example Input
4 5
v*v>v
>v>*v
v>>>v
>>*>+

Example Output
8
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Explanation The input represents this rectangle:

↓ ∗ ↓ → ↓
→ ↓ → ∗ ↓
↓ → → → ↓
→ → ∗ → +

in which the bad cells are marked in red.
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Naïve approach: for every cell, follow the path starting
here

If it fails to take us to the southeast corner, increment the
answer

Clearly correct, but for each of O(mn) cells the required
path could have up to m + n steps. Since mn(m + n)
could be up to 2 × 109, this is too slow
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Observation
Suppose one step from cell (i1, j1) takes you to (i2, j2). Then
(i1, j1) is bad if and only if (i2, j2) is bad

Overlapping subproblems! DP

There are other ways to use this observation
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Natural choice of state is a cell (i, j)

Recurrence is

bad(i, j) =


T if si,j is *
bad(i + 1, j) if si,j is v
bad(i, j + 1) if si,j is >

.

Base case is bad(m − 1, n − 1) = F



Revision

DP

“DP on a
tree”

Assorted
problems

Example problem: Crowd Surfing 10

To ensure that the answers for (i + 1, j) and (i, j + 1) have
already been computed by the time we get to (i, j), we can
solve bottom up in order of decreasing i and decreasing j

When a cell is marked as bad, increment the answer

Each of O(mn) cells is now answered in constant time

Question guarantees that we never refer to a cell off the
end of the array, so no bounds checking required
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#include <iostream>
using namespace std;
const int N = 1010;
char s[N][N];
bool bad[N][N];

int main() {
int m, n;
cin >> m >> n;
for (int i = 0; i < m; i++)

cin >> s[i];

int ans = 0;
for (int i = m-1; i >= 0; i--)

for (int j = n-1; j >= 0; j--) {
if (s[i][j] == '+')

bad[i][j] = false;
else if (s[i][j] == '*')

bad[i][j] = true;
else if (s[i][j] == 'v')

bad[i][j] = bad[i+1][j];
else if (s[i][j] == '>')

bad[i][j] = bad[i][j+1];
ans += bad[i][j];

}
cout << ans << '\n';

}
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Problem statement Given n (1 ≤ n ≤ 3, 000) integers in
a sequence S, what is the longest subsequence of S that is
strictly increasing? If there are multiple solutions, print
any one of them.

Example For the sequence [1, 9, 5, 8, 7], the longest
increasing subsequence has length 3. There are multiple
solutions, such as [1, 5, 7].



Revision

DP

“DP on a
tree”

Assorted
problems

Example problem: LIS 13

On this sort of sequence, the only way to define our state
is to use a position in the sequence.

We can ask the question, “What’s the longest increasing
subsequence that we can obtain, finishing at the ith
element of the sequence?”

The recurrence is also straightforward: we can try every
previous element in our sequence as the last element of our
subsequence to be included, and then take the best one.

This leads to an O(n2) time, O(n) space algorithm.
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We aren’t done yet!

We need to find not only the length of a longest increasing
subsequence, but we need to find the subsequence itself.

How do we recover an actual answer from our dynamic
programming algorithm?

Each state represents an increasing subsequence, which we
constructed by extending another one, also represented by
a state. Then all we need to do is store the index of the
state we came from.

Then to build an optimal solution, we can just backtrack
from some terminal state through the optimal move we’ve
stored until we reach our initial state.
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Implementation (DP, O(n2))
int best = 0;
for (int i = 1; i <= n; i++) {

dp[i] = 1;
for (int j = 1; j < i; j++) {

// try j as the penultimate index
if (s[j] < s[i] && dp[j] + 1 > dp[i]) {

dp[i] = dp[j] + 1;
from[i] = j;

}
// update answer
if (dp[best] < dp[i])

best = i;
}

}

Implementation (solution building)
vector<int> ans;
int u = best;
while (from[u]) {

ans.push_back(s[u].second);
u = from[u];

}
ans.push_back(s[u].second);
reverse(ans.begin(), ans.end());
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This can be improved to O(n log n).
As i iterates through the sequence, maintain a sequence
M[j], the index of the minimum terminal value of an
increasing subsequence of length j among the first i terms
of S.
It can be seen that the elements S[M[j]] always form an
increasing subsequence.
To process a new element S[i + 1], we augment the
longest of these subsequences whose terminal value is less
than S[i + 1].
That is, we find the largest j where S[M[j]] < S[i + 1].
This gives us the longest subsequence so far, so we extend
that by updating M[j + 1].
Rather than trying all possibilities in O(n), we can perform
a binary search on the S[M[j]].
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Problem statement Given a permutation of the first n
positive integers, find the number of increasing
subsequences with ℓ+ 1 elements.

Input First line, n ℓ, 1 ≤ n ≤ 100, 000, 0 ≤ ℓ ≤ 10.
Second line, n distinct integers a0, . . . , an−1, where
1 ≤ ai ≤ n.

Output A single integer, the number of increasing
subsequences of length ℓ+ 1. It is guaranteed that the
answer is not greater than 8 × 1018.

Source Codeforces Testing Round #12.
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Example Input
5 2
1 2 3 5 4

Example Output
7

Explanation There are seven increasing subsequences of
length three: ⟨1, 2, 3⟩, ⟨1, 2, 5⟩, ⟨1, 2, 4⟩, ⟨1, 3, 5⟩, ⟨1, 3, 4⟩,
⟨2, 3, 5⟩ and ⟨2, 3, 4⟩.
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Obvious similarities between this and the previous problem

How many increasing subsequences of each length end at
index i of the sequence?

Look to extend subsequences with one fewer term again!

But you can’t extend from all earlier finishing points k < i

Only those which also have ak < ai
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Subproblem is dp(i, j) the number of increasing
subsequences of length j + 1 ending at index i

Recurrence is

dp(i, j) =
∑

k<i:ak<ai

dp(k, j − 1).

Base case is dp(i, 0) = 1 for all i.

Answer is recovered by
∑n−1

i=0 dp(i, ℓ).
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There are O(nℓ) subproblems, each solved in O(n) time,
so the time complexity is O(n2ℓ) which is too slow.

Unclear how we could reduce the state space, but how
about the recurrence?

We wanted the sum over k < i (handled by the order of
processing) with ak also less than ai - this is a range query!
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Create range trees for j = 0..ℓ

In range tree j, a leaf corresponding to the value ai will
store dp[i][j], the number of increasing subsequences of
length j + 1 ending at index i.

We can now facilitate∑
k<i:ak<ai

dp(k, j − 1)

by querying the sum over the range [1, ai) in range tree
j − 1.

The recurrence now takes O(log n), so the overall time
complexity is O(nℓ log n).
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#include <iostream>
using namespace std;

const int N = 100100;
const int L = 15;
long long dp[N][L];
long long tree[3*N][L];

// usual 'point update , range query' range tree
// there are k+1 many of these range trees , indexed by j
void update(int j, int a, long long v, int i = 1, int start = 0, int end = N) {

if (end - start == 1) {
tree[i][j] = v;
return;

}
int mid = (start + end) / 2;
if (a < mid) update(j, a, v, i * 2, start, mid);
else update(j, a, v, i * 2 + 1, mid, end);
tree[i][j] = tree[i*2][j] + tree[i*2+1][j];

}

long long query(int j, int a, int b, int i = 1, int start = 0, int end = N) {
if (start == a && end == b) return tree[i][j];
int mid = (start + end) / 2;
long long answer = 0;
if (a < mid) answer += query(j, a, min(b, mid), i * 2, start, mid);
if (b > mid) answer += query(j, max(a, mid), b, i * 2 + 1, mid, end);
return answer;

}
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int main (void) {
int n, l;
cin >> n >> l;
long long ans = 0;
for (int i = 0; i < n; i++) {

int x;
cin >> x;
dp[i][0] = 1;
for (int j = 0; j < l; j++) {

update(j, x, dp[i][j]);
dp[i][j+1] = query(j, 1, x);

}
ans += dp[i][l];

}
cout << ans << '\n';

}
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“DP on a Tree” 26

DAGs are nice for certain tasks (like finding longest path)
but we can’t avoid double counting in some problems.

Example: for each vertex v, count the number of vertices
reachable from v.

Trees however do allow this kind of recursive problem
solving: because subtrees do not share vertices, just
recurse into our children and collect the results.

Is this DP or divide-and-conquer? Contested.
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Usually it is assumed or does not hurt to assume the tree
is rooted.

Then the order is either from the root down, or leaves up.

Our state will be subtree, represented by the root of the
subtree, along with additional metadata.

Generally we code these top down, recursing with our
children array.
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Problem statement Given a description of a tree T
(1 ≤ |T| ≤ 1, 000, 000), with vertex weights, what is the
maximum sum of vertex weights of an independent subset
of the tree? An independent set is a subset of the nodes of
the tree, with the property that no two nodes in the subset
share an edge.
Example

5

1

3

4 2
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As mentioned, root the tree arbitarily.

It seems like the problem can be broken down into
whether the root is included in the MIS or not. As such, a
dp approach seems reasonable. We will try the dp on tree
idea mentioned before.

Let’s just stick with the usual order for trees, down from
the root.
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An obvious first guess at state: For each subtree R rooted
at some vertex u of our tree T, what is the maximum
weighted independent set contained in R?
Then how do we calculate the maximum weighted
independent set for the subtree rooted at u? We have two
choices: either include u in the MIS or do not.

If we do not include u then the best MIS is just the sum of
our children’s best MIS.

If we do include u then we need the best MIS of each of
our children still. But these MIS can not include the
children themselves.

We don’t have access to this information. So let’s amend
our state.
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Subproblems For each subtree R rooted at some vertex u
of our tree T, what is the maximum weighted independent
set contained in R?

Also we need the best MIS in R that does not contain u.

Define subproblems:

f(u), the size of the maximum weighted independent set in
the subtree rooted at u that contains u.

g(u), the size of the maximum weighted independent set in
the subtree rooted at u that does not contain u.
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Recurrence If we are considering an independent set that
contains the root, then we must not take any of its
children. However, if we don’t have the root, then it
doesn’t matter whether we take the children or not.
Hence, denoting the set of children of u by N(u), we have:

f(u) = wu +
∑

v∈N(u)
g(v)

g(u) =
∑

v∈N(u)
max(f(v), g(v)).

Base case If u is a leaf, then f(u) = wu and g(u) = 0.
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Complexity Since we have O(n) values of f and g to
calculate, each taking O(n) time to calculate, it seems
that the overall complexity is O(n2).

However, if we observe that each vertex v only appears on
the right hand side once (when u is its parent), it can be
seen that the overall complexity is in fact only O(n).

Implementation
void calculate_wmis (int u) {

f[u] = w[u];
g[u] = 0;
for (int i = 0; i < children[u].size(); i++) {

int v = children[u][i];
calculate_wmis(v);
f[u] += g[v];
g[u] += max(f[v],g[v]);

}
}
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Problem statement You are given a description of a tree
T (1 ≤ |T| ≤ 1, 000), which is rooted at vertex 1, as well
as an integer K (1 ≤ K ≤ 100). How many subtrees have
size at most K, modulo 109 + 7?
Example

1

2

5

3 4

Suppose K = 3. There are 5 subtrees of size 1, 4 of size 2,
4 of size 3 = 13 total.
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The “modulo 109 + 7” is there because the number of
possible trees could be very large (well exceeding a long
long …)

We can compute the answer as we otherwise would, but
along the way we need to make sure to modulo by 109 + 7
to avoid integer overflow.

Since this is a counting problem, the DP will associate a
state with how many subtrees can be created from this
state.
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As is typical in tree DP problems, our state can include
the node which will be the root of the subtree.

However, the size of the subtree we want to create is
important too.

So, we can try the state (Root of subtree, number of
nodes in subtree)

If we can compute this DP, the answer to the problem is
just the sum of the dp values across all nodes, for all
subtree sizes ≤ K.
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We will now consider the recurrence for this state.
If we want to create a subtree of size K rooted at some
node, we want to distribute the K − 1 non-root nodes
between its children.
We could try every way to distribute nodes among the
children (e.g. 5 to the first child, 3 to the second child,
etc...)
If it has one child, this is easy as there is only one way to
do this.
If it has two children, then there are K ways to do this.
In fact, if it has C children, there are K + C − 1 choose
C − 1 ways to distribute the K − 1 nodes among them.
If a node has a lot of children, this will be very large...
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Let’s quickly analyse the complexity of our solution on a
binary tree.

There are O(NK) states, and the recurrence at each state
is O(K), so we have an O(NK2) DP on binary trees.

This solution is efficient because we pick how many nodes
to give to our first child, and give the rest to our second
child.

For an arbitrary tree, we will try something similar.

Pick some number of nodes to give to our first child, and
then give the rest to the remaining children.
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We will modify our state - our new state will be (root of
subtree, number of nodes in subtree, child we are up to)
In other words, f(u, k, c) means we are building a subtree
rooted at u, the subtree will have k nodes in it (including
u), and the subtree will not include the first c children of u.
Let v be the c-th child of u. Then, the recurrence for
f(u, k, c) would be

If v is the final child of u, give k − 1 nodes to v (i.e.
f(v, k − 1, 0))
Otherwise, for all 0 ≤ i < k, give i nodes to v, and the rest
to the remaining children (i.e.∑k−1

i=0 f(v, i, 0)× f(u, k − i, c + 1)).
Base cases (k = 0, no children)
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How many states are there?

Naively, since each node can have N children, there are
O(N2K) states.

However, since the sum of children across all nodes is
O(N), we actually have O(NK) states!

The recurrence at each state is O(K).

Overall, the dp is O(NK2).
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#define MOD 1000000007
typedef long long ll;
vector<int> adj[MAX_N]; // We will assume this only has edges down the tree
vector<ll> f[MAX_N][MAX_K]; // Each vector has a length equal to the number of

children of u. Initially , all -1.
ll dp(int u, int k, int child) {

if (adj[u].empty()) { // No children
return k <= 1;

}
if (f[u][k][child] != -1) return f[u][k][child];
if (!k) return f[u][k][child] = 1;
if (child+1 == adj[u].size()) { // Last child

return f[u][k][child] = dp(adj[u][child], k-1, 0);
} else { // Not last child

f[u][k][child] = 0;
for (int i = 0; i < k; i++) {

f[u][k][child] += dp(adj[u][child], i, 0) * dp(u, k-i, child+1);
f[u][k][child] %= MOD;

}
return f[u][k][child];

}
}
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int n, k;
ll ans;
int main() {

scanf("%d%d", &n, &k);
for (int i = 1; i < n; i++) {

int a, b;
scanf("%d%d", &a, &b);
adj[a].push_back(b); // for simplicity , we will assume edges are given

directed down the tree
}
for (int i = 1; i <= n; i++) {

for (int j = 0; j <= k; j++) {
f[i][j].assign(adj[i].size(), -1);

}
}
for (int i = 1; i <= n; i++) {

for (int j = 1; j <= k; j++) {
ans += dp(i, j, 0);
ans %= MOD;

}
}
printf("%lld\n", ans);

}
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Problem statement A city has N intersections, joined by
M one-way roads. At each intersection i is an ATM, with
ci dollars of cash. Some specified intersections also have a
pub.

A bandit wishes to start at intersection S (the city centre)
and drive around, robbing all the ATMs he passes, before
ending the day at one of the city’s pubs. He may pass an
ATM more than once, but the cash is not replenished after
it is stolen.

What is the maximum amount of money that he can steal?
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Input First line, N M, 1 ≤ N,M ≤ 500, 000. Following
this, M lines, each with a pair ui vi, 1 ≤ ui, vi,≤ N,
ui ̸= vi, representing a road from intersection ui to
intersection vi. Following this, N lines, each with an
integer ci, 0 ≤ ci ≤ 4, 000, representing the cash at the
ATM at intersection i.
Next line, S P, 1 ≤ S,P ≤ N, the starting intersection and
the number of intersections with pubs. Following this, P
distinct integers, pi, 1 ≤ pi ≤ N, the intersections
containing pubs.
Output A single number, the maximum amount of money
that can be stolen on the way from the city centre to any
one of the pubs.
Source APIO 2009
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Example

1 : $10 2 : $12 3 : $8

4 : $16

5 : $1

6 : $5

The path 1 → 2 → 4 → 1 → 2 → 3 → 5 collects $47.
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Intersections and roads correspond naturally to vertices
and directed edges.

Always steal full amount upon first visit to an ATM.

This directed graph can have cycles (e.g. 1 → 2 → 4 → 1
in the sample case).
If we enter a cycle, we may as well steal from all its ATMs!

We can always do a second pass of the cycle (for no
money) if we need to reach a particular edge out of the
cycle, or to finish at a pub.

Is this approach (steal from every vertex, then if necessary
traverse it again) limited to cycles?
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We want to take this approach for any (maximal) subset
of vertices in which any pair can reach each other.

Recall such subsets are called strongly connected
components (SCCs), and can be found using Tarjan’s
algorithm or Kosaraju’s algorithm.

So we want to treat each SCC as a unit - condensation!
In the new graph:

each vertex represents an SCC of the original graph,

each vertex weight represents the sum of vertex weights in
the corresponding SCC, and

each edge represents an edge of the original graph
(reattached accordingly, and with duplicates ignored).
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The condensation graph is directed, but no longer has
cycles - it is a DAG.
Apply topological sort (at least in principle) and then
think about the problem.
Example

{1, 2, 4} : $38

{3} : $8

{5} : $1

{6} : $5
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We want the maximum weight path in a DAG, starting
from the specified vertex S and ending at one of the
specified vertices pi.

Standard DP for longest path in a DAG + implementation
details.

Complexity

Find SCCs: O(N + M) with either algorithm

Build condensation graph: O(N + M)

Topological sort: O(N + M)

DP: O(N + M)
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// Kosaraju's SCC finding algorithm , from the graph lecture
#define MAXN 500010
int n, m, seen[MAXN], postorder[MAXN], p, seen_r[MAXN], scc[MAXN];
vector<int> edges[MAXN], revEdges[MAXN], sccEdges[MAXN];
void dfs(int u) {

if (seen[u]) return;
seen[u] = true;
for (int v : edges[u]) dfs(v);
postorder[p++] = u;

}
void dfs_r(int u, int mark) {

if (seen_r[u]) return;
seen_r[u] = true;
scc[u] = mark;
for (int v : revEdges[u]) dfs_r(v, mark);

}
int compute_sccs() {

int sccs = 0;
for (int i = 1; i <= n; i++)
if (!seen[i]) dfs(i);
for (int i = p - 1; i >= 0; i--) {

int u = postorder[i];
if (!seen_r[u]) dfs_r(u, sccs++); // ignore visited vertices

}
return sccs;

}
int s, numPubs, inp, val[MAXN], hasPub[MAXN]; // both arrays are for SCCs, not

individual nodes
int dpDone[MAXN], dpMemo[MAXN];
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int dp(int a) { // if we start at SCC a, what is the most money we can take?
if (dpDone[a]) return dpMemo[a];
dpDone[a] = 1;
int ans = -2e9;
if (hasPub[a]) ans = val[a];
for (auto v : sccEdges[a]) ans = max(ans, dp(v)+val[a]);
return dpMemo[a] = ans;

}
int main() {

scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) {

int u, v;
scanf("%d%d", &u, &v);
edges[u].push_back(v);
revEdges[v].push_back(u);

}
// compute SCC graph
compute_sccs();
for (int i = 1; i <= n; i++) {

for (auto v : edges[i]) if (scc[i] != scc[v]) sccEdges[scc[i]].push_back(scc
[v]);

}
for (int i = 1; i <= n; i++) scanf("%d", &inp), val[scc[i]] += inp;
scanf("%d%d", &s, &numPubs);
for (int i = 0; i < numPubs; i++) scanf("%d", &inp), hasPub[scc[inp]] = 1;
printf("%d\n", max(0, dp(scc[s])));

}
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Problem statement A street has N restaurants, each
with a distinct rating. For each of Q nights, you want to
visit the highest rated restaurant in a specified range,
excluding any restaurants visited in the last K nights.
Input First line, N K Q, 1 ≤ N,K,Q ≤ 100, 000, K ≤ N.
Following this, N distinct integers, ai, (1 ≤ ai ≤ 100, 000),
the rating of each restaurant. Following this, Q lines, ℓi ri,
1 ≤ ℓi ≤ ri ≤ N, the left and right endpoints of the range
considered on night i.
Output Q numbers on separate lines, the ith representing
the number of the restaurant visited on night i. If there
are no valid restaurants to choose on a given night, print
−1 instead.
Source ORAC
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Example Input
5 1 4
10 30 80 20 70
2 4
2 3
1 2
1 1

Example Output
3
2
1
-1



Revision

DP

“DP on a
tree”

Assorted
problems

Example problem: Night Out 55

We have to query the maximum of each range in faster
than linear time.

Sparse table: O(N logN) preprocessing, O(1) query, but
inflexible

Segment tree: O(N logN) preprocessing (can get this down
to O(N) if required), O(logN) query and supports updates

This will fetch the maximum rating, and we can quickly
identify the corresponding restaurant with a reverse lookup
array, as all ratings are distinct. If the numbers used for
ratings were larger, we would use a map instead.
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The complication is that once a restaurant is picked, it is
ineligible for the next K nights.

This can be accounted for with updates (so we must use a
segment tree).

When we select a restaurant, we immediately update its
rating to 0 (less than all actual updates), then after K
nights, perform another update to restore its original
rating.

Complexity O(N logN) preprocessing, then Q times we
perform up to two updates and one range query in
O(logN) each, so the total complexity is O((N+Q) logN).
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const int N = 100100;
// range tree code is taken (and slightly modified) from the DS lecture
// the number of additional nodes created can be as high as the next power of

two up from MAX_N (131,072)
int tree[1<<18];

int n;

// a is the index in the array. 0- or 1-based doesn't matter here, as long as it
is nonnegative and less than MAX_N.

// v is the value the a-th element will be updated to.
// i is the index in the tree, rooted at 1 so children are 2i and 2i+1.
// instead of storing each node's range of responsibility , we calculate it on

the way down.
// the root node is responsible for [0, n)
void update(int a, int v, int i = 1, int cL = 0, int cR = n) {

// this node's range of responsibility is 1, so it is a leaf
if (cR - cL == 1) {

tree[i] = v;
return;

}
// figure out which child is responsible for the index (a) being updated
int mid = (cL + cR) / 2;
if (a < mid) update(a, v, i * 2, cL, mid);
else update(a, v, i * 2 + 1, mid, cR);
// once we have updated the correct child , recalculate our stored value.
tree[i] = max(tree[i*2], tree[i*2+1]);

}
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// range tree code is taken (and slightly modified) from the DS lecture
// query the sum in [qL, qR)
int query(int qL, int qR, int i = 1, int cL = 0, int cR = n) {

// the query range exactly matches this node's range of responsibility
if (cL == qL && cR == qR) return tree[i];
// we might need to query one or both of the children
int mid = (cL + cR) / 2;
int ans = 0;
// the left child can query [a, mid)
if (qL < mid) ans = max(ans, query(qL, min(qR, mid), i * 2, cL, mid));
// the right child can query [mid, b)
if (qR > mid) ans = max(ans, query(max(qL, mid), qR, i * 2 + 1, mid, cR));
return ans;

}
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int k, q, val[N], reverseLookup[N], removed[N];

int main() {
cin >> n >> k >> q;

for (int i = 1; i <= n; i++) {
scanf("%d", &val[i]);
reverseLookup[val[i]] = i;
update(i, val[i]);

}

for (int i = 0; i < q; i++) {
int a, b;
cin >> a >> b;
int r = reverseLookup[query(a, b+1)];
update(r, 0);
cout << (r ? r : -1) << '\n';
removed[i] = r;
if (i >= k) {

// Re-add restaurants after k days
update(removed[i-k], val[removed[i-k]]);

}
}

}
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Problem Statement: You have a rectangular cake with R
rows and C columns. You will make K cuts, cutting the
cake into K + 1 pieces. You must obey the following rules
when cutting

Every cut must be made parallel to the sides of the
rectangle.

Every cut must begin on either the left or bottom side of
the cake, and must continue until it hits either the
opposite side of the cake or an existing cut.

There are H allowed locations for horizontal cuts and V
locations allowed for vertical cuts.

You will take the largest slice, but do not want to appear
greedy. You will choose which cuts are performed. What is
the smallest possible area of the largest slice?
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Input Format: The first line contains 6 integers,
R,C,K,H,V, the size of the cake, number of cuts, and
number of allowed cut positions respectively.
The next line contains H integers, the y-coordinates of the
allowed positions of the horizontal cuts. These will be
distinct and increasing.
The next line contains W integers, the x-coordinates of
the allowed positions of the vertical cuts. These will be
distinct and increasing.

Bounds: You are guaranteed that 2 ≤ R,C,
4 ≤ RC ≤ 109, K ≤ H + V and 0 ≤ H,V ≤ 1, 500.

Source: FARIO 2018.
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Sample Input:
6 8 2 2 3
3 5
2 5 6
Sample Output: 18

Explanation: First, do a vertical cut at position 5. Then,
do a horizontal cut at position 3.
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Observation: given some sequence of cuts, there is
always a way to reorder the cuts so that the horizontal
cuts occur in descending order, as do the vertical cuts, and
the same slices are produced.

Therefore, we can always assume horizontal and vertical
cuts occur in descending order.

Additionally, if we know the smallest horizontal and
vertical cuts that have occurred, we have enough
information to identify the remaining uncut cake.

This inspires a DP, where the state is the smallest
horizontal and vertical cuts we have performed so far.
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This inspires a DP, where the state is the smallest
horizontal and vertical cuts we have performed so far.

Each state will find the minimum area of the largest slice,
only considering future cuts.

However, this alone is not enough information! The
number of cuts remaining will impact the answer.

Modified state: (smallest horizontal cut so far, smallest
vertical cut so far, number of cuts remaining)

This DP will work, however there are too many states for
it to be fast enough!
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Remember: the problem asked us to “minimise the
maximum”.

New idea: We could try to binary search the answer.

We must now solve a decision problem b(M): can we
perform k cuts so that the largest slice has area at most
M?

This is the same as ensuring all slices have area at most M.

New problem: What is the smallest number of cuts
required so that every slice produced has area at most M.
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New problem: what is the smallest number of cuts
required so that every slice produced has area at most M?

As before, we can try to use DP.

Because we are trying to minimise the cuts, we do not
need to store this in our state.

It is sufficient to have a state consisting of just the
smallest horizontal cut and the smallest vertical cut.
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For the recurrence, we could try all possible next cuts
which do not produce a slice with area > M.

However, if we have the choice between two horizontal
cuts, we should take the one that produces the largest
slice (with area ≤ M).

The same applies for vertical cuts.

So, our recurrence is to try two options: the horizontal cut
which produces the largest slice (with area ≤ M), and the
vertical slice which does the same.
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Complexity: There are O(HV) states.

If we do the recurrence naively, it’s O(H + V) (too slow).

We can improve the recurrence to O(log) by using binary
search to find the cuts we will perform.

With two-pointers, we can solve the recurrence in
amortised O(1)! (see code for details)

Hence, we can solve the decision problem b(M) in O(HV)
time.

Hence, we can solve the optimisation problem (i.e., the
actual problem) in O(HW log(RC)) using binary search.
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#include <bits/stdc++.h>
using namespace std;

const int INF = 1000*1000*1000+7;
const int N = 1515;

int r, c, k, h, v;
int horCuts[N], verCuts[N];
int bestHorCut[N][N], bestVerCut[N][N];
int dp[N][N];
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bool canDo(int area) {
// Precomp best cuts using two-pointers
for (int i = 0; i <= h; i++) { // fix the horizontal cut, iterate over

vertical cuts
int cut = 0;
for (int j = 0; j <= v; j++) {

while (horCuts[i]*(verCuts[j]-verCuts[cut]) > area) cut++; // keep
increasing cut until we have a cut which produces a small -enough
slice

bestVerCut[i][j] = cut;
}

}

for (int j = 0; j <= v; j++) { // fix the vertical cut, iterate over
horizontal cuts

int cut = 0;
for (int i = 0; i <= h; i++) {

while (verCuts[j]*(horCuts[i]-horCuts[cut]) > area)
cut++;

bestHorCut[i][j] = cut;
}

}
// continued on next slide ...
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// do the dp
for (int i = 0; i <= h; i++)

for (int j = 0; j <= v; j++) {
dp[i][j] = INF;
if (horCuts[i]*verCuts[j] <= area) // Case 1: no cuts required

dp[i][j] = 0;
if (bestHorCut[i][j] != i) // Case 2: do horizontal cut

dp[i][j] = min(dp[i][j], dp[bestHorCut[i][j]][j]+1);
if (bestVerCut[i][j] != j) // Case 3: do vertical cut

dp[i][j] = min(dp[i][j], dp[i][bestVerCut[i][j]]+1);
}

return dp[h][v] <= k;
}
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int main() {
cin >> r >> c >> k >> h >> v;
for (int i = 0; i < h; i++)

cin >> horCuts[i];
horCuts[h] = r; // We include r as a horizontal cut so that the dp can

consider the case where we have done no horizontal cuts
for (int i = 0; i < v; i++)

cin >> verCuts[i];
verCuts[v] = c; // We include c for a similar reason

// binary search
int lo = 0, hi = r*c, ans = -1;
while (lo <= hi) {

int mid = (lo+hi)/2;
if (canDo(mid)) {

ans = mid;
hi = mid - 1;

}
else

lo = mid + 1;
}
cout << ans << '\n';

}
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