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Given a weighted directed graph G with two specific
vertices s and t, we want to find the shortest path that
goes between s and t on the graph.

Note that the unweighted case is solved by BFS.

Generally, algorithms which solve the shortest path
problem also solve the single source shortest path problem,
which computes shortest paths from a single source vertex
to every other vertex.

You can represent all the shortest paths from the same
source as a tree.
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It’s very important to distinguish between graphs where all
edges are positive and graphs with negative weight edges!
Why?

Imagine a graph with a cycle whose total weight is
negative.

Even if there are no negative cycles, this may still cause
problems depending on your algorithm choice!

If the graph is acyclic, negative weight edges generally
don’t cause problems, but care should be taken regardless.
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Most single source shortest paths algorithms rely on the
basic idea of building shortest paths iteratively. At any
point, we keep what we think is the shortest path to each
vertex and we update this by “relaxing” edges.

Relax(u, v): if the currently found shortest path from our
source s to a vertex v could be improved by using the edge
(u, v), update it.

For graphs with non-negative weights, we can get away
with only relaxing vertices for which we know the optimal
distance. But with negative weights, this becomes trickier.
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If we keep track for each v of its most recently relaxed
incoming edge, we can find the actual path from the
source to v. How?

For each v, we know the vertex we would’ve come from if
we followed the shortest path from the source.

We can work backwards from v to the source to find the
shortest path from the source to v.
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If we keep relaxing our edges until we can’t anymore, then
we will have a shortest path.

How do we choose which edges to relax?
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For now, suppose there are no negative edges.

Visit each vertex u in turn, starting from the source s.
Whenever we visit the vertex u, we relax all of the edges
coming out of u.

How do we decide the order in which to visit each vertex?



Shortest Paths

Single Source
Shortest Paths
Dijkstra’s
Algorithm
Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Dijkstra’s Algorithm 9

We can do something similar to breadth-first search.

The next vertex we process is always the unprocessed
vertex with the smallest distance from the source.

This ensures that we only need to process each vertex
once. Why?

Claim: by the time we process a vertex, we have definitely
found the shortest path to it.

Proof: by induction, left as an exercise.
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To decide which vertex we want to visit next, we can
either just loop over all of them, or use a priority queue
keyed on each vertex’s current shortest known distance
from the source.

Since we know that we have a complete shortest path to
every vertex by the time we visit it in Dijkstra’s algorithm,
we know we only visit every vertex once.

Complexity Dijkstra’s Algorithm is O(E logV) using a
binary heap as a priority queue, or O(V2) with a loop (i.e.
linear search for the min)
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The above only holds for graphs without negative edges!

With negative edges, we may need to visit each vertex
more than once, and it turns out this makes the runtime
exponential in the worst case (and it’s even worse with
negative cycles).

In short: don’t use Dijkstra’s if there’s any negative edges!
(But most graphs you see won’t have them).
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#include <queue>
using namespace std;

typedef pair<int, int> edge; // (distance , vertex)
const int N = 100100;
vector<edge> edges[N];
int dist[N];
bool seen[N];
priority_queue <edge, vector<edge>, greater<edge>> pq;

void dijkstra (int s) {
fill(seen,seen+N,false);
pq.push(edge(0, s)); // distance to s itself is zero
while (!pq.empty()) {

// choose (d, v) so that d is minimal
// i.e. the closest unvisited vertex
edge cur = pq.top();
pq.pop();
int v = cur.second, d = cur.first;
if (seen[v]) continue;

dist[v] = d;
seen[v] = true;

// relax all edges from v
for (edge nxt : edges[v]) {

int u = nxt.second, weight = nxt.first;
if (!seen[u])

pq.push(edge(d + weight, u));
}

}
}
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How do we handle negative edges in a more efficient way?

How do we handle negative cycles?

Key Observation: If a graph has no negative cycle then
all shortest paths from u have length ≤ |V| − 1.
Conversely, a negative cycle implies there is a shortest
path of length |V| better than any path of length |V| − 1.

So we should instead build up shortest paths by number of
edges, not just from u outwards.



Shortest Paths

Single Source
Shortest Paths
Dijkstra’s
Algorithm
Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Bellman-Ford Algorithm 14

Bellman-Ford involves trying to relax every edge of the
graph (a global relaxation) |V| − 1 times and update our
tentative shortest paths each time.

Because every shortest path has at most |V| − 1 edges, if
after all of these global relaxations, relaxations can still be
made, then there exists a negative cycle.

We can now proceed using dynamic programming.
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Subproblem: f(v, k), the shortest s → v path using up to k
edges

Recurrence:

f(v, k) = min

[
f(v, k − 1), min

u:e=(u,v)∈E
(f(u, k − 1) + we)

]

Base cases: f(v, 0) = 0 for v = s, or ∞ otherwise

Time complexity is O(VE) (since we do O(E) work total
for each k)

Shortest path lengths are f(·, |V| − 1)
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There are O(V2) subproblems, so do we need O(V2)
space?

No! f(·, k) only depends on f(·, k − 1), so we can keep only
two rows and alternate between them.

Better yet, we can keep just one row, and overwrite it,
replacing f(u, k − 1) with f(u, k) in the recurrence.

If there are no negative cycles, the intermediate results
might change but the final answer will be the same, since
using more than |V| − 1 edges is never necessary.

If there is a negative cycle, we will still detect it.
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If we have some way of knowing that the last global
relaxation did not affect the tentative shortest path to
some vertex v, we know that we don’t need to consider
edges coming out of v in our next global relaxation.

This heuristic doesn’t change the overall time complexity
of the algorithm, but makes it run very fast in practice on
random graphs.

Sometimes called Shortest Path Faster Algorithm (SPFA)
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struct edge {
int u, v, w; // u -> v of weight w
edge(int _u, int _v, int _w) : u(_u), v(_v), w(_w) {}

};

vector<int> dist(n);
vector<edge> edges;

// global relaxation: try to relax every edge in the graph
// returns whether any distance was updated
bool relax() {

bool relaxed = false;
for (edge e : edges) {

// we don't want to relax an edge from an unreachable vertex
if (dist[e.u] != INF && dist[e.v] > dist[e.u] + e.w) {

relaxed = true;
dist[e.v] = dist[e.u] + e.w;

}
}
return relaxed;

}
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// Puts distances from source vertex 0 in dist
// Returns true if there is a negative cycle , false otherwise.
// NOTE: You can't trust the dist array if this function returns True.
bool bellman_ford() {

fill(dist.begin(), dist.end(), INF);
dist[0] = 0;
// V-1 global relaxations
// if no updates are made in an entire round , we can early exit
// SPFA optimises this further
for (int i = 0; i < n - 1; i++)

if (!relax()) break;

// there is a negative cycle iff any edge can be relaxed further
// therefore try a Vth global relaxation
// true if any changes made, false otherwise
// can micro -optimise by early exiting when the first change is made
return relax();

}



Shortest Paths

Single Source
Shortest Paths
Dijkstra’s
Algorithm
Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Bellman-Ford Algorithm 20

If there is a negative cycle, you can’t trust the distances
computed.

Call a vertex v ‘ruined’ if its shortest distance from u is
actually −∞.

For every negative cycle, in every relaxation round at least
one of its vertices will be updated.

Hence, to find all ruined vertices, DFS out of all vertices
who were relaxed in the V-th round.

To find a specific negative cycle, backtrack from any
‘ruined’ vertex.
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The all pairs shortest path problem involves finding the
shortest path between every pair of vertices in the graph.

Surprisingly, this can be found in O(V3) time and O(V2)
memory, by dynamic programming.
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Let f(u, v, i) be the length of the shortest path between u
and v using only the first i vertices (i.e. the vertices with
the i smallest labels) as intermediate vertices.

The key is to build this up for increasing values of i.

Base Case: Then f(u, u, 0) = 0 for all vertices u, and
f(u, v, 0) = we if there is an edge e from u to v, and
infinity otherwise.
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Say we have already calculated f(u, v, i − 1) for all pairs
u, v and some i. Then

f(u, v, i) = min(f(u, v, i − 1), f(u, i, i − 1) + f(i, v, i − 1)).

The solution we already had, f(u, v, i − 1), definitely
doesn’t use i as an intermediate vertex.

If i is the only new intermediate vertex we can use, the
only new path that could be better is the shortest path
u → i concatenated with the shortest path i → v.
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f(u, v, i) = min(f(u, v, i − 1), f(u, i, i − 1) + f(i, v, i − 1))

Thus, f(u, v, n) will give the length of the shortest path
from u to v.
Noting that to calculate the table for the next i, we only
need the previous table, we see that we can simply
overwrite the previous table at each iteration, so we only
need O(V2) space.
But what if f(u, i, i − 1) or f(i, v, i − 1) is overwritten in the
table before we get to use it?
Allowing the use of i as an intermediate vertex on a path
to or from i is not going to improve the path, unless we
have a negative-weight cycle.
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// the distance between everything is infinity
for (int u = 0; u < n; ++u)

for (int v = 0; v < n; ++v)
dist[u][v] = INF;

// update the distances for every directed edge
for (edge e : edges)

// each edge u -> v with weight w
dist[e.u][e.v] = e.w;

// every vertex can reach itself
for (int u = 0; u < n; ++u)

dist[u][u] = 0;

for (int i = 1; i <= n; i++)
for (int u = 0; u < n; u++)

for (int v = 0; v < n; v++)
// dist[u][v] is the length of the shortest path from u to v using only 0

to i-1 as intermediate vertices
// now that we're allowed to also use i, the only new path that could be

shorter is u -> i -> v
dist[u][v] = min(dist[u][v], dist[u][i] + dist[i][v]);
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If there is a negative-weight cycle, our invariant is instead
f(u, v, i) ≤ shortest simple path from u → v only using the
first i vertices as intermediaries.

Hence f(u, u, n) will be negative for vertices in negative
cycles. Also you can’t trust the calculated distances, same
as Bellman-Ford.

Note that if there are negative-weight edges, but no
negative cycles, Floyd-Warshall will correctly find all
distances.

This distinction is only necessary for directed graphs; a
negative weight edge in an undirected graph immediately
gives rise to a 2-cycle.
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How can we find the actual shortest path?

As well as keeping track of a dist table, any time the
improved path (via i) is used, note that the next thing on
the path from u to v is going to be the next thing on the
path from u to i

, which we should already know because we were keeping
track of it!

When initialising the table with the edges in the graph,
don’t forget to set v as next on the path from u to v for
each edge u → v.

Implementing this functionality is left as an exercise.
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Although some graph interpretations are obvious (e.g.
cities and highways), it’s often the case that the graph you
must run your algorithm on is non-obvious.

Often this doesn’t admit a clean implementation using
something like an explicit adjacency list.

In many cases like this, it may be a better idea to compute
the adjacencies on the fly.

Also, sometimes modifying the graph you consider is
helpful!
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Problem Statement You have found a strange device
that has a red button, a blue button, and a display
showing a single integer, initially n. Pressing the red
button multiplies the number by two; pressing the blue
button subtracts one from the number. If the number
stops being positive, the device breaks. You want the
display to show the number m. What is the minimum
number of button presses to make this happen?

Input Two space-separated integers n and m
(1 ≤ n,m ≤ 107).

Output A single number, the smallest number of button
presses required to get from n to m.
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In this example, we should think of our button presses as
transitions.

Hence our graph has numbers as its vertices and edges
representing which numbers can reach each other through
button presses.

The graph is unweighted, so we just need to do a simple
BFS to find the answer.
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However, there are so many positive integers!
Perhaps there might be more possible vertices than we can
store in contiguous memory.
What can the actual solution look like? What intermediate
values can appear on the display?

If n ≥ m, doubling doesn’t help, so we just decrement
n − m times.
However the n < m case is more complicated!

We might need to use both buttons.
However, we should never decrement twice in a row after
the first doubling, since n→2n→2n − 1→2n − 2 takes
three moves to achieve the same as n→n − 1→2n − 2.
Therefore we never display a value larger than m + 1.
Note however that the answer can still be linear in n;
consider for example 15→14→ . . .→8→16.
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Three ways to implement this:
1 Construct an explicit distance array (since there are only

107 vertices) and explicit adjacency list (since there are
only 2 × 107 edges).

2 Construct an explicit distance array but construct the
outgoing edges from a vertex at the time it is popped from
the BFS queue (since they are easy to calculate).

3 Construct a distance map (so only the actually explored
vertices are added) and construct the outgoing edges from
a vertex at the time it is popped from the BFS queue.
The last of these approaches is too slow (what is the
counterexample?).
The first two approaches are both fine; we’ve chosen the
second for instructional value.
If there were many more theoretically possible vertices but
fewer of them were actually encountered, the first two
approaches could run out of memory and the third
approach could be the only option.
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Implementation
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;

const int MAXVAL=20*1000*1000+5;
const int INF = 1000*1000*1000+7;
int n, m, v[MAXVAL];
queue<int> q;

int main () {
cin >> n >> m;
fill(v, v + MAXVAL, INF);
q.push(n);
v[n] = 0;
while (!q.empty()) {

int i = q.front(); q.pop();
if (i-1 > 0 && v[i] + 1 < v[i-1]) {

v[i-1] = v[i] + 1;
q.push(i - 1);

}
if (i*2 < MAXVAL && v[i] + 1 < v[i*2]) {

v[i*2] = v[i] + 1;
q.push(i * 2);

}
}
cout << v[m] << '\n';

}



Shortest Paths

Single Source
Shortest Paths
Dijkstra’s
Algorithm
Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Example Problem: Rock Climbing 36

Problem Statement You are a rock climber trying to
climb a wall. On this wall, there are n rock climbing holds
for you to use. Whenever you are on the wall, you must be
holding on to exactly three holds, each of which can be at
most D distance from the other two. To move on the wall,
you can only disengage from one of the holds and move it
to another hold that is within D distance of the two holds
that you are still holding onto. You can move from hold to
hold at a rate of 1m/s. How can you reach the highest
hold in the shortest amount of time, starting from some
position that includes the bottom hold?
Input A set of up to n (1 ≤ n ≤ 50) points on a 2D plane,
and some integer D (1 ≤ D ≤ 1000). Each point’s
coordinates will have absolute value less than 1,000,000.
Output A single number, the least amount of time needed
to move from the bottom to the top.
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If there was no restriction that required you to always be
using three holds, then this would just be a standard
shortest path problem that is solvable using Dijkstra’s
algorithm.

We would just need to take the points as the vertices and
the distance between points as the edge weights.
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However, we need to account for the fact that we must be
using three holds clustered together at any time.

But there is a natural interpretation of the hold restriction
in terms of a graph: when we move from some position
that uses holds {a, b, c} to some position where we use
holds {a, b, d}, we can say that we are moving from some
vertex labelled {a, b, c} to some vertex labelled {a, b, d}.

It can be determined whether or not such a move is
allowed, i.e. if there is an edge between these vertices, in
constant time.



Shortest Paths

Single Source
Shortest Paths
Dijkstra’s
Algorithm
Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs
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Now, we have a graph where we have O(n3) vertices and
O(n4) edges.

Running Dijkstra’s algorithm on this graph directly will
give us the answer we want, by definition.

So we can solve this problem in
O(E logV) = O(n4 log n3) = O(n4 log n) time.
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Implementation
struct state {

int pid[3];
int dist;

};

bool operator< (const state &a, const state &b) {
// reversing the comparison makes pq a min heap by default
return a.dist > b.dist;

}

priority_queue <state> pq;
pq.push(begin);
bool running = true;
while (!pq.empty() && running) {

state cur = pq.top();
pq.pop();
// check if done
for (int j = 0; j < 3; j++) {

if (cur.pid[j] == n) {
running = false;
break;

}
// to be continued



Shortest Paths

Single Source
Shortest Paths
Dijkstra’s
Algorithm
Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Example Problem: Rock Climbing 41

Implementation (continued)
// try disengaging our jth hold
for (int j = 0; j < 3; j++) {

// and moving to hold number i
for (int i = 1; i <= n; i++) {

// can't reuse existing holds
if (i == cur.pid[0] || i == cur.pid[1] || i == cur.pid[2])

continue;

state tmp = cur;
tmp.dist += dist(cur.pid[j], i);
tmp.pid[j] = i;
sort(tmp.pid, tmp.pid + 3);

// try to move if valid
if (valid(tmp) &&

(!seen[tmp.pid[0]][tmp.pid[1]][tmp.pid[2]] ||
seen[tmp.pid[0]][tmp.pid[1]][tmp.pid[2]] > tmp.dist)) {

pq.push(tmp);
seen[tmp.pid[0]][tmp.pid[1]][tmp.pid[2]] = tmp.dist;

}
}

}
}

}
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Problem Statement There are N cities, each in one of C
countries. There are two modes of travel.

There are A unidirectional direct flight routes connecting
two cities, ui, vi with weight wi.

There are B unidirectional inter-country flights, connecting
two countries, ai, bi with a weight wi. These flights can be
boarded from any city in the source country and
disembarked from in any city in the destination country.

Find the shortest distance from city 1 to city N.
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Input
First line, 4 integers N,C,A,B. 1 ≤ N,C,A,B ≤ 100, 000.
Next line, N integers, ci, denoting the country the i-th city
is in.
Next A lines each with 3 integers
ui, vi,wi, 1 ≤ ui, vi ≤ N, 1 ≤ wi ≤ 109.
Next B lines each with 3 integers
ai, bi,wi, 1 ≤ ai, bi ≤ C, 1 ≤ wi ≤ 109.

Output A single integer, the shortest distance from city
1 → N, or −1 if impossible.
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Example Problem: Intercountry 44

Sample Input:
4 3 2 2
1 2 2 3
1 4 100
2 4 20
1 2 50
1 3 80

Sample Output: 70

Explanation: Fly with an intercountry flight of cost 50 to
city 2. Then take a direct flight with cost 20 to city 4.
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Example Problem: Intercountry 45

How to view this as a graph? Without inter-country
flights, this is routine.

With inter-country flights, we could just generate all edges
between cities in country ai and bi.

But this is too many edges.
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Example Problem: Intercountry 46

Observation: We should only consider inter-country
flights originating from A the first time we reach a city in
A.

Similarly, we should only consider inter-country flights to
B once.

This sounds just like how we treat cities in Dijkstra’s
algorithm.
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Example Problem: Intercountry 47

To encode this, we should treat countries just like cities in
our graph, they should have nodes. Be careful, we need 2
nodes per country, one to encode outgoing flights and one
to encode incoming flights.

The associated edges are natural.
Cities go to the “outgoing” node for their country.
The “incoming” node for a country goes to all cities in
that country.
“Outgoing” country nodes connect by inter-country flights
to “incoming” country nodes.

O(N + C) nodes, O(N + A + B) edges. Dijkstra’s
algorithm now runs in time.
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Example Problem: Intercountry 48

#include <bits/stdc++.h> // iostream , utility , vector
using namespace std;

const int MAXN = 100100, MAXC = 100100;
int N, C, A, B;
// (dest, dist)
// city nodes are at (city id)
// "outgoing" country nodes are at MAXN + (country id)
// "incoming" country nodes are at MAXN + MAXC + (country id)
vector<pair<int, long long>> allE[MAXN+2*MAXC];

int main() {
cin >> N >> C >> A >> B;
for (int i = 1; i <= N; i++) {

int cC; cin >> cC;
// can go to your country's "intercountry departures" for free
allE[i].emplace_back(MAXN + cC, 0);
// can come from your country's "intercountry arrivals" for free
allE[MAXN+MAXC+cC].emplace_back(i, 0);

}
for (int i = 0; i < A; i++) {

int a, b; long long w;
cin >> a >> b >> w;
allE[a].emplace_back(b, w);

}
for (int i = 0; i < B; i++) {

int a, b; long long w;
cin >> a >> b >> w;
allE[MAXN+a].emplace_back(MAXN+MAXC+b, w);

}
// run Dijkstra

}
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Example Problem: Escape From Enemy Territory49

Problem Statement You are at some position on a grid
and wish to reach your safe house at some other location
on the grid.

However, also on certain cells on the grid are enemy safe
houses, which you do not want to go near.

What is the maximum possible distance you can stay away
from every enemy safe house, and still be able to reach
your own safe house?

When there are multiple paths that keep the same distance
from the enemy safe houses, print the shortest one.

Distance in this problem is measured by Manhattan
distance.
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Example Problem: Escape From Enemy Territory50

Input An N×M grid (1 ≤ N,M,≤ 1000), and the location
of your starting point, your safe house, and all the enemy
safe houses. There are up to 10,000 enemy safe houses.

Output Two integers, the maximum distance that you can
stay away from every enemy safe house and still be able to
reach your safe house, and the shortest length of such a
path.
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Example Problem: Escape From Enemy Territory51

If there was no restriction stating that you must stay as far
away from the enemy safe houses as possible, this would
be a simple shortest path problem on a grid.

What if we already knew how far we need to stay away
from each enemy safe house?
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Example Problem: Escape From Enemy Territory52

Call the distance that we know we need to stay away from
the enemy safe houses X.

We just need to BFS out from every enemy safe house to
a distance of X squares, marking all of those squares as
unusable. Just marking them as seen will suffice.

To avoid BFS from each of several enemy safe houses,
instead do these searches simultaneously.

It might help to think of it as a BFS from a dummy node
which has an edge to all enemy safe houses.

Then we can find the answer with a simple BFS from the
starting point. It will ignore the squares that are too close
to enemy safe houses because we’ve marked them as seen.
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Example Problem: Escape From Enemy Territory53

How do we view our original optimisation problem in
terms of this decision problem?

Our simpler problem is a decision problem because we
answer whether or not it’s possible to get from the
starting point to the safe house with distance X.

The original problem is an optimisation problem because it
requires a ‘best’ answer.
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Example Problem: Escape From Enemy Territory54

Observe that if we can stay X distance away from the
enemy safe houses, then any smaller distance is also
feasible, and if we cannot stay X distance away, then any
larger distance is also infeasible.

This monotonicity allows us to binary search for the
largest X such that we can still reach our safe house from
our starting point, which we check using the BFS
procedure outlined earlier.

Complexity Each check takes O(NM) time, and we need
to perform logXMAX = log(N + M) of these checks in our
binary search, so this algorithm takes O(NM log(N + M))
total.
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Example Problem: Escape From Enemy Territory55

Implementation
// very useful trick for stepping through a grid, generalises for other

moves
const int di[4] = { -1, 1, 0, 0 };
const int dj[4] = { 0, 0, -1, 1 };

vector<pair<int,int>> enemies;

// search from all enemy safe houses to find
// each square's minimum distance to an enemy safe house
queue<pair<int, int>> q;
for (auto it = enemies.begin(); it != enemies.end(); ++it)

q.push(*it);

while (!q.empty()) {
pair<int, int> enemy = q.front(); q.pop();
int i = enemy.first, j = enemy.second;
// try all neighbours
for (int d = 0; d < 4; ++d) {

int ni = i + di[d], nj = j + dj[d];

// if off board , ignore
if (ni < 0 || ni >= N || nj < 0 || nj >= M) continue;
// if seen, ignore
if (dist_to_enemy[ni][nj] != -1) continue;

dist_to_enemy[ni][nj] = dist_to_enemy[i][j] + 1;
q.push(make_pair(ni, nj));

}
}
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Example Problem: Escape From Enemy Territory56

Implementation (continued)
// binary search
int lo = -1, hi = min(dist_to_enemy[i1][j1], dist_to_enemy[i2][j2]), sol =

-1;
while (lo != hi) {

int X = (lo + hi + 1) / 2;
// BFS, since the edges are unit weight
vector<vector<int> > d2(N, vector<int>(M, -1));
d2[i1][j1] = 0;
q.push(make_pair(i1, j1));

while (!q.empty()) {
int i = q.front().first, j = q.front().second; q.pop();
for (int d = 0; d < 4; ++d) {

int ni = i + di[d], nj = j + dj[d];
if (ni < 0 || ni >= N || nj < 0 || nj >= M) continue;
if (dist_to_enemy[ni][nj] < X) continue;
if (dist[ni][nj] != -1) continue;
dist[ni][nj] = dist[i][j] + 1;
q.push(make_pair(ni, nj));

}
}

if (dist[i2][j2] == -1) hi = X - 1;
else lo = X, sol = dist[i2][j2];

}
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Systems of Difference Constraints 57

Given m inequalities of the form xi − xj ≤ ck, are there real
numbers x1, x2, . . . , xn that satisfy those inequalities?

What does this have to do with shortest paths??

This can actually be solved in O(nm) using Bellman-Ford!
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Systems of Difference Constraints 58

We need to transform the problem into a graph problem,
by creating a graph from the difference constraints.

Create a vertex for every variable, and for every constraint
xi − xj ≤ ck, create an edge from vertex j to vertex i with
weight ck.

Then, create a source s that has a zero weight edge to
every other vertex.
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Systems of Difference Constraints 59

If we run Bellman-Ford from this source vertex and
examine the shortest paths from the source, we obtain a
solution.

For every edge from j to i, from its definition we know that
the length of the shortest path to i, say di, and the length
of the shortest path to j, dj, satisfy the inequality
di ≤ dj + ck.

We can rewrite di ≤ dj + ck as di − dj ≤ ck, which means
that the distances from the source satisfy the difference
constraints.
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Systems of Difference Constraints 60

What happens when there is a negative weight cycle?

What happens when there is no solution to our system of
difference constraints?
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Systems of Difference Constraints 61

When we have a negative weight cycle, we have a set of
edge inequalities with the variables in that cycle:

x1 − x2 ≤ c1

x2 − x3 ≤ c2

x3 − x1 ≤ c3



Shortest Paths

Single Source
Shortest Paths
Dijkstra’s
Algorithm
Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Systems of Difference Constraints 62

If we add all these inequalities together, because they form
a cycle, all the variables cancel out, giving

0 ≤ c1 + c2 + . . .+ ck,

where c1, c2, . . . , ck are the edge weights on our cycle.

Since the cycle is negative, the RHS adds up to a negative
number. Thus we have a contradiction, so there is no
solution.
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Example Problem: Second Shortest Paths 63

Problem Statement Given a weighted directed graph
with non-negative edge weights, what is the length of the
second shortest path on the graph from s to t? The
second shortest path is the walk with the shortest length
that is distinct from the shortest path. In particular, it is
the same length as the shortest path if and only if there
are multiple shortest paths.

Input A weighted directed graph with n vertices and m
edges (1 ≤ n,m ≤ 100, 000).

Output A single integer, the length of the second shortest
walk.
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Example Problem: Second Shortest Paths 64

Observe that the second shortest walk will differ from a
given shortest path by at least one edge.

Then after finding the shortest path, we can iterate over
all edges on the shortest path, and see what happens if we
go along a different edge instead.
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Example Problem: Second Shortest Paths 65

Let the shortest path from u to v have length duv. If some
edge (u, v) is blocked, and we take some other edge (u,w)
instead, with weight euw we get a path of length
dsu + euw + dwt.

Since we’re iterating over all smallest possible differences
to the shortest path, one of these distances will be our
answer.

So we just try them all (i.e. all choices of (u,w)) and take
the one of minimum length.

How do we efficiently compute all the dwt?
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Example Problem: Second Shortest Paths 66

Implementation
// dist1[u] = shortest distance from u to 1
vector<int> dist1(n+1, -1);
vector<int> prev1(n+1, -1);
{

set<edge> s;
vector<bool> seen(n+1);
prev1[1] = -2;
for (s.insert(edge(0, 1)); !s.empty(); s.erase(s.begin())) {

edge cur = *s.begin();
int d = cur.first, u = cur.second;
if (seen[u]) continue;
dist1[u] = d;
seen[u] = true;
for (edge nxt : adj[u]) {

int w = nxt.first, v = nxt.second // u -> v of weight w
if (!seen[v])

if (dist1[v] == -1 || dist1[v] > d+w) {
prev1[v] = u;
s.insert(edge(d+w, v));

}
}

}
}

// to be continued
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Implementation (continued)
// dist2[u] = shortest distance from u to n
vector<int> dist2(n+1, -1);
vector<int> prev2(n+1, -1);
{

set<edge> s;
s.insert(edge(0, n));
vector<bool> seen(n+1);
prev2[n] = -2;
for (s.insert(edge(0, n)); !s.empty(); s.erase(s.begin())) {

edge cur = *s.begin();
int d = cur.first, u = cur.second;
if (seen[u]) continue;
dist2[u] = d;
seen[u] = true;
for (edge nxt : adj_r[u]) { // reverse graph

int w = nxt.first, v = nxt.second // u -> v of weight w
if (!seen[v])

if (dist2[v] == -1 || dist2[v] > d+w) {
prev2[v] = u;
s.insert(edge(d+w, v));

}
}

}
}

int res = 1<<30;
for (int v = n; v != -2; v = prev1[v])

for (edge e : adj[v])
res = min(res, dist1[v] + e.first + dist2[e.second]);
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