
Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs
Trees
DAGs

Strongly
Connected
Components

Example:
2SAT

Minimum
Spanning
Trees

Graph Algorithms
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Term 3, 2023



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs
Trees
DAGs

Strongly
Connected
Components

Example:
2SAT

Minimum
Spanning
Trees

Table of Contents 2

1 Graphs and Graph Representations

2 Graph Traversals

3 Special Classes of Graphs
Trees
DAGs

4 Strongly Connected Components

5 Example: 2SAT

6 Minimum Spanning Trees



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs
Trees
DAGs

Strongly
Connected
Components

Example:
2SAT

Minimum
Spanning
Trees

Graphs 3

A graph is a collection of vertices and edges connecting
pairs of vertices.

Generally, graphs can be thought of as abstract
representations of objects and connections between those
objects, e.g. intersections and roads, people and
friendships, variables and equations.

Many unexpected problems can be solved with graph
techniques.
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Graphs 4

Many different types of graphs

Directed graphs

Acyclic graphs (i.e: trees, forests, DAGs)

Weighted graphs

Flow graphs

Other labels for the vertices and edges
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Graph Representations 5

Mostly you’ll want to use an adjacency list, occasionally
an adjacency matrix to store your graph.

An adjacency matrix is just a table (usually implemented
as an array) where the jth entry in the ith row represents
the edge from i to j, or lack thereof.

Useful for dense graphs or when you want to know about
specific edges.

An adjacency list is a vector for every vertex containing a
list of adjacent edges.

Much better for traversing sparse graphs.
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Adjacency List 6

#include <iostream>
#include <vector>

int N = 1e6 + 5; // number of vertices in graph
vector<int> edges[N]; // each vertex has a list of connected vertices

void add(int u, int v) {
edges[u].push_back(v);
// Warning: If the graph has self-loops , you need to check this.
if (v != u) {

edges[v].push_back(u);
}

}

...

// iterate over edges from u (since C++11)
for (int v : edges[u]) cout << v << '\n';

// iterate over edges from u (before C++11)
vector<int>::iterator it = edges[u].begin();
for (; it != edges[u].end(); ++it) {

int v = *it;
cout << v << '\n';

}

// or just a regular for loop will work too
for (unsigned int i = 0; i < edges[u].size(); i++) {

cout << edges[u][i] << '\n';
}
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Graph Traversals 8

There are two main ways to traverse a graph, which differ
in the order in which they visit new vertices:

Breadth-first search (BFS): visit the entire adjacency list of
some vertex, then recursively visit every unvisited vertex in
the adjacency list of those vertices.

Depth-first search (DFS): visit the first vertex in some
vertex’s adjacency list, and then recursively DFS on that
vertex, then move on;

Both can be implemented in O(|V|+ |E|) time.
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Breadth-First Search 9

Visits vertices starting from u in increasing distance order.

Use this to find shortest path from u to every other vertex.

Not much other reason to use BFS over DFS.
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Breadth-First Search 10

Implementation
vector<int> edges[N];
// dist from start. -1 if unreachable.
int dist[N];
// previous node on a shortest path to the start
// Useful for reconstructing shortest paths
int prev[N];

void bfs(int start) {
fill(dist, dist+N, -1);
dist[start] = 0;
prev[start] = -1;

queue<int> q;
q.push(start);
while (!q.empty()) {

int c = q.front();
q.pop();
for (int nxt : edges[c]) {

// Push if we have not seen it already.
if (dist[nxt] == -1) {

dist[nxt] = dist[c] + 1;
prev[nxt] = c;
q.push(nxt);

}
}

}
}
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Depth-First Search 11

Depth-first search is a simple idea that can be extended to
solve a huge amount of problems.

Basic idea: for every vertex, recurse on everything it’s
adjacent to that hasn’t already been visited.
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Depth-First Search 12

Implementation
// global arrays are initialised to zero for you
bool seen[N];

void dfs(int u) {
if (seen[u]) return;
seen[u] = true;
for (int v : edges[u]) dfs(v);

}
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Depth-First Search 13

In its simple form, it can already be used to solve several
problems - undirected cycle detection, connectivity, flood
fill, etc. In short, it should be your default choice for
traversing a graph.

However, its true power comes from the fact DFS has nice
invariants and the tree it creates has nice structure.

Main Invariant: By the time we return from a vertex v in
our DFS, we have visited every vertex v can reach that
does not require passing through an already visited vertex.
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DFS Tree 14

For now, we restrict ourselves to undirected graphs.
In our DFS, if we only consider edges that visit a vertex
for the first time, these edges form a tree. All other edges
are called “back edges”.

See this DFS Tree Tutorial for an illustration.

Main Structure: Back edges always go directly upwards
to an ancestor in the DFS tree.

A not difficult consequence of the Main Invariant.

This is an abstract but really powerful tool for analyzing a
graph’s structure.

Sometimes it is useful to explicitly construct this tree but
often we just implicitly consider it in our DFS.

https://codeforces.com/blog/entry/68138
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Example problem: Bridge Finding 15

Problem statement Consider G an undirected, simple
(loopless and with no multi-edges), connected graph.
A bridge of G is an edge e whose removal disconnects G.
Output all bridges of G.

Input

First line, 2 integers V,E, the number of vertices and
number of edges respectively.
Next E lines, each a pair, uivi. Guaranteed ui ̸= vi and no
unordered pair appears twice.
1 ≤ V,E,≤ 100, 000.

Output Output all bridges, each on a single line as the
two vertices the bridge connects.
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Example problem: Bridge Finding 16



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs
Trees
DAGs

Strongly
Connected
Components

Example:
2SAT

Minimum
Spanning
Trees

Example problem: Bridge Finding 17

A graph is a pretty chaotic thing.

Let us introduce some structure by looking at the DFS
tree.
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Example problem: Bridge Finding 18
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Example problem: Bridge Finding 19

Claim 1: Back edges can not be bridges.

Claim 2: A tree edge is a bridge iff there is no back edge
going “past it”.

More formally, it is enough to know within each subtree of
the DFS tree, what the highest node a back edge in this
subtree can reach.

Not hard to compute this recursively in our DFS.

As a minor technical note: our code will use pre-order
indices instead of computing depth.
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Example problem: Bridge Finding 20

Implementation
void dfs(int u, int from = -1) {

low[u] = preorder[u] = T++;
for (int v : edges[u]) {

// ignore the edge to our parent in the dfs
if (v == from) continue;
// update the lowest value in the preorder sequence that we can reach
if (preorder[v] != -1) low[u] = min(low[u], preorder[v]);
else {

dfs(v, u);
low[u] = min(low[u], low[v]);
// if we haven't visited v before , check to see if we have a bridge
if (low[v] == preorder[v]) bridges.insert(make_pair(min(u, v), max(u

, v)));
}

}
}
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Example problem: Bridge Finding 21

Complexity? O(V + E), just one DFS.

Bridges have broader relevance. A 2-edge connected
component is one with no bridges. Compressing these
turns any graph into a tree.

Vertices whose removal disconnects the graph are called
articulation vertices. There is a similar algorithm for
finding them.

But we won’t talk about this more.

Moral: DFS trees are cool, especially on undirected
graphs.
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Example problem: Cycle Detection 22

Problem Statement Given a directed graph, determine if
there is a simple cycle.

Input

First line, 2 integers V,E, the number of vertices and
number of edges respectively.

Next E lines, each a pair, uivi.

1 ≤ V,E,≤ 100, 000.

Output YES if there is a cycle, NO otherwise.
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Example problem: Cycle Detection 23

If the graph is undirected, we can simply run a DFS on the
graph, and return true if any vertex marked seen is visited
again.

However, this doesn’t work for directed graphs, such as
the diamond graph (1→ 2→ 3← 4← 1).

DFS on directed graphs is not as nice as on undirected
graphs, just because u can reach a visited node v does not
mean v can reach u.
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Directed Graph Cycle Detection 24

However, we can see that the only way a cycle can exist is
if the DFS tree has a back-edge that goes up the tree.
If there is a cycle C and u ∈ C is the first vertex our DFS
visits in the cycle then all vertices in the cycle will be in
the subtree of u in the DFS tree. Hence this subtree must
have some backedge to u.
We can rephrase this algorithm as checking if any edge
visits a vertex we are still recursing from. This means we
reach a vertex v that we are still trying to build the
subtree for. So v is an ancestor.
It turns out this is easy to do — just mark each vertex
“active” in a table during its preorder step (when we first
reach u), and unmark it during its postorder step (when
we return from u).
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Directed Graph Cycle Detection 25

Implementation
// the vertices that are still marked active when this returns are the

ones in the cycle we detected
bool has_cycle(int u) {

if (seen[u]) return false;
seen[u] = true;
active[u] = true;
for (int v : edges[u]) {

if (active[v] || has_cycle(v)) return true;
}
active[u] = false;
return false;

}
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Special Classes of Graphs 27

General graphs are quite hard to do many things on.

Certain tasks are much more suited to specific classes of
graphs.

Directed Acyclic Graphs (DAGs) are well suited for DP
since you have a natural order to build up your recurrence.

Trees are well suited for like everything since from any
given node, its subtrees should behave independently.
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Tree Representation 28

A tree is an undirected, connected graph …
with a unique simple path between any two vertices.

where E = V− 1.

with no cycles.

where the removal of any edge disconnects the graph.
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Tree Representation 29

We usually represent them as if they have a root.

Hence each node naturally has a subtree associated to it.

To represent a tree, we generally like to know for each
node:

its parent,

its children (if any), and

additional problem-specific metadata on its subtree (e.g.
size).
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Tree Representation 30

const int N = 1e6 + 5;

// We need the list of edges to construct our representation
// But we don't use it afterwards.
vector<int> edges[N];

int par[N]; // Parent. -1 for the root.
vector<int> children[N]; // Your children in the tree.
int size[N]; // As an example: size of each subtree.

void constructTree(int c, int cPar = -1) {
par[c] = cPar;
size[c] = 1;
for (int nxt : edges[c]) {

if (nxt == par[c]) continue;
constructTree(nxt, c);
children[c].push_back(nxt);
size[c] += size[nxt];

}
}
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Tree Representation 31

Now that we have our representation, we can do most of
what we want by just recursing using the children array.

In some sense, as close to a line as we can get, and lines
are very nice to work with.

Many of the techniques you like for lines still work on a
tree.

Linear Sweep is to … DFS

DP is to … DP on a tree

Range Tree is to … Path Queries or Range tree over a tree

Divide and Conquer is to … Centroid Decomposition
We’ll talk about the first 3.
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Shortest Distance on a Tree 32

Problem Statement Given a weighted tree, answer Q
queries of shortest distance between vertex ui and vi.

Input A tree described as |V| − 1 edges. Followed by Q
queries. 1 ≤ |V|,Q ≤ 100, 000.

Output For each query, an integer, the shortest distance
from ui to vi.



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs
Trees
DAGs

Strongly
Connected
Components

Example:
2SAT

Minimum
Spanning
Trees

Shortest Distance on a Tree 33

1

2

3 4

5

1

1 3

7

Sample Queries:
1 3: 2

3 4: 4

4 5: 11
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Shortest Distance on a Tree 34

As usual, assume you’ve run your tree representation DFS
so the tree is now arbitrarily rooted.
Well, the hard part seems to be figuring out what the path
actually is.

1

2

3 4

5

1

1 3

7

And for this it suffices to find the Lowest Common
Ancestor (LCA)!
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Lowest common ancestor 35

Problem statement You are given a labelled rooted tree,
T, and Q queries of the form, “What is the vertex furthest
away from the root in the tree that is an ancestor of
vertices labelled u and v?”

Input A rooted tree T (1 ≤ |T| ≤ 1, 000, 000), as well as
Q (1 ≤ Q ≤ 1, 000, 000) pairs of integers u and v.

Output A single integer for each query, the label for the
vertex that is furthest away from the root that is an
ancestor of u and v
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Lowest common ancestor 36

Algorithm 1 The most straightforward algorithm to solve
this problem involves starting with pointers to the vertices
u and v, and then moving them upwards towards the root
until they’re both at the same depth in the tree, and then
moving them together until they reach the same place

This is O(n) per query, since it’s possible we need to
traverse the entire height of the tree, which is not
bounded by anything useful
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Lowest common ancestor 37

The first step we can take is to try to make the “move
towards root” step faster

Since the tree doesn’t change, we can pre-process the tree
somehow so we can jump quickly
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Binary function composition 38

Let’s examine the parent relation parent[u] in the tree

Our “move towards root” operation is really just repeated
application of this parent relation

The vertex two steps above u is parent[parent[u]], and
three steps above is parent[parent[parent[u]]]
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Binary function composition 39

Immediately, we can precompute the values parent[u][k],
which is parent[u] applied k times

This doesn’t have an easy straightforward application to
our problem, nor is it fast enough for our purposes
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Binary function composition 40

If we only precompute parent[u][k] for each k = 2ℓ, we
only need to perform O(log n) computations.

Then, we can then compose up to log n of these
precomputed values to obtain parent[u][k] for arbitrary k

To see this, write out the binary expansion of k and keep
greedily striking out the most significant set bit — there
are at most log n of them.
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Lowest common ancestor 41

Algorithm 2 Instead of walking up single edges, we use
our precomputed parent[u][k] to keep greedily moving up
by the largest power of 2 possible until we’re at the desired
vertex

How do we find the LCA of u and v given our
precomputation?

First, move both u and v to the same depth.

Binary Search! You are binary searching for the maximum
amount you can jump up without reaching the same
vertex. Then the parent of that vertex is the LCA.

To implement this, we try jumping up in decreasing power
of 2 order. We reject any jumps that result in u and v
being at the same vertex.
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Lowest common ancestor 42

Implementation (preprocessing)
// parent[u][k] is the 2^k-th parent of u
void preprocess() {

for (int i = 0; i < n; i++) {
// assume parent[i][0] (the parent of i) is already filled in
for (int j = 1; (1<<j) < n; j++) {

parent[i][j] = -1;
}

}

// fill in the parent for each power of two up to n
for (int j = 1; (1<<j) < n; j++) {

for (int i = 0; i < n; i++) {
if (parent[i][j-1] != -1) {

// the 2^j-th parent is the 2^(j-1)-th parent of the 2^(j-1)-th
parent

parent[i][j] = parent[parent[i][j-1]][j-1];
}

}
}

}
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Lowest common ancestor 43

Implementation (querying)
int lca (int u, int v) {

// make sure u is deeper than v
if (depth[u] < depth[v]) swap(u,v);

// log2s[i] holds the largest k such that 2^k <= i
// precompute by DP: log2s[i] = log2s[i/2] + 1
for (int i = log2s[depth[u]]; i >= 0; i--) {

// repeatedly raise u by the largest possible power of two until it is
the same depth as v

if (depth[u] - (1<<i) >= depth[v]) u = parent[u][i];
}

if (u == v) return u;

for (i = log2s[depth[u]]; i >= 0; i--)
if (parent[u][i] != -1 && parent[u][i] != parent[v][i]) {

// raise u and v as much as possible without having them coincide
// this is important because we're looking for the lowest common

ancestor , not just any
u = parent[u][i];
v = parent[v][i];

}

// u and v are now distinct but have the same parent , and that parent is
the LCA

return parent[u][0];
}
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Lowest common ancestor 44

Complexity? O(n log n) time and memory preprocessing,
O(log n) time per query.

Trap: You must do the jumps from largest power of 2 to
lowest. Otherwise it’s just completely wrong.

You can use this to support a bunch of path queries if
there are no updates. Think of it as the range tree of
paths in trees.

Surprisingly you can do LCA in O(n)/O(1)
preprocessing/per query time.

Even more surprisingly, one can use this to do Range
Minimum Queries with no updates in O(n)/O(1).
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Shortest Distance on a Tree 45

Problem Statement Given a weighted tree, answer Q
queries of shortest distance between vertex ui and vi.

Input A tree described as |V| − 1 edges. Followed by Q
queries. 1 ≤ |V|,Q ≤ 100, 000.

Output For each query, an integer, the shortest distance
from ui to vi.
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1

2

3 4

5

1

1 3

7

Sample Queries:
1 3: 2

3 4: 4

4 5: 11
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Shortest Distance on a Tree 47

Now we know what the path between u and v looks like,
it’s u→ lca followed by lca→ v. What else do we need to
answer distance queries?

Need to know lengths of certain ranges, like in a range
tree.

Generally, you would compute lengths and store it in the
binary composition data structure you are using, like a
range tree.

But since sum has an inverse, we can be a bit lazier and
use a cumulative sum like data structure instead.

We will store dist(root, u) for all u. Then
dist(u, v) = dist(root, u) + dist(root, v)− 2 · dist(root, lca).
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Shortest Distance on a Tree 48

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 100000, LOGN = 18;
struct edge { int nd; long long d; };
int parent[MAXN+5][LOGN];
long long distToRoot[MAXN+5];
vector<edge> children[MAXN+5];
// Code to set up LCA and tree representation
void construct_tree(int c, int cPar = -1);
int lca(int a, int b);

void calc_dists_to_root(int c) {
for (auto edg : children[c]) {

distToRoot[edg.nd] = distToRoot[c] + edg.d;
calc_dists_to_root(edg.nd);

}
}

long long find_tree_dist(int a, int b) {
int cLca = lca(a, b);
return distToRoot[a] + distToRoot[b] - 2 * distToRoot[cLca];

}
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DAGs 49

A DAG is a directed, acyclic graph.

Key Property 1: Every DAG has a maximal vertex, one
with no incoming edges.

Key Property 2: Every DAG can be linearly ordered, i.e.
there is some ordering of vertices such that edges only go
from vi → vj where i < j.

Proof of (1): Pick any vertex and keep arbitrarily
following an incoming edge backwards if one exists. This
either terminates or results in a cycle.

Proof of (2): Induction with (1).
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Topological Sort 50

An order satisfying (2) is called a topological order or sort.
It is an ordering of the vertices that has the property that
if some vertex u has a directed edge pointing to another
vertex v, then v comes after u in the ordering.

Clearly, if the graph has a cycle, then there does not exist
a valid topological ordering of the graph.
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Topological Sort 51

How do we compute a topological ordering?
Observation! The key invariant of a DFS tells us that in
acyclic graphs, every vertex v can reach has been seen by
the time we return from v.
For an acyclic graph, this means every vertex after v in the
topsort order is returned from before v is returned from.
We can directly use the reverse of the postorder sequence
of the graph.
The postorder sequence of the graph is an ordering of the
vertices of the graph in the order that each vertex reaches
its postorder procedure (i.e. in the order vertices return
in).
A vertex is only added after its children have been visited
(and thus added), so the reverse order is a valid
topological ordering.
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Topological Sort 52

Implementation
// if the edges are in ASCENDING order of node number ,
// this produces the lexicographically GREATEST ordering

void dfs(int u, vector<int>& postorder) {
if (seen[u]) return;
seen[u] = true;
for (int v : edges[u]) dfs(v, postorder);
postorder.push_back(u);

}

vector<int> topsort() {
vector<int> res;
for (int i = 0; i < n; i++) dfs(i, res);
reverse(res.begin(), res.end()); // #include <algorithm >
return res;

}



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs
Trees
DAGs

Strongly
Connected
Components

Example:
2SAT

Minimum
Spanning
Trees

Example problem: Water Falls 53

Problem Statement A certain village is surrounded by N
mountain peaks. There are E trails connecting pairs of
mountain peaks.
Every night rain will fall on a single mountain peak. The
rain will then flow down trails to strictly lower mountain
peaks until it reaches a mountain peak with no trail to any
lower mountain peak.
What is the maximum distance the water can flow?
Input First line, N E, 1 ≤ N,E ≤ 105. Following this, N
integers, hi, the heights of the mountain peaks.
Following this, E lines, each with a triple ui vi di,
0 ≤ ui, vi < N, ui ̸= vi, 0 ≤ di ≤ 109. This denotes a trail
from mountain peak ui to mountain peak vi of length di.
Output A single number, the maximum distance water
can flow for before becoming stationary.
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Example Input
4 4
3 1 5 2
0 1 2
1 2 6
0 2 5
3 2 6

Example Output 7

Explanation: The longest path is 2→ 0→ 1.
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Example problem: Water Falls 55

Observation: The trails are directed edges (it is
impossible ui is lower than vi AND vi is lower than ui).
Furthermore, it describes a DAG!

Focus on one peak at a time. What is the longest path
starting at peak 1? What information do I need to answer
this?

I need to know the longest path starting at each peak that
peak 1 can reach.

But since it is a DAG there is a natural order to process
the peaks! The topsort order!

In this case, it’s even more natural, it’s just increasing
height order.
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#include <bits/stdc++.h>
using namespace std;

const int MAXV = 100005;
int V, E, h[MAXV];
vector<pair<int, long long>> allE[MAXV];
long long longestPath[MAXV], ans;
// Returns indices in topsort order (or dec. height order , reversed later).
vector<int> topsort() {}

int main() {
cin >> V >> E;
for (int i = 0; i < V; i++) cin >> h[i];
for (int i = 0; i < E; i++) {

int a, b; long long w; cin >> a >> b >> w;
if (h[b] < h[a]) allE[a].emplace_back(b, w);
if (h[a] < h[b]) allE[b].emplace_back(a, w);

}
vector<int> order = topsort();
reverse(order.begin(),order.end());
for (auto ind : order) {

for (auto edge : allE[ind]) {
longestPath[ind] = max(longestPath[ind],

longestPath[edge.first] + edge.second);
}
ans = max(ans, longestPath[ind]);

}
cout << ans << '\n';

}
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Summary 57

More generally, known as ‘Longest Path in a DAG‘.

In some sense, the prototypical example of Dynamic
Programming.

There is a way to reduce general graphs to DAGs called
Strongly Connected Components (SCCs).
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A strongly connected component (SCC) is a maximal
subset of the vertices of a directed graph such that every
vertex in the subset can reach every other vertex in that
component.

Condensing every strongly connected component to a
single vertex results in a directed acyclic graph (DAG).
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There are a few linear time algorithms known to compute
the strongly connected components of a graph based on
DFS.

Kosaraju’s algorithm is simple to implement but hard to
understand.

Another popular choice in these contests is Tarjan’s
algorithm.
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Tarjan’s Algorithm 62

Do a regular DFS on the graph, but with an explicit stack.

When an item is pushed onto the stack, mark it as
“in-stack”, and unmark it as such when it is popped.

If we want to push a vertex that is already “in-stack”,
then we’ve found a strongly connected component.

Each item on the stack after this vertex can be reached
from it, and can also reach that vertex.

Simply pop everything off the stack including that vertex,
and combine it into an SCC.

The actual algorithm is slightly more complicated because
some bookkeeping is required.
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Tarjan’s Algorithm 63

Implementation
// we will number the vertices in the order we see them in the DFS
int dfs_index[MAX_VERTICES];
// for each vertex , store the smallest number of any vertex we see
// in its DFS subtree
int lowlink[MAX_VERTICES];

// explicit stack
stack<int> s; // #include <stack >
bool in_stack[MAX_VERTICES];

// arbitrarily number the SCCs and remember which one things are in
int scc_counter;
int which_scc[MAX_VERTICES];

void connect(int v) {
// a static variable doesn't get reset between function calls
static int i = 1;
// set the number for this vertex
// the smallest numbered thing it can see so far is itself
lowlink[v] = dfs_index[v] = i++;
s.push(v);
in_stack[v] = true;

// continued
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Tarjan’s Algorithm (continued) 64

Implementation
for (auto w : edges[v]) { // for each edge v -> w

if (!dfs_index[w]) { // w hasn't been visited yet
connect(w);
// if w can see something , v can too
lowlink[v] = min(lowlink[v], lowlink[w]);

}
else if (in_stack[w]) {

// w is already in the stack , but we can see it
// this means v and w are in the same SCC
lowlink[v] = min(lowlink[v], dfs_index[w]);

}
}
// v is the root of an SCC
if (lowlink[v] == dfs_index[v]) {

++scc_counter;
int w;
do {

w = s.top(); s.pop();
in_stack[w] = false;
which_scc[w] = scc_counter;

} while (w != v);
}

}

// call connect for each vertex once
for (int v = 0; v < n; ++v) if (!dfs_index[v]) connect(v);
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Kosaraju’s Algorithm 65

Compute a reverse postordering of the graph, using
depth-first search.

Compute the reverse graph, by reversing all of the edges in
the input graph.

For every vertex in the reverse postordering, start a
depth-first search on the reverse graph, ignoring any
vertices that have already been visited. All vertices visited
during this DFS will be part of the same SCC.
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(Partial) Proof of Kosaraju’s Algorithm 66

Why does this algorithm work?

We need to show that if:

u is before v in a reverse postorder sequence, i.e. u is
popped after v in the original DFS, and

u can reach v in the reverse graph, i.e. v can reach u,
then u and v belong to the same strongly connected
component, i.e.

u can reach v, and

v can reach u (already satisfied).

It will still remain to prove that the identified components
are maximal. This is left as an exercise.
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(Partial) Proof of Kosaraju’s Algorithm 67

Assumptions
u is popped after v in the original DFS, and v can reach u.

Lemma
u is pushed before v in the original DFS.

Proof
Suppose the opposite, i.e. v is pushed before u. Since there is a
path from v to u, the DFS would pop u before it pops v. This
is a contradiction!
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(Partial) Proof of Kosaraju’s Algorithm 68

Assumptions
u is pushed before and popped after v in the original DFS, and
v can reach u.

Theorem
u can reach v.

Proof
Suppose the opposite, i.e. u cannot reach v. Since u was
pushed before v, the DFS would pop u before it pops (or even
pushes) v. This is a contradiction!
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Kosaraju’s Algorithm 69

void dfs(int u) {
if (seen[u])

return;
seen[u] = true;
for (int v : edges[u])

dfs(v);
postorder[p++] = u;

}

void dfs_r(int u, int mark) {
if (seen_r[u])

return;
seen_r[u] = true;
scc[u] = mark;
for (int v : edges_r[u])

dfs_r(v, mark);
}

int compute_sccs() {
int sccs = 0;
for (int i = 1; i <= n; i++)

if (!seen[i])
dfs(i);

for (int i = p - 1; i >= 0; i--) {
int u = postorder[i];
if (!seen_r[u]) // ignore visited vertices

dfs_r(u, sccs++);
}
return sccs;

}
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Satisfiability 71

Satisfiability (SAT) is the problem of determining, given
some Boolean formula, if there exists some truthiness
assignment of variables which would result in the formula
evaluating to true.

Satisfiability is NP-hard in the general case.
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2SAT 72

2-satisfiability (2SAT) is the problem of determining, given
a set of constraints on pairs of Boolean variables, if there
exists some truthiness assignment of variables which would
result in the conjunction of all the constraints evaluating
to true.

Unlike general satisfiability, 2-satisfiability can be solved in
linear time
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2SAT 73

The inputs to a 2SAT problem are a set of constraints on
Boolean variables with standard Boolean operators.

In this context, only these make sense:

x1 ∨ x2 (disjunction)

¬x1 (negation)
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2SAT 74

We can write these in equivalent implicative normal form:

x1 ∨ x2 ≡ (¬x1 → x2) ∧ (¬x2 → x1)

¬x1 ≡ (x1 → ¬x1)
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2SAT 75

These implications now form a directed graph with the
Boolean variables (and their negations) as vertices, called
the implication graph.

What does it mean when some variable x can reach some
other variable y in this implication graph?

If x can reach y in this graph, then x→ y.
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2SAT 76

When do we have a valid solution to our 2SAT instance?

As long as we don’t have any contradictions (i.e.
x→ ¬x and ¬x→ x, we can solve our 2SAT instance.

In our implication graph, this is exactly the same as
checking to see if x and ¬x are in the same strongly
connected component!
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2SAT 77

We can then easily construct an actual solution to our
2SAT instance after computing the strongly connected
components by assigning to each variable whichever
truthiness value comes second in the topological ordering
of the SCC condensed graph.

If x comes after ¬x in the topological ordering of the
condensed implication graph, then we say x is true.
Otherwise, we say it’s false.
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A spanning tree for some graph G is a subgraph of G that
is a tree, and also connects (spans) all of the vertices of G.

A minimum spanning tree (MST) is a spanning tree with
minimum sum of edge weights.

There are several similar algorithms to solve this problem.
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Minimum Spanning Trees 80

To construct a minimum spanning tree of some graph G,
we maintain a set of spanning forests, initially composed
of just the vertices of the graph and no edges, and we
keep adding edges until we have a spanning tree.

Clearly, if we add |V| − 1 edges and we avoid constructing
any cycles, we’ll have a spanning tree.
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Minimum Spanning Trees 81

How do we decide which edges to add, so that we end up
with a minimum spanning tree?

We can’t add any edges to our spanning forest that has its
endpoints in the same connected component of our
spanning forest, or we’ll get a cycle.
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Minimum Spanning Trees 82

We can restrict ourselves to only the edges that cross
components that we haven’t connected yet.

Key Property: There is a greedy exchange property. If e
has minimum weight of edges that connect components
we haven’t connected yet, then there is a spanning tree
containing e.

Proof: By contradiction, consider a MST without e. Then
the addition of e to this MST would introduce a cycle.
But this cycle must contain another edge with weight at
least e’s. Replace this edge with e.
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Minimum Spanning Trees 83

The distinction between MST algorithms is in the way
that they pick the next components to join together, and
how they handle the joining.

Kruskal’s algorithm maintains multiple components at
once and connects the two components that contain the
next globally minimum edge.

Prim’s algorithm only ever connects one large connected
component to single disconnected vertices in the spanning
forest.
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Kruskal’s Algorithm 84

Kruskal’s algorithm is generally simpler to implement, and
more directly mirrors the mathematical properties of
MSTs.

Kruskal’s algorithm:

For each edge e in increasing order of weight, add e to the
MST if the vertices it connects are not already in the same
connected component.

Maintain connectedness with union-find.

This takes O(|E| log|E|) time to run, with the complexity
dominated by the time needed to sort the edges in
increasing order.
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Kruskal’s Algorithm 85

Implementation
struct edge {

int u, v, w;
};
bool operator< (const edge& a, const edge& b) {

return a.w < b.w;
}

edge edges[N];
int p[N];
int root (int u); // union -find root with path compression
void join (int u, int v); // union -find join with size heuristic

int mst() {
sort(edges, edges+m); // sort by increasing weight
int total_weight = 0;
for (int i = 0; i < m; i++) {

edge& e = edges[i];
// if the endpoints are in different trees , join them
if (root(e.u) != root(e.v)) {

total_weight += e.w;
join(e.u, e.v);

}
}
return total_weight;

}
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Prim’s Algorithm 86

An alternative is Prim’s Algorithm.

Instead of considering all components, instead pick a start
vertex, say v and consider 2 components: {v} and V \ {v}.

Now our property tells us there is a MST using the lowest
weight edge between {v} and V \ {v}.

If this edge is e : v→ w, then add e to our MST. Now
repeat with components {v,w} and V \ {v,w}.
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Prim’s Algorithm 87

Implementation
#include <vector>
#include <queue>

typedef pair<int,int> ii;

vector<ii> edges[N]; // pairs of (weight , v)
bool in_tree[N];
// use greater as the comparator instead of the default less so the

priority queue is a min-heap instead of a max-heap
// the vector <int> parameter is the container the queue is stored in, an

implementation detail you will not need to change
priority_queue <ii, vector<ii>, greater<ii>> pq;

int mst() {
int total_weight = 0;
in_tree[0] = true; // (2)
for (auto edge : edges[0]) pq.emplace(edge.first, edge.second);
while (!pq.empty()) { // (3)

auto edge = pq.top(); pq.pop();
// if this edge goes to somewhere already in the tree, it's useless (

we've already done something better)
if (in_tree[edge.second]) continue;
in_tree[edge.second] = true;
total_weight += edge.first;
for (auto edge : edges[edge.second]) pq.emplace(edge.first, edge.

second); // (4)
}
return total_weight;

}
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