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Reminder: Algorithmic Complexity 3

The running time of your solution is important!
If you don’t think about the time complexity of your
algorithm before coding it up, sooner or later you’ll end up
wasting a lot of time on something something that’s too
slow.

This is especially tragic in exam environments.

For simple code, analysing complexity can be as simple as
multiplying together the bounds of nested for loops.
For recursive solutions, a rough bound is
O(time spent in recursive function ×
number of recursion branchesrecursion depth)

For DP, it usually comes down to carefully determining the
number of subproblems and the average time taken for
each of them using the recurrence.
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Reminder: Algorithmic Complexity 4

On most online judges (this applies to the problem sets), a
rough guideline is 200 million operations per second.

Constant factors occasionally matter, e.g. if you have no
recursion, or only tail-recursion, you might manage more
operations than this.

If you do floating-point arithmetic, everything will be slow

This means that for n ≤ 1, 000, 000, an O(n log n)
algorithm will probably run in time, but an O(n2)
algorithm will definitely time out.

Best way to get a gauge of an online judge’s speed is to
submit a simple for loop and compare the number of
iterations it can do in 1 second to your local environment.
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Greedy algorithms don’t always work 6

We like greedy algorithms because they cut down the state
space

If a locally suboptimal choice can never contribute to the
globally optimal solution, we don’t have to expand nearly
as many states

But what if this doesn’t work? Hill climbing etc

We would like some way to explore many options at each
stage, but efficiently - avoid repeating work
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What is dynamic programming? 7

Wikipedia: “a method for solving complex problems by
breaking them down into simpler subproblems”
If we can then keep recursively breaking down those
simpler subproblems into even simpler problems until we
reach a subproblem which is trivial to solve, we are done.
This sounds a lot like Divide & Conquer…
The key aspect of Dynamic Programming is subproblem
reuse:
If we have a divide & conquer algorithm that regularly
reuses the same subproblem when breaking apart different
larger problems, it’d be an obvious improvement to save
the answer to that subproblem instead of recalculating it.
In a way, dynamic programming is smart recursion
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A problem we’ve seen before 8

Problem statement Compute the nth Fibonacci number
(0 ≤ n ≤ 1, 000, 000)

Naïve solution Recall that f(0) = f(1) = 1, and
f(n) = f(n − 1) + f(n − 2). Write a recursive function and
evaluate.

Time Complexity We recurse twice from each call to f,
and the recursion depth is up to n. This gives a
complexity of O(2n).
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A problem we’ve seen before 9

Let’s take a look at the call tree for f(4):

f(4)

f(2)

f(0)f(1)

f(3)

f(1)f(2)

f(0)f(1)

What is f(2)?

A problem we’ve seen before.
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A problem we’ve seen before 10

If we don’t duplicate work:

f(4)

f(2)f(3)

f(1)f(2)

f(0)f(1)

The call tree gets a bit smaller.
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A problem we’ve seen before 11

There is even more duplicated work in bigger cases.

f(5)

f(3)

f(1)f(2)

f(0)f(1)

f(4)

f(2)

f(0)f(1)

f(3)

f(1)f(2)

f(0)f(1)
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A problem we’ve seen before 12

With “smart recursion” we could reduce the call tree to:

f(5)

f(3)f(4)

f(2)f(3)

f(1)f(2)

f(0)f(1)

In fact, we reduce the number of calls from O(2n) to O(n).
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The essence of dynamic programming 13

In general, a dynamic programming (DP) algorithm comes in
three parts:

An exact definition of the subproblems. It is convenient to
define these subproblems as entities in a state space and
refer to individual subproblems as states.

In our example, each f(i) is a state, and the state space
includes all these states for i from 0 to n.

A recurrence relation, which facilitates the breaking
down of subproblems. These define the transitions
between the states.

In our example, the recurrence relation is
f(n) = f(n − 1) + f(n − 2).

Base cases, which are the trivial subproblems.
In our example, the base cases are f(0) = 1 and f(1) = 1.
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Example problem: Sum Representation 14

Problem statement Given an integer n
(0 ≤ n ≤ 1, 000, 000), in how many ways can n be written
as a sum of the integers 1, 3 and 4?

Example If n = 5, there are 6 different ways:

5 = 1 + 1 + 1 + 1 + 1
= 1 + 1 + 3
= 1 + 3 + 1
= 3 + 1 + 1
= 1 + 4
= 4 + 1.
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Example problem: Sum Representation 15

Subproblems Let f(n) be the number of ways in which n
can be represented using the numbers 1, 3 and 4. Each
state is represented by a single integer, n.

Recurrence For n ≥ 4, if we already know the answers for
f(n − 1), f(n − 3) and f(n − 4), then the answer for f(n) is
given by

f(n) = f(n − 1) + f(n − 3) + f(n − 4)

Base cases By inspection, we can see that f(0) = 1,
f(1) = 1, f(2) = 1 and f(3) = 2.
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Example problem: Sum Representation 16

Complexity Since we have O(n) values of f to calculate,
each taking O(1) time to calculate, assuming that the
subproblems it depends on have already been calculated,
the algorithm has overall time complexity O(n).

Implementation
f[0] = 1, f[1] = 1, f[2] = 1, f[3] = 2;
for (int i = 4; i <= n; i++)

f[i] = f[i-1] + f[i-3] + f[i-4];

A neat trick allows us to optimise this implementation to
use O(1) memory without changing the time complexity.
f[0] = 1, f[1] = 1, f[2] = 1, f[3] = 2;
for (int i = 4; i <= n; i++)

f[i%4] = f[(i-1)%4] + f[(i-3)%4] + f[i%4];
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Implementing & Understanding DP 17

There are two main ways of implementing (and thinking
about) DP solutions.

These are most commonly referred to as top-down
(memoised) and bottom-up
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Top-down 18

Top-down dynamic programming takes the mathematical
recurrence, and translates it directly into code.
Answers to subproblems are cached to avoid solving them
more than once. Caching function return values is widely
known as memoisation.
Top-down implementations are usually the easiest, because
this is how most people naturally think about DP
solutions.
int f(int n) {

// base cases
if (n == 0 || n == 1) return 1;
// return the answer from the cache if we already have one
if (cache[n]) return cache[n];
// calculate the answer and store it in the cache
return cache[n] = f(n-1) + f(n-2);

}

Warning: if 0 is a valid answer to a subproblem, initialise
your cache array to something that isn’t a valid answer.
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Bottom-up 19

Bottom-up dynamic programming starts at the base cases
and builds up all the answers one-by-one.
f[0] = 1, f[1] = 1;
for (int i = 2; i <= n; i++) f[i] = f[i-1] + f[i-2];

Warning: when answering a subproblem, we must make
sure that all subproblems it will look at are already
answered.

In this example, the order in which states depend on each
other is straightforward; this is not always the case.
In general, the dependency between DP states forms a
directed acyclic graph (DAG).
If the state dependency graph has a cycle, it’s not a valid
DP!

Some algorithms are easier to think about this way. For
example, the Floyd-Warshall algorithm is a DP, most easily
implemented bottom-up.
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Top-down or bottom-up? 20

Top-down generally admits a more direct implementation
after finding a recurrence.

It is more convenient on recursive structures like trees.
It only ever touches states that are necessary to compute,
which can make it significantly faster for some problems.

Bottom-up also has its own advantages.
Often, there are characteristics of the state space that
allow for space optimisations only possible going
bottom-up.
It also doesn’t have the recursive overhead inherent to the
top-down approach.
You usually more control, which is useful for more
advanced techniques, e.g. speeding up the recurrence with
a data structure.

Summary: If you have a choice, pick your preference.
However, for trees, we’ll generally only do top down. And
for many more advanced techniques, we’ll probably only
do bottom up.
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How to actually DP 21

Cool. Now we know what DP is (hopefully).

The above helps you recognize and (hopefully) code a DP
someone tells you.

But all of this is not particularly useful for finding the right
states or the right recurrence.

What follows is a useful strategy to make these decisions,
and some examples to demonstrate.

But really, the only method that works for sure is practice.
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How to actually DP 22

To get a gauge of whether a problem is DP and what the
DP might look like, it’s often easier to start with the
recurrence rather than the state.

We’d like to choose a state which contains the minimum
amount of information while letting us figure out what
steps are valid as we build up from trivial subproblems to
the original problem.

It’s not expected that you’ll pick the right state
immediately. It’s more a process of trial and error, even if
you are very experienced.
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How to actually DP 23

1 Choose some order to do the problem in. So essentially,
how are you going to build up your solution?

Often implicit in the state, but a good starting point, since
it strongly suggests what your state might be.

2 Pick a tentative state. Initially, it should just contain the
parameters necessary to determine the end result.

E.g: If you need to output the best answer assuming you
take X items, then number of items should probably be in
your state.
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How to actually DP 24

3 Test whether your state specification is sufficient by trying
to make a recurrence.

Often you’ll be unable to determine which moves are legal
and which aren’t, using only the information stored in your
state.

This usually means that you need to add more information
to the state. Add an extra parameter to address this, then
repeat this step.

4 Repeat this until it stabilizes or you realise you should try
something else.
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How to actually DP 25

Now, you should at least have a DP algorithm.

Be happy about this, you’ve probably just changed
something from exponential to polynomial.

Is it good enough though? Calculate your complexity.

What if it isn’t? A few directions to go from here.
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How to actually DP 26

1 Look at your state. Is it bad? If so, can you fix this?

Is everything in our state necessary? Can we determine the
valid moves from a subset of the state? More difficult: can
we move anything around to improve the state?

Maybe our order to start with was incorrect.

2 Look at your recurrence. Is there some nice structure to it?
If so, it is likely a suitable data structure will speed it up.

In particular, any recurrences that are ranges should make
you think of range tree
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Dynamic Programming in More Dimensions 28

All the DP problems we’ve seen so far have a simple,
one-dimensional state.

However, it is easy to extend DP to states of higher
dimensions.

The hardest part of finding a DP solution is usually
identifying a state that makes sense for the problem, and
more dimensions just add more possibilities.
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Example problem: 0–1 Knapsack 29

Problem Statement To further your academic career,
you have decided to steal some textbooks from the library.
Unfortunately the bag you have brought is far too small,
and won’t fit all of the books.
There are n books, the ith has a given size si and a value
vi (representing how valuable it is to you). Your bag has a
given maximum capacity S: the sizes of all the books you
take with you must total less or equal to this.
Security is coming, and you want to maximise the total
value of the books you’re taking. What is the maximum
value you can fit in your bag?

Constraints 1 ≤ n ≤ 5000, 1 ≤ S ≤ 5000.
1 ≤ si, vi ≤ 5000. All numbers are integers.
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Example problem: 0–1 Knapsack 30

We can’t try every possible selection of books, because
that would be O(2n) possibilities.

We can start optimising by first observing that the order
we put the books in the bag doesn’t matter.
In order to place a book in our bag, what information do
we need to know?

1 The amount of space remaining in our bag
2 A guarantee that we haven’t already put this book in our

bag

If we order the books by their given numbers, we have an
ordering for free: if we are up to book i, then we’ve
already considered books 1 through i − 1, and not books i
through N.
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Example problem: 0–1 Knapsack 31

This suggests the state

(i, r)

where:
i is the book we are currently considering,
we have already considered all the books before i, and
r is the amount of space remaining in the bag.

We ask the question f(i, r): how much value can I fit into r
units of space, using only books i through n?

Then f(1,S) will give the answer to the problem.

Can we find a recurrence that answers this question in
terms of smaller ones?
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Example problem: 0–1 Knapsack 32

f(i, r): how much value can I fit into r units of space, using
only books i through n inclusive?

If we consider only book i, we have two choices:
If we put book i in our bag, we will lose si space and gain
vi value. Then the best value we could get would be
f(i + 1, r − si) + vi.
If we don’t put book i in our bag, we will not lose any
space or gain any value. Then the best value we could get
would be f(i + 1, r).

Thus we obtain the recurrence

f(i, r) = max(f(i + 1, r − si) + vi, f(i + 1, r)).
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Example problem: 0–1 Knapsack 33

What if r − si < 0? To simplify the recurrence, we can
simply include in our base cases that f(i, r) = −∞ for all
r < 0, for all i. Then no solution that tries to use such an
answer will ever be the best one.

What about base cases that can actually result in
successful answers?

f(i, 0) = 0 for all i (no space to put books in)

Also, f(n + 1, r) = 0 for all r ≥ 0 (we’ve run out of books
to look at).
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Example problem: 0–1 Knapsack 34

Complexity Our state includes two parameters, one with
n possibilities and the other with S possibilities, so there
are a total of nS states.

Each state checks a constant number (at most 2) other
states to obtain an answer, so each state takes O(1) time
to calculate.

Thus, the total time complexity of this algorithm is O(nS).
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Example problem: 0–1 Knapsack 35

Top-Down Implementation
// 2D cache , should be initialised to -1 because 0 is a valid answer
int cache[N+1][S+1];

int f(int i, int r) {
// base cases
if (r < 0) return -2e9;
if (i > n || r == 0) return 0;
// check cache
if (cache[i][r] != -1) return cache[i][r];
// calculate answer
return cache[i][r] = max(f(i + 1, r - s[i]) + v[i], f(i + 1, r));

}

This implementation reduces the need to bounds-check for
the large number of base cases.
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Example problem: 0–1 Knapsack 36

To find a bottom-up implementation, we need to be very
careful about the order of the loops.
Note that each state depends on i which are greater, and r
which are less or equal.
Also, we need to bounds-check carefully now, to make
sure we don’t read outside our array.
Bottom-Up Implementation
int dp[N+2][S+1];

for (int i = N; i >= 1; --i) {
// everything from larger i will be available here
for (int r = 0; r <= S; ++r) {

// we have declared the array larger , so if i == N, dp[i+1][...] will
be zero.

int m = dp[i+1][r];
// bounds check so we don't go to a negative array index
if (r - s[i] >= 0) m = max(m, dp[i+1][r-s[i]] + v[i]);
dp[i][r] = m;

}
}
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Exponential DP 38

Sometimes your state needs to be much bigger than the
DPs you are used to.

A common trick is to make your state a set.

So your state space is 2n · (extra metadata).

Seems bad but still a lot better than n! which is usually
the alternative.

Especially useful with NP-hard problems involving finding
a permutation. TSP (Travelling Sales Person) is the most
well-known such example.

Practically, these problems can often be detected by
having small bounds (e.g. n ≤ 20).
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Exponential DP 39

To represent our state, we don’t store an actual set. This
is unwieldly and probably slow.

Instead we use a bitset.

A bitset is an integer which represents a set. The ith least
significant bit is 1 if the ith element is in the set, and 0
otherwise. For example the bitset 01101101 represents the
set {0, 2, 3, 5, 6}.

In this way, we can use an integer to index any subset of a
set, amongst other things.

This is much faster, especially if you use built-in bit
operations to manipulate the set.
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Bitsets 40

Useful operations for manipulating bitsets:
Singleton set: 1<<i
Set complement: ~x
Set intersection: x & y
Set union: x | y
Symmetric difference: x ^ y
Membership test: x & (1<<i)
Size of set

C++20, with <bit>: popcount(x)
before C++20, with GCC: __builtin_popcount(x)

Least significant bit (or an arbitrary bit): x & (-x)
Iterate over all sets and subsets:
// for all sets
for (int set = 0; set < (1<<n); set++) {

// for all subsets of that set
for (int subset = set; subset; subset = (subset -1) & set) {

// do something with the subset
}

}
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Example problem: Roof Tiling 41

Problem statement You want to tile your roof with n
tiles in a straight line, each of which is either black or
white. Due to regulations, for every m consecutive tiles on
your roof, at least k of them must be black. Given n, m
and k (1 ≤ n ≤ 60, 1 ≤ k ≤ m ≤ 15, m ≤ n), how many
valid tilings are there?

Example If n = 2, m = 2 and k = 1, there are 3 different
tilings: BB, BW, or WB.
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Example problem: Roof Tiling 42

A counting problem, a bit different from what we might be
used to. Our DP will associate with a state how many
configurations correspond to that state. The rest (for
now) will mostly be the same.

Let’s start with an obvious state. How about the number
of valid tilings with n tiles. Then hopefully we can step to
n + 1 by laying one more tile.

Then our step is to lay either a black tile or white tile.

But how do we know whether we can lay a white tile?

We need to know if there are only k − 1 black tiles in the
last m − 1 tiles. If so, the next tile must be black.

We should add that to our state.
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Example problem: Roof Tiling 43

Now our state is n, the number of tiles laid and b, the
number of black tiles that are in the last m − 1 tiles.

We can now tell whether the n + 1-th tile is forced to be
black.

Let dp[n][b] be the number of tilings of n tiles where b of
the last m − 1 are black.

Then dp[n][k − 1] can be counted once (tile n + 1 is black
only), and each dp[n][j] (k ≤ j < m) can be counted twice
(tile n + 1 can be either colour).

Counted towards what though? This is finding dp[n + 1],
but we’ll need all the dp[n+ 1][b] values in the next round,
and we haven’t found those.
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Example problem: Roof Tiling 44

There’s a fundamental problem: we only store how many
tiles in the last m − 1 are black.

But say we add a black tile to the right. Then how do we
know if #(black tiles in the last m) increases or
stays the same?

We need to know what the (m − 1)th tile was.

And because of this, in the next round we will need to
know what the (m − 2)th tile was, and so on.

So we should amend our state to include which of the last
m − 1 tiles are black, not just how many.

Implementation is simpler if we just store the last m
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Let f(i,S) be the number of ways to have tiled the first i
tiles, such that out of the last m tiles, the ones that are
black are exactly the ones in the set S.
For the recurrence, we can either set the new tile to be
black or white. Reflecting this in our state is just applying
the right bit operations from earlier.
Recurrence

f(i,S) = f(i − 1,S >> 1)
+ f(i − 1, (S >> 1)|(1 << (m − 1))),

where |S| ≥ k, or 0 otherwise. Tile (i − m) is white in the
first term and black in the second.
Base case We have f(m,S) = 1 iff |S| ≥ k. We don’t
need to consider f(i,S) for any i < m.
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Complexity There are O(n2m) total states to calculate,
and each state takes O(1) to compute, so this algorithm
runs in O(n2m) time. We also exploit the fact that the
answer for f(n,S) only ever relies on the answers for
f(n − 1,T), allowing us to use only O(2m) memory.

Implementation
// base case
for (int set = 0; set < (1<<m); set++)

dp[m%2][set] = (popcount(set) >= k);

for (int i = m+1; i <= n; i++) {
fill(dp[i%2], dp[i%2] + (1<<M), 0);
for (int set = 0; set < (1<<m); set++)

if (popcount(set) >= k)
dp[i%2][set] = dp[(i+1)%2][set>>1]

+ dp[(i+1)%2][(set>>1)|(1<<(m-1))];
}

// answer is sum over all sets of dp[n%2][set]
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Problem Statement: Given a weighted, bidirectional
graph with n nodes, find the length of the shortest path
starting from node 0 that visits every node exactly once.

Sample Input:

0

1 2

3

1 2
1

3 3

Sample Output: 5, path is 0 → 1 → 2 → 3.
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Example: Travelling Sales Person 48

Let us try the problem in a natural order: increasing
number of nodes on a path.

So our state is (#nodes in path) and we store the
shortest path with that many nodes.

Then our recursion is …whoops, we need to know where
we are as well.

So let us amend the state, our state is
(#nodes in path, last node in path).

Then our recursion is to try every next node.

But how do we know if we have visited a node twice?

We have to keep this in our state …
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So our state is (S, e). We store the shortest path that
starts at 0, ends at e and uses the nodes in S exactly once.
We will denote this f(S, e).

Now we know what next moves we can make. So we have
a hope of forming a recurrence.

We could try considering all possible cities we could have
came from:

f(S, e) = min
p∈S\{e}

f(S \ {e}, p) + dist[p][e]

Alternatively, it’s more natural to push this forward and
think of the next cities we can go to.

Exercise: Translate the above into bit operations.
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#include <algorithm>
using namespace std;

const int N = 20;
const int INF = 1e9;
int n, adj[N][N]; // assume this is given.
int dp[1<<N][N]; // dp[x][i] is the shortest 0->i path visiting set bits of x

int tsp (void) {
for (int mask = 0; mask < (1<<n); mask++)

for (int city = 0; city < n; city++)
dp[mask][city] = INF;

dp[1][0] = 0; // 1 represents seen set {0}

int ans = INF;
for (int mask = 1; mask < (1<<n); mask++) // for every subset of cities seen

so far
for (int cur = 0; cur < n; cur++)

if (mask & (1<<cur)) { // cur must be one of the cities seen so far
int cdp = dp[mask][cur]; // distance travelled so far
if (mask == (1<<n) - 1) // seen all cities , return to 0

// unlike the traditional TSP, we don't have to add adj[cur][0] to
account for an edge back to vertex 0

ans = min(ans, cdp);
for (int nxt = 0; nxt < n; nxt++)

if (!(mask & (1<<nxt))) // try going to a new city
// new seen set is mask union {nxt}, and we will be at nxt
// distance incurred to get to this state is now no worse than
// cdp (current distance incurred) + edge from cur to nxt
dp[mask|(1<<nxt)][nxt] = min(dp[mask|(1<<nxt)][nxt], cdp + adj[cur][

nxt]);
}

return ans;
}
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DP with Data Structures 52

Sometimes you have the right state space but the cost of
recursion is too high.

In such cases, examine the structure of the recurrence
closely.

Often it can be sped up with the right choice of data
structure.

One common example is when your recursion naturally
involves a range query.
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You have already seen one example of this: LIS.

The recurrence we end up with by going left to right is

best[i] = 1 +max bestWithEnd[0, a[i]).

Note in LIS, it was not clear from the outset that a range
tree would play a role. You had to write down the
recurrence to see it.



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 54

Problem statement You have n fireworks available to
you. Each firework has a position xi on the horizon, a
combo range [li, ri] and a score si.

You can enable or disable each firework. Enabled fireworks
will be launched and contribute their score to the total.
However, a firework can only be launched if its combo
range includes the position of the most recent firework to
be launched.

The fireworks are specified in order of firing time. You
cannot change this order.

What is the maximum total score you can obtain?

Constraints 1 ≤ n ≤ 100, 000, 1 ≤ xi ≤ 500, 000.
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For example, suppose we had three fireworks located at
positions 1, 2 and 3 in that order, and that their combo
ranges were [1, 5], [3, 5] and [0, 1] respectively.

We can make a fireworks display with any individual
firework, because there would be no previous firework
restricting the combo range.

However, we could never launch the second firework with
any of the others.

The only firework before it (the first one) lies outside its
combo range.

On the other hand, its position is not within the combo
range of the only firework after it (the third one).
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Due to the firing order specified in the problem, we have a
natural order to start with.

Then the obvious state to start with is just the last
firework we’ve launched. For each firework, we store the
highest obtainable total with a chain ending at that
firework.

Suppose that for each previous firework, we have the best
total from a chain of zero or more fireworks leading up to
it. Now we want to pick the best eligible previous firework.

‘Eligible’ here enforces that the previous firework has to be
inside our combo range.
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Top-Down Implementation
int f(int i) {

if (i == 0) return 0;
if (cache[i]) return cache[i];
int m = s[i];
for (int j = 1; j < i; j++) {

if (x[j] >= l[i] && x[j] <= r[i]) {
m = max(m, f(j) + s[i]);

}
}
return cache[i] = m;

}

Bottom-Up Implementation
ll res = 0;

for (int i = 1; i <= n; i++) {
dp[i] = s[i];
for (int j = 1; j < i; j++) {

// try the jth as the penultimate firework
if (x[j] >= l[i] && x[j] <= r[i]) {

dp[i] = max(dp[i], dp[j] + s[i]);
}

}
// update answer
res = max(res, dp[i]);

}
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We have n states to calculate, and each one takes O(n)
time.

This is an O(n2) algorithm, and with n up to 100,000, this
is not going to run in time.

It seems unlikely that we can change the state space to be
anything other than linear, but the recurrence looks simple
enough.

What is the actual recurrence?
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Recurrence Let f(i) be the best score possible ending at
the ith firework (in the given order). Then

f(i) = si +max{f(j) | j < i, li ≤ xj ≤ ri},

where the maximum is zero if no such j exists.

This is a range constraint.

So we should be able to query this maximum using a
range tree, and obtain a better solution!

There are still n states, but now each one takes only
O(log n) time to calculate, so we obtain a solution in
O(n log n) time.
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Bottom-Up Implementation
int query(int a, int b); // max query range tree of size 500,000
int update(int a, int v); // update index a to value v

ll res = 0;
for (int i = 1; i <= n; i++) {

// calculate best score ending in i-th firework using the range tree
dp[i] = query(l[i], r[i] + 1) + s[i];
// add i-th firework to RMQ
update(x[i], dp[i]);
// update final answer if necessary
res = max(res, dp[i]);

}

A top-down implementation is not as easy to come up
with in this case. Why?
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Problem Statement: Consider the n + 1 points on the
real line 0, 1, . . . n. You are given m segments, each with a
range [si, ei] and a cost ci.

Output the minimum cost necessary to obtain a subset of
the segments which covers all n + 1 points.

Input Format: First line, n,m. 1 ≤ n,m ≤ 100, 000. The
following m lines describe a segment as a triple (si, ei, ci).
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Sample Input:
5 4
0 5 10
0 3 4
2 5 4
0 4 5

Sample Output:
8

Explanation: Take the second and third segments.
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What order should we attempt the problem in?

Let’s try just processing the segments one by one.

What is the state?

To answer the question, we need to store what indices we
have covered.

Okay, that’s a bit excessive.

Note: There was nothing special about the order of the
segments, we essentially processed the segments in an
arbitrary order.

It is generally better to at least have some meaningful
order.
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Alternatively, we can focus on the array.

Then a natural order is left to right.

But what would our state be then? This is less obvious.

A first guess would be i, where we are up to, and S which
indices to the left of i are covered.

But this just gets us back to where we started.

The key here is to make the state just i. Then we denote
dp[i] to be the min cost of segments to cover exactly [0, i].



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 65

A very reasonable question is, is this enough to form a
recursion?

Let’s just try!

To go from i to i + 1 what do we need to do?

We need to cover index i + 1. What does this mean for
our set of segments?

We need to pick a segment ending at i + 1! (Note, we are
defining dp[i] to be the min cost to cover exactly [0, i]. So
we ignore segments ending past i + 1)

So we now have our choices. How do we form the
recurrence?
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Let’s say we pick segment [s, i + 1] with cost c. What do
the rest of our segments have to satisfy?

Answer: They must cover a range [0, e] where e ≥ s − 1.

So assuming we pick this segment, we have

dp[i + 1] = c + min
j∈[s−1,i]

dp[j]

Complexity appears to be O(n2m): for each point i + 1,
for each segment, calculate this min.

Far too slow.
State space is probably optimal already, so try to speed up
the recurrence.
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Recurrence:

dp[i + 1] = c + min
j∈[s−1,i]

dp[j]

Observation: We don’t have to try all segments, just the
ones ending at i + 1.

Preprocessing segments by endpoint reduces the time
complexity to O(nm):

For each point i + 1, for each segment ending here,
calculate the min.
The min is only calculated once per segment.

Getting closer, but still too slow.



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 68

Recurrence:

dp[i + 1] = c + min
j∈[s−1,i]

dp[j]

Observation: This min is another range query!

So we would hope we can support this with a range tree!

Range min tree

Like LIS, range tree over values dp[j] not indices j

Default value should ‘lose’ to any other value, so pick ∞
rather than 0.
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Implementation
#include <bits/stdc++.h> // algorithm , iostream , utility , vector
using namespace std;

typedef long long ll;
const int N = 100100;
const ll INF = (1LL << 61);
int n, m;

vector<pair<int, ll>> segments[N]; // (start , cost)
ll dp[N];
int tree[1<<18]; // range min tree with point update
void update(int p, ll v, int i = 1, int cL = 0, int cR = n);
ll query(int qL, int qR, int i = 1, int cL = 0, int cR = n); // [qL, qR)

int main() {
cin >> n >> m;
for (int i = 0; i < m; i++) {

int s, e, c;
cin >> s >> e >> c;
segments[e].emplace_back(s, c); // preprocess: collate by end

point
}

for (int i = 0; i <= n; i++)
update(i,INF);

// to be continued
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Implementation (continued)
for (int i = 0; i <= n; i++) {

dp[i] = INF;
for (auto seg : segments[i]) {

ll prevcost = seg.first == 0 ? 0 : query(seg.first-1, i);
dp[i] = min(dp[i], prevcost + seg.second);

}
update(i, dp[i]);

}
cout << dp[n] << '\n';

}
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Complexity? O((n + m) log n): make m range queries and
n point updates to a range tree of size O(n)

There are many problems along these lines, of doing DP
on a line with choices given by intervals. It shouldn’t be a
surprise many involve range trees.

A key was to be clear what the state represented.

Exercise: An alternative is to make dp[i] the min cost for
covering at least [0, i]. Work out the details for this
approach.

Exercise: What changes if we require the intervals to
cover the entire interval [0, n] not just the integer parts?
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Problem Statement: You have a H × W block of marble,
divided into 1 × 1 cells. Each cell has a value. You want
to pick a subset of cells to make a building. The
restrictions are:

Each cell of the building must lie on either the ground or
another cell of the building.
The cells chosen for the building for each of the H rows
must be contiguous.

What is the maximum possible sum of values of a valid
building?
Input: First line 2 integers, H,W. 1 ≤ H,W,≤ 1000.
Next H lines each have W integers, the value of the cells.
These values can be negative.
Source: Australian Informatics Invitational Olympiad
2014.
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Sample Input:
3 4
-9 1 -9 1
1 1 -9 1
1 1 1 1

Sample Output:
7

Explanation: Pick all 4 cells in the bottom row, the left 2
in the second row and just the 2nd in the third row.
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This is less obviously DP. Let’s just pick something to look
at and start from there.

One natural starting point is to consider the problem cell
by cell.

What order? Let’s say bottom to top, and left to right
within each row.

So our state is cell we are considering.

And our choice needs to be whether to put the next cell
into the building.

But how do we know if we can include the next cell?
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Okay, our state is too small, what do we need to add?
What cells on the previous row are in our building.
Something about what cells in our current row are in our
building. Why?

Actually we need to store exactly what cells in our current
row are in our building.

What is the size of our state space now?

Depends a bit on the implementation. Maybe something
like O(WH · W2 · W2).

This is a problem. We can optimize the recurrence but if
our state space is too large we are just dead in the water.
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Let’s try a different state.

We can note that each row is very structured, perhaps we
can do a row at a time.

Instead of building cell by cell, let’s build row by row.

So instead of having O(1) moves, our moves are “pick a
contiguous selection of cells on this row and put it in our
building”.

What is our state? How do we know if a move is valid?
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We need to know if the segment we have chosen lies
within the segment of the building on the previous row.

So our state should be what row we are up to and what
cells in the previous row are in the building.

How big is our state?

O(H · W2).

Still a bit too large but this is progress. It is possible to
speed up the recurrence to O(1) so we are nearly there.
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If you were solving the problem yourself, you would
probably keep trying this direction for a while.

But ultimately, it seems this is the limit of how small we
can make the state space.

Each of the parameters is necessary.

We probably need to pick a different direction for our DP.

Let’s go back to the drawing board.

Draw things!
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Let’s try going left to right. So we are now making our
building column by column.

What are our moves? Same as before, let’s try picking the
cells for each column.

What is our state? How do we know a move is valid?
Boils down to, what are the constraints for a valid building
in terms of its columns?

Key Observation: It is ternary! The building increases
height up to a point then decreases in height.
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Key Observation: It is ternary! The building increases
height up to a point then decreases in height.

Okay, let us start with the obvious state, which column we
are up to.

Is this enough to know which moves we can make?

No. We don’t even know if the building increased in
height from the previous column.

What do we need to store to know this?

Okay, our state is now
(current column, height of current column).
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Key Observation: It is ternary! The building increases
height up to a point then decreases in height.
State:
(current column, height of current column).
Is this enough?
Note: It is always okay to decrease in height. But if our
move increases the height, how do we know if it is a valid
move?
No. Not enough. We need to know if at least once in the
past our building has decreased in height.
New state:
(current column, height of current column,
has the height of the building ever decreased?)
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Key Observation: It is ternary! The building increases
height up to a point then decreases in height.
State:
(current column, height of current column,
has the height of the building ever decreased?)

Is this enough?
It is enough to tell us what moves are valid in the current
column.
What is the state space?
O(WH).
So we should be optimistic. So we should try to define a
recurrence.
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State:
(current column, height of current column,
has the height of the building ever decreased?)

Let f(w, h, b) be the best building up to and including
column w, with h cells picked in column w and b = 1 iff
the height of the building has decreased at some stage.

Recurrence? Try b = 0 and b = 1 separately.
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For b = 0. We can’t decrease in height from our previous
column and we can’t ever have decreased in height in the
past.

f(w, h, 0) = max
h′≤h

f(w − 1, h′, 0) +
h∑

i=0
b[w][i]

where we say f(w − 1,−1, 0) = 0 for convenience.
For b = 1. Then due to the ternary condition we can’t
increase from our previous column.

f(w, h, 1) = max
h′≥h,b′∈{0,1}

f(w − 1, h′, b′) +
h∑

i=0
b[w][i]

Complexity?
O(WH) state space, O(H) recurrence. Overall O(WH2).
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But state space is good, we can hope to speed up the
recurrence.
Let’s take a look at it. Let’s try b = 0.

f(w, h, 0) = max
h′≤h

f(w − 1, h′, 0) +
h∑

i=0
b[w][i]

This looks relatively structured. Why?
Everything is a range!
The first part is a range max. We know how to do these.
The second part is a range sum of input. We can
precompute this. How?
So we should be able to do O(WH logH).



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 87

A bit overkill it turns out. Here’s a useful trick.
Let’s look at it again:

f(w, h, 0) = max
h′≤h

f(w − 1, h′, 0) +
h∑

i=0
b[w][i]

If we fix both w and h, it takes O(H) time to compute the
max in the first term of f(w, h, 0).
However, if we fix only w, and consider h = 0, 1, . . . ,H
together, we see that each max takes only O(1). Why?
Because from f(w, h, 0) to the next subproblem
f(w, h + 1, 0), the max only grows by one term:

max
h′≤h+1

f(w−1, h′, 0) = max(max
h′≤h

f(w−1, h′, 0), f(w−1, h+1, 0)).

This reduces complexity to O(WH).
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Recap. Our state: f(w, h, b).
Recurrences:

f(w, h, 0) = max
h′≤h

f(w − 1, h′, 0) +
h∑

i=0
b[w][i]

f(w, h, 1) = max
h′≥h

b′∈{0,1}

f(w − 1, h′, b′) +
h∑

i=0
b[w][i]

We speed up the sums by precomputing a cumulative sum
for each column. We speed up the maxes by doing them
iteratively per column.
O(WH) states with recursion cost O(H) per column, hence
overall recursion cost O(WH).



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 89

#include <bits/stdc++.h>
algorithm
iostream
vector
using namespace std;

const int N = 1000;
const long long INF = (1ll << 60);
// input and precomp.
int W, H;
long long b[N][N]; //(w,h)
long long columnsum[N][N];
long long dp[N][N][2]; // (w,h,b)

void precomp() {
// TODO: read input here.
for (int w = 0; w < W; w++) {

// prefix sums for each column
for (int h = 0; h < H; h++) {

dp[w][h][0] = dp[w][h][1] = -INF;
columnsum[w][h] = b[w][h];
if (h > 0)

columnsum[w][h] += columnsum[w][h-1];
}

}
}



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 90

int main() {
precomp();
// max <= h and >= h from previous column
vector<long long> maxup(H, 0), maxdown(H, 0);
long long ans = 0;
for (int w = 0; w < W; w++) {

for (int h = 0; h < H; h++) {
dp[w][h][0] = maxup[h] + columnsum[w][h];
dp[w][h][1] = maxdown[h] + columnsum[w][h];
ans = max(ans, max(dp[w][h][0], dp[w][h][1]));

}
// Remember: we could have chosen no blocks as well.
maxup[0] = max(0ll, dp[w][0][0]);
for (int h = 1; h < H; h++) {

maxup[h] = max(maxup[h-1], dp[w][h][0]);
}
maxdown[H-1] = max(dp[w][H-1][0], dp[w][H-1][1]);
for (int h = H-2; h >= 0; h--)

maxdown[h] = max(maxdown[h+1],
max(dp[w][h][0], dp[w][h][1]));

}
cout << ans << '\n';

}
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Let’s summarize.
The problem seems difficult and convoluted. But the
solution is quite natural, except looking left to right and
characterizing the condition for going left to right.
Even for that part, it is always worth making examples and
trying different orders.
Our choice of state space was (mostly) dictated just by
the order we picked.
Our recurrences followed through by translating our
requirement.
Speeding up the recurrence is natural from looking at the
formula.
Moral (hopefully): None of this is magic. Almost all of it
is fairly logical.



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 92

Problem statement You have a set of n (1 ≤ n ≤ 1000)
rows from a n × n chessboard, with some of the squares
cut out from the right. How many ways are there to place
k rooks on this chessboard without any rook threatening
any other rook, modulo 109 + 7?
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R

R

R

R

n = 4, k = 4: 8 ways
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Let us pick an order.

Top row to bottom row seems natural.

Then our state is which row we are up to, and we will
store the number of ways to place rooks up to this row.

Our moves are to try all places we can put a rook on the
curent row.

How do we know if a move is valid?
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In other words, how do we know which columns are free?

We don’t know this. So we need to keep the set of free
columns in our state.

We can use a bitset like before.

How large is the state space?

About O(2m · n), not good enough.
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But we are counting things. Can we instead just store the
number of rooks we’ve placed. Then hopefully the number
of ways we can place a rook on our new row is
(length of row) - (#rooks placed).

Alas, we don’t know whether the rooks we’ve placed are in
a column we can place to or not.

Can we fix this?

Key Observation: There was nothing special about the
ordering of rows in this problem. Usually the order is
suggested by the problem but in this case, there is no
reason to have the rows in the order they are in.



Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 97

R

R

R

R

n = 4, k = 4: 8 ways
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Let’s sort the sequence, so that the size of each row is
non-decreasing

Now, we know that if we place a rook on a row, we know
that we can assume that every previously placed rook is in
a cell that our row covers
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R

R

R

This never happens!
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Now, we can say that any rooks already placed will be
either to the left or directly above us

We can then formulate a recurrence that only needs to
know about the current row and the number of rooks

If we’re on a row i of length li, then for every configuration
of the rows above with j rooks already placed, we can
place a rook for this row in (li − j) places
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Subproblems Let f(i, j) be the number of ways to place j
rooks on the first i rows, sorted by length.

Recurrence

f(i, j) = f(i − 1, j) + f(i − 1, j − 1)× (li − (j − 1))

Base case The number of ways to place 0 rooks on 0
rows is 1 (not 0).
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#include <algorithm>
#include <iostream>
using namespace std;

typedef long long ll;

const int N = 1010;
int l[N];
ll dp[N][N];
const ll MOD = 1000*1000*1000+7;

int main (void) {
int n;
cin >> n;
for (int i = 0; i < n; i++)

cin >> l[i];
sort(l, l+n);

dp[0][0] = 1;
for (int i = 1; i <= n; i++)

for (int j = 0; j <= k; j++) {
// can place no rooks in this row
dp[i][j] = dp[i-1][j];
// or place a rook in this row
if (j > 0) {

dp[i][j] += dp[i-1][j-1] * (l[i-1] - (j-1));
dp[i][j] %= MOD;

}
}

cout << dp[n][k] << endl;
}
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This time around, the magic was in reordering the rows.

This is magic. But this general idea is very useful. If you
aren’t given an order, make an order. It can’t be worse
than having no order.

You see a similar idea in 0-1 knapsack. To avoid storing a
bitset of used items, we just pick any arbitrary order to
process the items in.
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Another path to a solution is to do the problem in column
order.

But you have to do it from right to left.

Then you get the same property as this solution, without
sorting.

Note: column order isn’t symmetrical as all rows are
required to start from column 0.
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