
Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Data Structures I
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Term 3, 2023



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 2

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

How does <vector> work? 3

Vectors are dynamic arrays

Random access is O(1), like arrays

A vector is stored contiguously in a single block of memory

Supports an extra operation push_back(), which adds an
element to the end of the array

STL implements a templated vector in <vector>



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

How does push_back() allocate memory? 4

Do we have enough space allocated to store this new
element? If so, we’re done: O(1).

Otherwise, we need to allocate a new block of memory
that is big enough to fit the new vector, and copy all of
the existing elements to it.

This is an O(n) operation when the vector has n elements.
How can we improve?

If we double the size of the vector each reallocation, we
perform O(n) work once, and then O(1) work for the next
n − 1 operations, an average of O(1) per operation.

We call this time complexity amortised O(1).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Aside: amortised complexity 5

How is amortised complexity different from average case
complexity?

For an expected constant time operation (e.g. hash table
lookup), it may still be possible for n consecutive
operations to each take O(n) time, for a total time of
O(n2).

This is not possible with amortised complexity. An
individual operation might take O(n) time, but n
consecutive operations are guaranteed to take O(n) time
in total.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Vectors: Usage 6

#include <cassert>
#include <vector>
using namespace std;

int main() {
vector<int> v;
for (int i = 0; i < 10; i++) v.push_back(i*2);
v[4] += 20;
assert(v[4] == 28);

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 7

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Stacks 8

Supports push() and pop() operations in O(1)

LIFO (last in, first out)

STL implements a templated stack in <stack>

Equivalently, you can use an array or vector to mimic a
stack, with the advantage of allowing random access



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queues 9

Supports push() and pop() operations in O(1)

FIFO (first in, first out)

STL implements a templated queue in <queue>

Equivalently, you can use an array or vector to mimic a
queue, with the advantage of allowing random access



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Stacks and Queues: Usage 10

#include <cassert>
#include <queue>
#include <stack>
using namespace std;

int main() {
stack<int> stk;
queue<long long> que;

stk.push(1);
stk.push(2);
assert(stk.top() == 2);
stk.pop();
assert(stk.top() == 1);
assert(stk.size() == 1);
assert(!stk.empty());

que.push(1);
que.push(2);
assert(que.front() == 1);

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 11

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sets 12

STL’s <set> is a set with O(log n) random access

Internally implemented as a red/black tree of set elements

Unfortunately doesn’t give you easy access to the
underlying tree - iterator traverses it by infix order

C++11 adds <unordered_set>, which uses hashing for
O(1) average case (O(n) worst case) random access

Main advantage of <set> is it keeps the data ordered,
hence has lower_bound(x) and upper_bound(x) which
returns the next element not less than (resp. greater than)
x

<multiset> and (C++11) <unordered_multiset> are
also available



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Maps 13

STL’s <map> is a dictionary with O(log n) random access
Internally implemented with a red/black tree of (key,value)
pairs
Unfortunately doesn’t give you access to the underlying
tree - iterator traverses it by infix order
C++11 adds <unordered_map>, which uses hashing for
O(1) average case (O(n) worst case) random access
Main advantage of <map> is it keeps the data ordered,
hence has lower_bound(x) and upper_bound(x) which
returns the next element whose key is not less than (resp.
greater than) x
<multimap> and (C++11) <unordered_multimap> are
also available



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sets and Maps: Usage 14

#include <iostream>
#include <map>
#include <set>
using namespace std;

set<int> s;
map<int, char> m;

int main() {
s.insert(2); s.insert(4); s.insert(1);
m = {{1,'a'}, {4,'c'}, {2,'b'}};
// Check membership:
cout << (s.find(2) != s.end()) << ' ' << (s.find(3) != s.end()) << '\n'; //

1 0
// NOT binary_search(s.begin(), s.end(), 2), which takes linear time

// Access map:
cout << m[1] << '\n'; // 'a'
// WARNING: Access to non-existent data just silently adds it, avoid this.
// cout << m[3] << '\n'; // null character

// Lower and upper bounds:
cout << *s.lower_bound(2) << '\n'; // 2
// NOT *lower_bound(s.begin(), s.end(), 2), which takes linear time
cout << *s.upper_bound(2) << '\n'; // 4
auto it = m.lower_bound(2);
cout << it->first << ' ' << it->second << '\n'; // 2 b

// Move around with prev/next or increment/decrement
cout << prev(it)->first << '\n'; // 1
cout << (++it)->first << '\n'; // 4

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Order Statistic Trees 15

One of the main problems with set and map is they don’t
track index information.

So you can’t query what the k-th number is or how many
numbers are < x.

Most SBBSTs can be modified to track this metadata.
But we do not want to implement a SBBST.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Order Statistic Trees 16

There is a fix in GNU C++. So it is not a C++ standard
but pretty widespread.

Contained in an extension called “Policy Based Data
Structures”.

In headers:
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;

Details are pretty technical, fortunately we don’t need to
know them.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Order Statistic Trees 17

New data structure:

typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update>
ordered_set;

Key type: int
No mapped type (a set not a map)
Comparison: less<int>
rb_tree_tag: Implemented as a red-black tree,
guarantees O(log n) performances
tree_order_statistics_node_update. The magic:
tells it to update order statistics as it goes.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Order Statistic Trees 18

Essentially a set/map with 2 extra operations:

find_by_order(x): Find the x-th element, 0-indexed.

order_of_key(x): Output the number of elements that
are < x.

Both are O(log n) still!

Furthermore, in other regards they still behave like a
set/map!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Order Statistic Trees: Usage 19

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;
using namespace std;

typedef tree<int, null_type, less<int>, rb_tree_tag ,
tree_order_statistics_node_update > ordered_set;

ordered_set myset;
int main() {

myset.insert(2);
myset.insert(4);
myset.insert(1);
printf("%d\n", *(myset.find_by_order(0))); // 1
printf("%d\n", (int)myset.order_of_key(3)); // 2
printf("%d\n", (int)myset.order_of_key(4)); // 2
printf("%d\n", (int)myset.size()); // 3

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Order Statistic Trees: Usage 20

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;
using namespace std;

typedef tree<int, char, less<int>, rb_tree_tag ,
tree_order_statistics_node_update > ordered_map;

ordered_map mymap;
int main() {

mymap[2] = 'a';
mymap[4] = 'b';
mymap[1] = 'c';
pair<int, char> pic = *mymap.find_by_order(0);
printf("%d %c\n", pic.first, pic.second); // 1 c
printf("%d\n", (int)mymap.order_of_key(3)); // 2
printf("%d\n", (int)mymap.order_of_key(4)); // 2
printf("%d\n", (int)mymap.size()); // 3

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 21

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Heaps 22

Supports push() and pop() operations in O(log n),
top() in O(1).
top() returns the value with highest priority
Is usually used to implement a priority queue data
structure
STL implements a templated priority queue in <queue>

The default is a max heap - often we want a min heap, so
we declare it as follows:
#include <queue>
priority_queue <T, vector<T>, greater<T>> pq;

It’s significantly more code to write a heap yourself, as
compared to writing a stack or a queue, so it’s usually not
worthwhile to implement it yourself



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Heaps 23

The type of heaps usually used is more accurately called a
binary array heap which is a binary heap stored in an array.

It is a binary tree with two important properties:

Heap property: the value stored in every node is greater
than the values in its children

Shape property: the tree is as close in shape to a
complete binary tree as possible



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Heaps 24

Operation implementation

push(v): add a new node with the value v in the first
available position in the tree. Then, while the heap
property is violated, swap with parent until it’s valid again.

pop(): the same idea (left as an exercise)



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Heaps 25



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Heaps 26



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Heaps 27



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 28

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Basic Uses 29

Most uses fall out naturally from the use case.
Vectors: Use everywhere.
Stacks

When you need a LIFO structure.
Generally when the most recent thing you’ve seen is most
important or should be processed first.
E.g: basic parsers, dfs, bracket matching.

Queues:
When you need a FIFO structure.
Generally when you want to process events in order of
occurrence.
E.g: event processing, bfs.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Basic Uses 30

Heap:

When you find yourself asking how I can get the
“largest/smallest” item.

E.g: Dijkstra’s algorithm, other greedy algorithms.

Set:

Seen array on unbounded keys. Also when you need to
dynamically maintain a sort order.

E.g: Recognizing duplicates, find closest key to x.

Map:

As above but with keyed data.

E.g: Count duplicates, find index of the closest key to x.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

A warning 31

While STL has a lot of nice functionality, it does have
significant overhead. If your algorithm is of the correct
time complexity but exceeds the time limit, you might
achieve some constant factor speedup by removing
unnecessary STL:

Replace vectors with arrays - allocate as much memory as
you would ever need

Replace stacks and queues with arrays

Replace small sets with bitsets



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 32

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Restaurants 33

Recap: n countries, each with up to 20 delegates; m
restaurants, each with up to 100 capacity

Recall this problem boiled down to:

Process countries in any order.

For each, seat delegates at restaurant with most seats,
then second most, etc.

Sounds like a max heap to me!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Restaurants 34

#include <iostream>
#include <queue>
#include <vector>
using namespace std;

const int N = 2020, M = 2020;
int n, numDelegates[N], m;
priority_queue <int> restaurants;

int main() {
cin >> n;
for (int i = 0; i < n; i++)

cin >> numDelegates[i];

cin >> m;
for (int i = 0; i < m; i++) {

int s;
cin >> s;
restaurants.push(s);

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Restaurants 35

int starved = 0;
for (int i = 0; i < n; i++) {

vector<int> poppedRestaurants;
int delegatesRemaining = numDelegates[i];

while (delegatesRemaining && !restaurants.empty()) {
// seat a delegate at the restaurant with the most seats.
delegatesRemaining --;
// remove this restaurant's capacity
// to avoid seating multiple delegates here
int seatsRemaining = restaurants.top();
restaurants.pop();
poppedRestaurants.push_back(seatsRemaining -1);

}

// only add back restaurants with positive remaining capacity
// skip any that are now full
for (int r : poppedRestaurants)

if (r > 0)
restaurants.push(r);

// any unassigned delegates starve
starved += delegatesRemaining;

}
cout << starved << '\n';

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Restaurants 36

New complexity?

Let A be the maximum number of delegates per country.

O(n · A · logm) ≈ 2000 · 20 · 11, one hundred times faster!

Efficiency comes from not re-sorting the entire list of
m ≤ 2000 restaurants every round.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Subarray Sum 37

Problem statement You are given an array of n numbers,
say a0, a1, . . . , an−1. Find the number of pairs (i, j) with
0 ≤ i < j ≤ n such that the corresponding subarray
satisfies

ai + ai+1 + . . .+ aj−1 = S

for some specified sum S.

Input The size n of the array (1 ≤ n ≤ 100, 000), and the
n numbers, each of absolute value up to 20,000, followed
by the sum S, of absolute value up to 2,000,000,000.

Output The number of such pairs.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Subarray Sum 38

Algorithm 1 Evaluate the sum of each subarray, and if it
equals S, increment the answer.

Complexity There are O(n2) subarray, and each takes
O(n) time to add, so the time complexity is O(n3).

Algorithm 2 Compute the prefix sums

bi = a0 + a1 + . . .+ ai−1.

Then each subarray can be summed in constant time:

ai + ai+1 + . . .+ aj−1 = bj − bi.

Complexity This solution takes O(n2) time, which is an
improvement but still too slow.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Subarray Sum 39

We need to avoid counting the subarray individually.

For each 1 ≤ j ≤ n, we ask: how many i < j have the
property that bi = bj − S?

If we know the frequency of each value among the bi, we
can add all the answers involving j at once.

The values could be very large, so a simple frequency table
isn’t viable - use a map!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Subarray Sum 40

Algorithm 3 Compute the prefix sums as above. Then
construct a map, and for each bj, add the frequency of
bj − S to our answer and finally increment the frequency of
bj.

Complexity The prefix sums take O(n) to calculate, since

bi+1 = bi + ai.

Since map operations are O(log n), and each bj requires a
constant number of map operations, the overall time
complexity is O(n log n).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Subarray Sum 41

#include <iostream>
#include <map>
using namespace std;

const int N = 100100;
int a[N];
int b[N];

int main() {
int n, S;
cin >> n;
// read input and compute prefix sums
for (int i = 0; i < n; i++) {

cin >> a[i];
b[i+1] = b[i] + a[i];

}
cin >> S;

// answer could be up to 100,000 choose 2, approx 5e9
long long ret = 0;
map<int,int> freq;
// freq[x] = k means that k of the prefix sums found so far equal x



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Subarray Sum 42

// for each endpoint
for (int j = 0; j <= n; j++) {

/* each start point i
satisfying b[i] = b[j] - S
contributes 1 to the answer */

/* if b[j] - S isn't already a key in the map
it will be created with value 0, which is fine */

ret += freq[b[j]-S];

/* now add b[j] itself to the map
as future endpoints should consider index j as a start point */

freq[b[j]]++;
}

cout << ret << '\n';
}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Largest Interval 43

Problem statement You have M ≤ 1, 000, 000, 000
chairs, initially all empty. There are U ≤ 100, 000 updates,
in each a person comes in and takes an unoccupied chair
ci. After each update, what is the longest range of
unoccupied chairs?

Input First line, M then U. Next U lines, each contains
one integer, 1 ≤ ci ≤ M. Guaranteed no integer appears
more than once.

Output For each update, an integer, the longest range of
unoccupied chairs after the update.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Largest Interval 44

Sample Input:
12 3
5
7
10

Sample Output:
7
5
4



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Largest Interval 45

Observation 1: We only care about maximal ranges.
Assuming chair 0 and chair M + 1 are occupied, we only
care about ranges starting and ending with occupied
chairs.

So we will maintain for each chair, what is the length of
the range to its right.

How does an update change the intervals?

It breaks one apart and adds 2.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Largest Interval 46

What data do we need to store to handle updating
intervals (i.e: to determine what the 2 new intervals are
when we insert a chair)?

For each update, we need to find the closest chair in both
directions.

We need to maintain a sorted list of chairs associating with
each chair the length of the range starting at that chair.

Map!

Figuring out the new range lengths is basic maths, just be
careful with off-by-1s!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Largest Interval 47

Now we know how to track length of each range. Remains
to track the largest of the ranges.

Heap!

But wait, heaps can not do arbitrary deletions …(which we
need when we delete an interval)

Set!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Largest Interval 48

#include <iostream>
#include <map>
#include <set>
using namespace std;

int M, U;
map<int, int> chairToRange;
multiset<int> allRanges;

// insert a new chair at 'start' with range 'length'
void addRange(int start, int length) {

chairToRange[start] = length;
allRanges.insert(length);

}

// update an existing chair to range 'length'
void updateRange(int start, int length) {

int oldLength = chairToRange[start];
chairtoRange[start] = length;
// allRanges.erase(val) erases all entries of value val
// instead, get an iterator to one instance of the old length
// this deletes just one copy
allRanges.erase(allRanges.find(oldLength));
allRanges.insert(length);

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Largest Interval 49

int main() {
cin >> M;
// insert dummy occupied chairs at each end, to avoid special cases
addRange(0, M);
addRange(M+1, 0);

cin >> U;
for (int i = 0; i < U; i++) {

int q;
cin >> q;
// find first map entry whose key compares >= q
// *it is a pair of (first chair right of q, range length)
auto it = chairToRange.lower_bound(q);
// length of empty range right of new chair
int qLength = it->first - q - 1;
// now access chair left of q
--it;
// existing range from this chair must be shortened
int updatedLength = q - it->first - 1;

addRange(q, qLength);
updateRange(it->first, updatedLength);

// s.rbegin() returns an iterator to the last (i.e. biggest) entry
cout << *allRanges.rbegin() << '\n';

}
return 0;

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 50

Many of our data structures work best if data is sorted.

E.g: we can then chuck them into a set and use
lower_bound

Or we can chuck them into a vector and binary search.

Sometimes we have to work a bit to get this!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 51

Problem statement Given a histogram with n unit-width
columns, the i-th with height hi. What is the largest area
of a rectangle that fits under the histogram.

Input The integer 1 ≤ n ≤ 100, 000 and n numbers,
0 ≤ hi ≤ 1, 000, 000, 000.

Output The largest area of a rectangle that you can fit
under the histogram.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 52

Sample Input:
6
1 4 3 5 6 2
Sample Output: 12



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 53



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 54

Observation 1: We only care about “maximal”
rectangles.

More formally, they hit some column’s roof and can not be
extended to the left or right.

Many angles to approach this problem. Let us focus on
one specific column’s roof. We now want to find the
largest histogram that hits that column’s roof.

Claim: We just need to know the first column to its left
(and right) that has lower height than it.

But we need this for all choices of our “specific column”.
So we will try to do this in a linear sweep and maintain
some sort of data structure that can answer this.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 55

left[i] i right[i]

area[i] = h[i]× (left[i] + 1 + right[i])



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 56

Queries: what is the first column with height < h.

Updates: add a new column (pos, hpos) where pos is
greater than all previous positions.

Multimap? But what can we search on...?

If our key is height then we can find a column lower than
us. But it is not guaranteed to be the closest one.

If our key is position then we can’t do anything.

Heap? Again, same problem (our heap can’t do anything
a set can’t do).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 57

Key Observation: Out of all added columns, we only care
about columns that have no lower columns to their right!

So if we only keep these columns in our map, then the
first column in our map lower than us is also the closest
column lower than us.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 58

i 0 1 2 3 4 5
left[i] 0 0 1 0 0 4



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 59

Complexity? Dominated by map operations.

O(n) calls to lower_bound and insert.

Each column can only be removed from the map once, so
O(n) calls to erase also.

Total time to sweep left to right is O(n log n) (amortised
O(log n) per column).

Repeat this right to left, and add a bit of maths to solve
original problem regarding largest rectangle under
histogram.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 60

#include <iostream>
#include <map>
using namespace std;

const int N = 100100;
int h[N];

// left[i] is number of columns immediately left of i with height >= h[i]
// i.e. how far left can you stretch bar i without going outside the histogram
int left[N], right[N];

void sweepltor(); // computes all left[i] values in O(n log n)
void sweeprtol(); // computes all right[i] values in O(n log n)

int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++)

cin >> h[i];

sweepltor();
sweeprtol(); // left as an exercise

long long ans = 0;
for (int i = 0; i < n; i++) {

// area of rectangle formed by stretching bar i left and right
long long cur = 1LL * (left[i] + 1 + right[i]) * h[i];
ans = max(ans, cur);

}
cout << ans << '\n';

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 61

void sweepltor {
// height -> column index
map<int, int> importantColumns;

// dummy leftmost bar at index -1 with height -2
// must have lower height than all actual bars
importantColumns[-2] = -1;

for (int i = 0; i < n; i++) {
// find closest column to i's left with lower height
// lower_bound finds first >= h[i]
// so prev(lower_bound) finds last < h[i]
auto it = prev(importantColumns.lower_bound(h[i]));

// left[i] counts columns strictly between this column and i
left[i] = i - it->second - 1;

/* some columns might no longer be important
as a result of column i being both later and shorter */

while (importantColumns.rbegin()->first >= h[i])
// m.erase(it) requires forward iterator
// instead erase by key
importantColumns.erase(importantColumns.rbegin()->first);

// column i is important (at least for now)
importantColumns[h[i]] = i;

}
}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Area Under Histogram 62

Each sweep could be sped up to O(n) by using a stack
instead of a map.

Inserting (pushing) and deleting (popping) go from
O(log n) to O(1).

Popping the stack before calculating left[i] makes the
binary search unnecessary.

Challenge: There is a beautiful algorithm that does it in
one stack sweep in O(n). Essentially the same idea except
process a rectangle not at the column where it attains its
maximum but at the right end.

Another famous problem using a similar idea is Longest
Increasing Subsequence.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 63

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Rooted Trees 64

A tree is a connected, undirected graph with a unique
simple path between any two vertices.

A rooted tree is one with a designated root.

All other vertices have a parent par[v], which is the next
node in the unique path from v to the root.

An easy way to represent a rooted tree is to just store this
parent array.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Rooted Trees 65

0

2

9

4

3 7 8

6

1 5

v 0 1 2 3 4 5 6 7 8 9
par[v] 0 6 0 4 0 6 0 4 4 2



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find 66

Also called a system of disjoint sets; used to represent disjoint
sets of items.

Given some set of elements, support the following operations:

union(x, y): union the disjoint sets that contain x and y

find(x): return a canonical representative for the set that x
is in

More specifically, we must have find(x) = find(y) whenever
x and y are in the same set.

It is okay for this answer to change as new elements are
joined to a set. It just has to remain consistent across all
elements in each disjoint set at a given moment in time.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find: Basic Implementation 67

Strategy: Represent each disjoint set as a rooted tree.
The representative of each rooted tree is the chosen root.
For this, we just need to store the parent of each element.

For find(x), walk up parent edges from x until a root (a
vertex who is their own parent) is found

For union(x, y), add an edge between the trees containing
x and y

When the two trees are joined, what’s the new root?

Don’t add the edge between x and y directly

Instead add the edge between find(x) and find(y), and
designate find(x) as the new parent of find(y)



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find: Basic Implementation 68

Both operations require us to walk O(h) edges, where h is
the height of the tree
In the worst case, both operations take O(n)

int parent[N];

void init(int n) {
for (int i = 0; i < n; i++)

parent[i] = i;
}

int root(int x) {
// only roots are their own parents
return parent[x] == x ? x : root(parent[x]);

}

void join(int x, int y) {
// join roots
x = root(x); y = root(y);
// test whether already connected
if (x == y)

return;
parent[y] = x;

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find: Size Heuristic 69

In the basic implementation, we made find(x) the new
parent of find(y), but the inverse would also be valid.
Which one is better?

We should hang the smaller subtree from the root of the
larger subtree

The maximum height of the tree is now O(log n)

When we traverse the edges from any particular element to
its parent, we know that the subtree rooted at our current
element must at least double in size, and we can double in
size at most O(log n) times

Therefore find and union now take only O(log n) time



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find: Size Heuristic 70

int parent[N];
int subtree_size[N];

void init(int n) {
for (int i = 0; i < n; i++) {

parent[i] = i;
subtree_size[i] = 1;

}
}

int root(int x) {
// only roots are their own parents
return parent[x] == x ? x : root(parent[x]);

}

void join(int x, int y) {
// join roots
x = root(x); y = root(y);
// test whether already connected
if (x == y)

return;
// size heuristic
// hang smaller subtree under root of larger subtree
if (subtree_size[x] < subtree_size[y]) {

parent[x] = y;
subtree_size[y] += subtree_size[x];

} else {
parent[y] = x;
subtree_size[x] += subtree_size[y];

}
}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find: Path Compression 71

When performing a find operation on some element x,
instead of just returning the representative, we change the
parent edge of x to whatever the representative was,
flattening that part of the tree

This optimisation alone gives an amortised O(log n) per
operation complexity. Proof is nontrivial, omitted.

int root(int x) {
// only roots are their own parents
// otherwise apply path compression
return parent[x] == x ? x : parent[x] = root(parent[x]);

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find: Path Compression 72

Combined with the size heuristic, we get a time complexity
of amortised O(α(n)) per operation, but the proof is very
complicated.

α(n) is the inverse Ackermann function, a very slow
growing function which is less than 5 for n < 222216

.

As mentioned, the above two optimisations together bring
the time complexity down to amortised O(α(n)).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find: Path Compression 73

Warning: due to a low-level detail, the path compression
optimisation actually significantly slows down the find
function, because we lose the tail recursion optimisation,
now having to return to each element to update it.

This may overshadow the improvement from O(log n) to
O(α(n)), depending on bounds of the problem.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Dynamic Connectivity 74

The main application of union find.

Given a graph with n ≤ 100, 000 vertices and no edges, support
m ≤ 100, 000 operations of two forms.

update

denoted U a b

add an undirected edge between a and b

query

denote Q a b

output 1 if a and b are connected, 0 otherwise.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Dynamic Connectivity 75

#include <iostream>
using namespace std;

// insert your union find implementation here
int root (int x);
void join (int x, int y);

int main() {
int n, m;
cin >> n >> m;
for (int q = 0; q < m; q++) {

char queryType;
int a, b;
cin >> queryType >> a >> b;
if (queryType == 'U')

join(a,b);
else

cout << (root(a) == root(b)) << '\n';
}
return 0;

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Union-Find 76

When is it useful? When you need to maintain which
items are in the same set.

Main limitation: You can not delete connections, only
add them. However, in a lot of natural contexts, this is
not a restriction since items in the same set can be treated
as the same item.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Table of Contents 77

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Data Structures 78

Last main topic is data structures that support operations
on a range

Why do we care about this?

Pragmatic answer: impossible to just support arbitrary
queries and updates, but there is a lot of interesting stuff
we can do with ranges.

But also, naturally applies to many problems, e.g: ranges
of numbers, a range in an array, linear sweeps often result
in caring about ranges …



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Sum Queries 79

Problem: Given n integers a0, a1, . . . , an−1, answer q
queries of the form

r−1∑
i=l

ai

for given pairs l, r.

n, q ≤ 100, 000

Attempt 1 Store the ai in an array and answer queries
naïvely.

Complexity Each query could take O(n), so the
complexity is O(nq), which is too slow.

Instead, we need to do some kind of precomputation.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Prefix Sums 80

Algorithm Construct an array of prefix sums, using
(rudimentary) dynamic programming.

Base case: b0 = a0.

Recurrence: bi = bi−1 + ai.

This takes O(n) time.

Now, we can answer every query in O(1) time, so the total
complexity is O(n + q).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Prefix Sums: Extension 81

This works on any “reversible” operation. That is, any
operation A ⋆ B where if we know A ⋆ B and A, we can
find B.

This includes addition and multiplication, but not max or
gcd.

There is also a 2D analogue: see the tutorial problem
Quality of Living.

https://dmoj.ca/problem/ioi10p3


Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Max Queries 82

Problem Given n integers a0, a1, . . . , an−1, answer q
queries of the form

max a[l, r)

for given pairs l, r.

n, q ≤ 100, 000.

Again, the naïve approach answers each query in O(n), so
we need to do some kind of precomputation instead.

Prefix max is unhelpful: knowing max a[0, l) and
max a[0, r) says almost nothing about max a[l, r).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sparse Tables 83

Max is not “reversible” but it does have a different
property: idempotence. This just means max(x, x) = x, i.e:
I can apply max as many times as I want to the same
element, it does not do anything.

It’s therefore sufficient to cover a range [l, r) with two
intervals [l, s) and [t, r) that may overlap.

If l ≤ s ≤ t ≤ r then

max a[l, r) = max(max a[l, t),max a[s, r))

So we want to precompute the max of a bunch of
intervals, such that any subarray a[l, r) can be written as
the union of two of these intervals.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sparse Tables 84

Key Idea: Precompute the max of all intervals whose
lengths are powers of 2.

This can be done quickly since an interval of length 2k is
the union of two intervals of length 2k−1.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sparse Tables: Precomputation Implementation 85

const int N = 100000;
const int LOGN = 18;

int a[N];
// sparseTable[l][i] = max a[i..i+2^l)
int sparseTable[LOGN][N];

void precomp(int n) {
// level 0 is the array itself
for (int i = 0; i < n; i++)

sparseTable[0][i] = a[i];

for (int l = 1; l < LOGN; l++) { // inner loop does nothing if 2^l > n
int w = 1 << (l-1); // 2^(l-1)

// a[i,i+2w) is made up of a[i,i+w) and a[i+w,i+2w)
for (int i = 0; i + 2*w <= n; i++)

sparseTable[l][i] = max(sparseTable[l-1][i],sparseTable[l-1][i+w]);
}

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sparse Tables 86

Suppose we now want max a[l, r).

Let p = 2k be the largest power of 2 that is ≤ r − l.

Key Observation: since p ≤ r − l < 2p, we have

l ≤ r − p < l + p ≤ r,

i.e. [l, l + p) and [r − p, r) cover [l, r) (with overlap).

Hence:

max a[l, r) = max(max a[l, l + p),max a[r − p, r))

But both intervals on the RHS have length a power of 2,
so we have precomputed them!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sparse Tables: Query Implementation 87

#include <algorithm>
#include <iostream>
using namespace std;

const int N = 100000, LOGN = 18;

int a[N], sparseTable[LOGN][N];
int log2s[N];

void precomp(int n);

int main() {
// Input the initial array
int n; cin >> n;
for (int i = 0; i < n; i++)

cin >> a[i];
precomp(n);

// log2s[i] = floor(log_2(i))
for (int i = 2; i <= n; i++)

log2s[i] = log2s[i/2] + 1;

int q; cin >> q;
for (int j = 0; j < q; j++) {

int l, r; cin >> l >> r;
// Problem: Find max of a[l,r)
int lvl = log2s[r-l];
cout << max(sparseTable[lvl][l], sparseTable[lvl][r-(1<<lvl)]) << '\n';

}
}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Sparse Tables 88

Complexity? O(n log n) precomp, O(1) per query.

Warning: You need your operation to be idempotent.
This will double count for sum, multiply, count, etc …

Works for max,min, gcd, lcm.

Practically, don’t see it too often. But a nice idea, and the
data structure for Lowest Common Ancestor is similar.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Sum with Updates 89

Prefix sums and sparse tables do not support updates.

Problem Given n integers a0, a1, . . . , an−1, answer q
queries of the form

r−1∑
i=l

ai

for given pairs l, r.

But there are now also u updates of the form “set ai = k”.

n ≤ 100, 000, q + u ≤ 100, 000.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Problem: Updates 90

Recomputing the prefix sums will take O(n) time per
update, so our previous solution is now O(n2) for this
problem, which is too slow.

We don’t need to answer queries in constant time; it just
needs to be much faster than linear.

Let’s try to find a compromise that slows down our queries
but speeds up updates in order to improve the overall
complexity.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree Motivation 91

The problem with prefix sums (and sparse tables) is there
are too many ranges containing any given value, so
updating all of them is O(n) per update.

The problem with just storing the array is that any
subarray might need to be comprised from many ranges,
so querying is O(n).

We need to decompose [0, n) into ranges such that:

each item belongs to much fewer than n ranges, and also

any subarray can be decomposed into much fewer than n
ranges.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Let’s make a tree 92

We will make a tree. Each node in the tree is responsible
for a range.

[0,8)

[4,8)

[6,8)

[7,8)[6,7)

[4,6)

[5,6)[4,5)

[0,4)

[2,4)

[3,4)[2,3)

[0,2)

[1,2)[0,1)
The array itself goes into the leaves.
The internal nodes store information on the range,
depending on the problem at hand.
For our earlier problem, we would want each node to store
the sum over its range of responsibility.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Let’s make a tree 93

Consider the array

[35, 13, 19, 15, 31, 12, 33, 23]

We would get the tree

183

101

58

2533

43

1231

82

34

1519

48

1335
Note that the leaves store the array, and every other node
is just the sum of its two children.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 94

Let’s query the sum of [2, 8) (inclusive-exclusive).

189

101

58

2533

43

1231

88

40

1525

48

1335
Recall each node in the tree has a “range of responsibility”.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 95

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8)

101 [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
Our goal is the same as in the sparse table: find a set of
ranges whose disjoint union is [2, 8). Then taking the sum
of those nodes gives us the answer.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 96

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

101 [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
We start at the top of the tree, and ‘push’ the query range
down into the applicable nodes.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 97

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

101 [4, 8) [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4) [2, 4)

40 [2, 4)

1525

48 [0, 2)

1335
This is a recursive call, so we do one branch at a time.
Let’s start with the left branch.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 98

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

101 [4, 8) [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4) [2, 4)

40 [2, 4) [2, 4)

1525

48 [0, 2)

1335
There is no need to continue further into the left subtree,
because it doesn’t intersect the query range.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 99

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

101 [4, 8) [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4) [2, 4)

40 [2, 4) 40

1525

48 [0, 2)

1335
There is also no need to continue further down, because
this range is equal to our query range.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 100

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

101 [4, 8) [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4) 40

40 [2, 4)

1525

48 [0, 2)

1335
We return the result we have obtained up to the chain,
and let the query continue.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 101

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + ?

101 [4, 8) [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
We return the result we have obtained up to the chain,
and let the query continue.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 102

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + ?

101 [4, 8) [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
Now, it is time to recurse into the other branch of this
query.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 103

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + ?

101 [4, 8) 101

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
Here, the query range is equal to the node’s range of
responsibility, so we’re done.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 104

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + 101

101 [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
Here, the query range is equal to the node’s range of
responsibility, so we’re done.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 105

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 141

101 [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
Now that we’ve obtained both results, we can add them
together and return the answer.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 106

We didn’t visit many nodes during our query.

189 [0, 8) [2, 8)

101 [4, 8)

58 [6, 8)

2533

43 [4, 6)

1231

88 [0, 4)

40 [2, 4)

1525

48 [0, 2)

1335
In fact, because only the left and right edges of the query
can ever get as far as the leaves, and ranges in the middle
stop much higher, we only visit O(log n) nodes during a
query.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Queries 107

One way to see this is consider cases based on if the query
range shares an endpoint with the current node’s range of
responsibility.

Another way is to consider starting with the full range
from the bottom and going up.

Probably easiest if you play around a bit and convince
yourself of this fact.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Updates 108

Let’s update the element at index 2 to 25.

183

101

58

2533

43

1231

82

34

1519

48

1335



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Updates 109

Let’s update the element at index 2 to 25.

183

101

58

2533

43

1231

82

34

1525

48

1335



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Updates 110

Let’s update the element at index 2 to 25.

183

101

58

2533

43

1231

82

40

1525

48

1335



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Updates 111

Let’s update the element at index 2 to 25.

183

101

58

2533

43

1231

88

40

1525

48

1335



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Updates 112

Let’s update the element at index 2 to 25.

189

101

58

2533

43

1231

88

40

1525

48

1335



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Updates 113

Let’s update the element at index 2 to 25.

189

101

58

2533

43

1231

88

40

1525

48

1335
We always construct the tree so that it’s balanced, i.e. its
height is approximately log n.

Thus, updates take O(log n) time.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree 114

Thus we have O(log n) time for both updates and queries.

This data structure is commonly known as a range tree,
segment tree, interval tree, tournament tree, etc.

The number of nodes we add halves on each level, so the
total number of nodes is still O(n).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree 115

For ease of understanding, the illustrations used a full
binary tree, which always has a number of nodes one less
than a power-of-two.

This data structure works fine as a complete binary tree as
well (all layers except the last are filled).

This case is harder to imagine conceptually but the
implementation works fine.

For each internal node just split the range of responsibility
at its midpoint.

All this means is that padding out the data to the nearest
power of two is not necessary.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree 116

Since these binary trees are complete, they can be
implemented using the same array-based tree
representation as with an array heap

Place the root at index 0. Then for each node i, its
children (if they exist) are 2i + 1 and 2i + 2.
Alternatively, place the root at index 1, then for each node
i the children are 2i and 2i + 1.

This works with any binary associative operator, e.g.
sum
min or max

gcd or lcm
merge (from merge sort)

For a non-constant-time operation like this one, multiply
the complexity of all range tree operations by the
complexity of the merging operation.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree: Query Implementation 117

const int N = 100100;
// the number of additional nodes created can be as high as the next power of

two up from N (2^17 = 131,072)
int tree[1<<18];

int n; // actual length of underlying array

// query the sum over [qL, qR) (0-based)
// i is the index in the tree, rooted at 1 so children are 2i and 2i+1
// instead of explicitly storing each node's range of responsibility [cL,cR), we

calculate it on the way down
// the root node is responsible for [0, n)
int query(int qL, int qR, int i = 1, int cL = 0, int cR = n) {

// the query range exactly matches this node's range of responsibility
if (cL == qL && cR == qR)

return tree[i];
// we might need to query one or both of the children
int mid = (cL + cR) / 2;
int ans = 0;
// query the part within the left child [cL, mid), if any
if (qL < mid) ans += query(qL, min(qR, mid), i * 2, cL, mid);
// query the part within the right child [mid, cR), if any
if (qR > mid) ans += query(max(qL, mid), qR, i * 2 + 1, mid, cR);
return ans;

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree: Update Implementation 118

// p is the index in the array (0-based)
// v is the value that the p-th element will be updated to
// i is the index in the tree, rooted at 1 so children are 2i and 2i+1
// instead of explicitly storing each node's range of responsibility [cL,cR), we

calculate it on the way down
// the root node is responsible for [0, n)
void update(int p, int v, int i = 1, int cL = 0, int cR = n) {

if (cR - cL == 1) {
// this node is a leaf, so apply the update
tree[i] = v;
return;

}
// figure out which child is responsible for the index (p) being updated
int mid = (cL + cR) / 2;
if (p < mid)

update(p, v, i * 2, cL, mid);
else

update(p, v, i * 2 + 1, mid, cR);
// once we have updated the correct child, recalculate our stored value.
tree[i] = tree[i*2] + tree[i*2+1];

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree: Debug Implementation 119

// print the entire tree to stderr
// instead of explicitly storing each node's range of responsibility [cL,cR), we

calculate it on the way down
// the root node is responsible for [0, n)
void debug(int i = 1, int cL = 0, int cR = n) {

// print current node's range of responsibility and value
cerr << "tree[" << cL << "," << cR << ") = " << tree[i];

if (cR - cL > 1) { // not a leaf
// recurse within each child
int mid = (cL + cR) / 2;
debug(i * 2, cL, mid);
debug(i * 2 + 1, mid, cR);

}
}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree: Initialisation 120

It is possible to construct a range tree in O(n) time, but
anything you use it for will take O(n log n) time anyway.

Instead of writing extra code to construct the tree, just
call update() repeatedly for O(n log n) construction.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Range Tree: Extension 121

We can extend range trees to allow range updates in
O(log n) using lazy propagation
The basic idea is similar to range queries: push the update
down recursively into the nodes whose range of
responsibility intersects the update range.
However, to keep our O(log n) time complexity, we can’t
actually update every value in the range.
Just like we returned early from queries when the query
range matched a node’s entire range, we cache the update
at that node and return without actually applying it.
When a query or a subsequent update is performed which
visits this node you might need to push the cached update
one level further down.
Will talk more about this in later lectures (Data Structures
II).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 122

Problem statement Given an array of integers, find the
maximum length of a (strictly) increasing (not necessarily
contiguous) subsequence.

Input An integer n, the size of the array, followed by n
integers, ai. 1 ≤ n, ai ≤ 100, 000.

Output A single integer, the length of the longest
increasing subsequence.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 123

Example Input
5
4 0 3 2 8

Example Output 3

Explanation: Both 0, 3, 8 and 0, 2, 8 are longest
increasing subsequences.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 124

We will compute this iteratively using dynamic
programming.

For each index, let best[i] be the length of the longest
increasing subsequence ending at index i.

How do we compute best[i]? Either it’s 1 or it extends an
existing subsequence; in particular, the longest
subsequence ending at some earlier index j containing a
smaller array entry.

Recurrence:

best[i] = 1 +max{best[j] | j < i, a[j] < a[i]}.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 125

Recurrence:

best[i] = 1 +max{best[j] | j < i, a[j] < a[i]}.

Direct implementation runs in O(n) per index, i.e. O(n2)
total; too slow.

The restriction j < i is handled by the sweep order; only
consider best[j] values seen so far.

But we can’t just keep the largest of the best[j] values
seen so far, because we have to filter only those where
a[j] < a[i].



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 126

So we want to query, over all j where a[j] < a[i], what is
the max value of best[j].

This looks like a range query. But over a range of what?

Solution: Range tree indexed by the values a[j]!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 127

Let bestWithEnd[h] be the length of the longest
subsequence ending at value h.

Define bestWithEnd[0] = 0 to avoid special cases.

As we sweep, we maintain a range tree over this array.
When we get to a new index i,

we record that the longest subsequence ending at index i
has length

best[i] = 1 +max bestWithEnd[0, a[i]),

and we update bestWithEnd[a[i]] with this best[i] value.

The final answer is the length of the longest subsequence
to finish at any index, or equivalently at any value, so it
too can be found by a range query.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 128

#include <algorithm>
#include <iostream>
using namespace std;

const int N = 100100;
int tree[1<<18];

// range max tree over array values (not indices)
// note: root covers [0,N) not [0,n)
int query(int qL, int qR, int i = 1, int cL = 0, int cR = N);
void update(int p, int v, int i = 1, int cL = 0, int cR = N);

int main() {
int n;
cin >> n;

for (int i = 0; i < n; i++) {
int x;
cin >> x;
int best = 1 + query(0, x);
update(x, best);

}

cout << query(0, N) << '\n';
}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 129

Complexity? O(n) range tree queries and updates, each
O(log n). Total: O(n log n) ≈ 100, 000 · 17.

Moral: When trying to solve a problem, be on the lookout
for suboperations that might be sped up by data
structures. Often take the form of needing to support
simple queries.

Also it is useful to consider range trees over values, not
just indices.

The bound hi ≤ 100, 000 was not necessary; only the
relative order of the hi values mattered. So we could have
sorted them and replaced each with its rank in the
resulting array - “coordinate compression”.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: LIS 130

Alternatively, instead of doing it from left to right, one can
solve it in increasing order of values in the array. Then
your range tree is over indices not values, and your queries
become “what is the largest value in best[0, i)”.

There is also a really elegant solution with a left to right
sweep and a sorted stack. Let minEnd[i] store the
minimum end value for a subsequence of length i. This is
a sorted array (prove it) and we can update it in O(log n)
time with binary search.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Card Trick 131

Problem statement Magnus the Magnificent is a
magician. In his newest trick, he places n cards face down
on a table, and turns to face away from the table. He then
invites q members of the audience to do either of the
following moves:

1 announce two numbers i and j, and flip all cards between i
and j inclusive, or

2 ask him whether a particular card k is face up or face down.
Unfortunately, Magnus the Magnificent is unable to do
this trick himself, so write a program to help him!
Input The numbers n and q, each up to 100,000, followed
by q lines either of the form F i j (1 ≤ i ≤ j ≤ n), a flip,
or Q k (1 ≤ k ≤ n), a query.
Output For each query, print “Face up” or “Face down”.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Card Trick 132

Observe that we can just keep track of how many times
each card was flipped; the parity of this number
determines whether it is face up or face down.

The operations appear to be range updates and point
queries.

We know how to do point updates and range queries; can
we make these operations fit our existing framework?



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Card Trick 133

Idea Don’t store the number of times card k has been
flipped directly. Instead store enough information so that
you can quickly calculate the number of flips containing
card k.

Handle a flip [i, j] by adding 1 at the left endpoint and
subtracting 1 immediately after the right endpoint.

Now, the sum over the first k cards is the number of times
that card k has been flipped!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Card Trick 134

Algorithm Construct a range tree.

For the move F i j, increment ai−1 and decrement aj.

For the move Q k, calculate a0 + a1 + . . .+ ak−1 modulo 2.

Note the conversion to 0-based indexing.

Complexity Each of these operations takes O(log n) time,
so the time complexity is O(q log n).



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Range Queries
and Updates

Example problem: Card Trick 135

#include <iostream>
using namespace std;

const int N = 100100;
int tree[1<<18];

int n;

// range sum tree
int query(int qL, int qR, int i = 1, int cL = 0, int cR = n);
void update(int p, int v, int i = 1, int cL = 0, int cR = n);

int main() {
int q;
for (int i = 0; i < q; i++) {

char type;
cin >> type;
if (type == 'F') {

int i, j;
cin >> i >> j;
update(i-1, 1);
update(j, -1);

}
else if (type == 'Q') {

int k;
cin >> k;
cout << ((query(0, k) % 2) ? "Face up\n" : "Face down\n");

}
}

}


	Vectors
	Stacks and Queues
	Sets and Maps
	Heaps
	Basic Examples
	Example Problems
	Union-Find
	Range Queries and Updates

