
Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Problem-Solving Paradigms
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Term 3, 2023

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 2

1 Greedy Algorithms

2 Linear Sweep

3 Binary Search

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Greedy Algorithms 3

One approach to reduce the number of states explored by
an algorithm is to simply make the best available choice at
each stage, and never consider the alternatives

This is known as a greedy strategy

General Principle: Don’t bother with states that will
never contribute to the optimal solution!

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Greedy Algorithms 4

It is imperative that you prove (to yourself) that this
process achieves the optimal solution, that is, it is not
possible to beat the greedy strategy using a suboptimal
choice at any stage.

Look for a natural ordering of states

For some problems, the greedy algorithm is not optimal,
and we instead look to techniques such as dynamic
programming

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 5

Problem statement You are playing a 2-player game with
2 ≤ n ≤ 1000 rounds. You and your opponent have n
different cards numbered from 1 to n. In round i, each
player picks an unplayed card from their hand. The player
with the higher card wins i points (no points are given for
draws).

Through “psychology” you know exactly what cards your
opponent will play in each round. What is your maximum
possible margin of victory?

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 6

Input An integer n and a permutation of 1 to n, the i-th
term of which is the card your opponent plays in the i-th
round.

Output A non-negative integer, your maximum margin of
victory assuming optimal play.

Source Orac

http://orac.amt.edu.au/cgi-bin/train/problem.pl?set=aio06int&problemid=252

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 7

Example Input
3
3 1 2

Example Output 4

Explanation: Play 1 2 3. You lose the first round (−1)
but win the second and third (+2, +3).

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 8

Brute force? There are n! possible play orders.

But maybe we can eliminate many of these play orders as
suboptimal.

For this, it helps to imagine what a possible play order
could look like.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 9

Consider the round where the opponent plays card n.

In such a round, we can either draw (play card n too) or
lose.

If we lose, which card should we play?

May as well play our worst card, 1.

But now we can win every other round!

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 10

Okay, how about the play patterns where we play card n
and draw?
Then it’s like we’re repeating the problem with n − 1 in
place of n.
Unrolling this recursion, we now see, we can assume our
play pattern is:

Pick a number i.
Draw all rounds with opponent card > i.
Lose the round with card i.
Win all rounds with cards < i.

Only n play patterns! Can simulate each in O(n).
Complexity is O(n2); approx 1, 000, 000 operations.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 11

Implementation
#include <bits/stdc++.h>
using namespace std;

const int N = 1010;
int opp[N];

int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) cin >> opp[i];
int ans = 0;
for (int i = 1; i <= n; i++) {

// draw against > i, lose to i, win against < i
int cur = 0;
for (int j = 1; j <= n; j++) {

// if (opp[j] > i) cur += 0;
if (opp[j] == i) cur -= j;
if (opp[j] < i) cur += j;

}
ans = max(ans, cur);

}
cout << ans << '\n';

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 12

Moral: One way to eliminate states is figure out
conditions “good” states must satisfy. For this, it helps to
consider a problem from different angles.

Other angles would have worked too, e.g.

consider which round the opponent plays card 1

consider which round you play card n

etc.

While we might intuitively prioritise the last few rounds, it
turns out this is a red herring of sorts.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 13

1 Greedy Algorithms

2 Linear Sweep

3 Binary Search

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Linear Sweeps 14

Very basic but fundamental idea. Instead of trying to do a
problem all at once, try to do it in some order that lets
you build up state.
This lets you process events one by one. This can be
easier than trying to handle them all at once.
General Principle: Having an order is better than not
having an order!
Trying to sort and pick the right order to do a problem in
is fundamental.
If there isn’t a natural order to a problem, you may as well
try to do it in any sorted order.
Even if there is a natural order, sometimes it isn’t the
right one!

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 15

Problem statement You have a list of n closed intervals,
each with an integer start point and end point. For
reasons only known to you, you want to stab each of the
intervals with a knife. To save time, you consider an
interval stabbed if you stab any position that is contained
with the interval. What is the minimum number of stabs
necessary to stab all the intervals?

Input The list of intervals. 0 ≤ n ≤ 1, 000, 000 and each
start point and end point have absolute values less than
2, 000, 000, 000.

Output A single integer, the minimum number of stabs
needed to stab all intervals.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 16

Example

The answer here is 3.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 17

How do we decide where to stab? State space is again
laughably big.

Again let’s ask ourselves if we can eliminate many of the
stab possibilities.

Focus on a single stab for now.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 18

Observation 1: We can move it so it is an end point of
an interval without decreasing the set of intervals we stab.

Proof: Consider any solution where there is a stab not at
the end point of an interval. Then we can create an
equivalent solution by moving that stab rightwards until it
hits an end point.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 19

Now let’s try drawing sample data. Can we choose one of
the stabbing points immediately?

Observation 2: The first interval to end has to be
stabbed somewhere. From Observation 1, we may as well
stab at its end point.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 20

Algorithm 1 Stab everything that overlaps with the first
end point. Then, remove those intervals from the intervals
to be considered, and recurse on the rest of the intervals.

Complexity There are a few different ways to implement
this idea, since the algorithm’s specifics are not completely
defined. But there is a simple way to implement this
algorithm as written in O(n2) time.

Can we do better?

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 21

If we look closely at the recursive process, there is an
implicit order in which we will process the intervals:
ascending by end point

If we sort the intervals by their end points and can also
efficiently keep track of which intervals have been already
stabbed, we can obtain a fast algorithm to solve this
problem.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 22

Given all the intervals sorted by their end points, what do
we need to keep track of? The last stab point
Is this enough? How can we be sure we haven’t missed
anything?
Since we always stab the next unstabbed end point, we
can guarantee that there are no unstabbed intervals that
are entirely before our last stab point.
For each interval we encounter (in ascending order of end
point), that interval can start before/at or after our last
stab point.

If it starts before or at our last stab point, then it is
already stabbed, so we ignore it and continue.
If it starts after our last stab point, then it hasn’t been
stabbed yet, so we should stab it and update the last stab
point.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 23

Algorithm 2 Sort the intervals by their end points. Then,
considering these intervals in increasing order, we stab
again if we encounter a new interval that doesn’t overlap
with our right most stab point.

Complexity For each interval, there is a constant amount
of work, so the main part of the algorithm runs in O(n)
time, O(n log n) after sorting.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 24

Implementation
#include <iostream >
#include <utility >
#include <algorithm >
using namespace std;

const int N = 1001001;
pair<int, int> victims[N];

int main() {
// scan in intervals as (end, start) so as to sort by endpoint
int n;
cin >> n;
for (int i = 0; i < n; i++) cin >> victims[i].second >> victims[i].first;
sort(victims , victims + n);

int last = -2000000001, res = 0;
for (int i = 0; i < n; i++) {

// if this interval has been stabbed already , do nothing
if (victims[i].second <= last) continue;
// otherwise stab at the endpoint of this interval
res++;
last = victims[i].first;

}

cout << res << '\n';
}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 25

Moral: Sorting into a sensible order is often helpful. As is
drawing pictures.

I often find it helpful to play with a problem on paper and
see how I would solve it manually for small cases.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 26

Problem statement

There are n ≤ 2000 countries, the i-th has ai ≤ 20
delegates.

There are m ≤ 2000 restaurants, the i-th can hold
bi ≤ 100 delegates.

For “synergy” reasons, no restaurant can hold 2 delegates
from the same country.

What’s the minimum number of delegates that need to
starve?

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 27

Input An integer n, and n integers ai. An integer m, and
m integers bi.

Output A single integer, the minimum number of
delegates that need to starve.

Source Orac

http://orac.amt.edu.au/cgi-bin/train/problem.pl?set=aio07sen&problemid=340

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 28

Example Input
3
4 3 3
3
5 2 3

Example Output 2

Explanation: Someone from the first country starves.
Furthermore, the second restaurant has too few seats.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 29

Yet again, trying all assignments is laughably slow. So
again, let us try to think about what conditions a good
assignment may have?

Makes sense to consider all delegates of a country at once
so we don’t have to keep track of who has been assigned
where.

Consider the countries in any arbitrary order. Suppose
“Australia” is the first country we are considering.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 30

Observation 1: We should assign as many Australian
delegates as possible.

Proof: In any solution that does not, there is some
restaurant with no Australian delegates and there is a
starving Australian delegate.

We can then kick out any delegate for an Australian
delegate without making the solution any worse.

But where should we assign the Australian delegates?

Our main objective is to make it easier to seat the other
country’s delegates.

From some extreme examples, the bottleneck seems to be
the restaurants with few seats.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 31

Observation 2: We should assign delegates to the
restaurants with the most seats remaining.
Proof: Again, consider a solution that does not.
Then we skip restaurant i for a restaurant j where bi > bj.
But this means we can swap some delegate from
restaurant i with the Australian delegate in j while
preserving uniqueness.

By repeating these swaps, we obtain a solution just as
good but also obeying Observation 2.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 32

Hence we may consider just solutions where Australia’s
delegates are assigned to the restaurants with the most
seats remaining.

Now repeat all other countries in the same manner.

One easy way to implement: Sweep through the countries
one by one. For each country, sort the restaurants in
decreasing capacity order and assign to them in that order.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 33

Implementation
#include <bits/stdc++.h>
using namespace std;

const int N = 2020, M = 2020;
int numDelegates[N], numSeats[M];

int main() {
int n, m;
cin >> n;
for (int i = 0; i < n; i++) cin >> numDelegates[i];
cin >> m;
for (int j = 0; j < m; j++) cin >> numSeats[j];

int starved = 0;
for (int i = 0; i < n; i++) {

int delegatesRemaining = numDelegates[i];
sort(numSeats , numSeats+m, greater <int >());
for (int j = 0; j < m; j++) {

if (numSeats[j] > 0 && delegatesRemaining > 0) {
numSeats[j]--;
delegatesRemaining --;

}
}
starved += delegatesRemaining;

}
cout << starved << '\n';

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 34

Complexity? O(n) countries. For each we sort a list of
length m and linear sweep through it.

O(nm logm) ≈ 4mil · 11, fast enough.

Moral: One way to make observations is to think
abstractly about what should hold. Often this is guided by
examples.

Once you have some guess, you can try to prove it after.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Coordinate Compression 35

Most of the examples in class have coordinates only up to
100,000 or so. But for most examples this is just a
niceness condition.

For most algorithms, the actual values of coordinates is
irrelevant, just the relative order.

So if coordinates are up to 1 billion but there are
n ≤ 100, 000 points then usually there are only O(n)
interesting coordinates.

Example: range queries on a set of points. We don’t care
exactly what the coordinates of the points or query is, just
which points are within the query’s range.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Coordinate Compression 36

Coordinate compression is the idea of replacing each
coordinate by its rank among all coordinates. Hence we
preserve the relative order of values while making the
maximum coordinate O(n).

This reduces us to the case with bounded coordinates.

A few ways to implement this in O(n log n). E.g: sort,
map, order statistics tree.

Use pair or tuple to associate compressed and
uncompressed coordinates.

Careful with equality: you might need stable_sort().

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Coordinate Compression 37

Implementation (sort)
#include <bits/stdc++.h>
using namespace std;

const int N = 100100;
int values[N]; // assume filled
int cmprsd[N]; // filled by compress()
pair<int,int> helper[N]; // initially blank
int n;

void compress(void) {
for (int i = 0; i < n; i++) { // (uncompressed coordinate , original index)

helper[i].first = values[i];
helper[i].second = i;

}
stable_sort(helper ,helper+n); // sort by uncompressed coordinate
for (int i = 0; i < n; i++) {

// overwrite uncompressed coordinates with compressed
helper[i].first = i;
// unsort using original index for reverse lookup
cmprsd[helper[i].second] = i;
// warning: unequal compressed coordinates assigned to equal

uncompressed coordinates
// this may or may not be desirable

}
}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Coordinate Compression 38

Implementation (map)
#include <bits/stdc++.h>
using namespace std;

// coordinates -> (compressed coordinates).
map<int, int> coordMap;

void compress(vector <int>& values) {
for (int v : values) {

coordMap[v] = 0;
}
int cId = 0;
for (auto it = coordMap.begin(); it != coordMap.end(); ++it) {

it->second = cId++;
}
for (int &v : values) {

v = coordMap[v];
}

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 39

1 Greedy Algorithms

2 Linear Sweep

3 Binary Search

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Binary Search 40

Surprisingly powerful technique!

You should have seen binary search in the context of
searching an array before.

For us, the power comes from binary searching on
non-obvious functions instead.

Key problem: Given a monotone function, find the
largest/smallest x such that f(x) is less than/greater
than/equal to/…y.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Binary Search Implementation 41

Hands up if you’ve ever messed up a binary search
implementation.

Binary search is notorious for having annoying off-by-ones
and possible infinite loops.

Many ways to implement so pick one you’re confident you
can code with no thought. I’ll present the one I use which
I find avoids all these annoying corner cases.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Binary Search Implementation 42

Implementation
#include <bits/stdc++.h>
using namespace std;

// Find the smallest X such that f(X) is true;
int binarysearch(function <bool(int)> f) {

int lo = 0;
int hi = 100000;
int bestSoFar = -1;
// Range [lo, hi];
while (lo <= hi) {

int mid = (lo + hi) / 2;
if (f(mid)) {

bestSoFar = mid;
hi = mid - 1;

} else {
lo = mid + 1;

}
}
return bestSoFar;

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Binary Search Implementation 43

The best way to implement a binary search is not to
implement it at all.

If you are binary searching a range of explicit values, e.g.
integers in a sorted array, use functions from
<algorithm> to avoid bugs from writing your own.

binary_search()

lower_bound()

upper_bound()

equal_range()

set, multiset, map and multimap have their own
versions: see the Tips page of the course website.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Binary Search Implementation 44

#include <algorithm >
#include <iostream >
using namespace std;

const int N = 100100;
int a[N];

int main () {
int n;
cin >> n;
assert(n <= N);
for (int i = 0; i < n; i++)

cin >> a[i];
assert(is_sorted(a, a+n));

int x;
cin >> x;
bool found = binary_search(a, a+n, x);
cout << (found ? "found " : "did not find ") << x;

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Binary Search Implementation 45

int y;
cin >> y;
int i = lower_bound(a, a+n, y) - a;
if (i < n)

cout << "a[" << i << "] = " << a[i] << " is the first entry to compare >= "
<< y;

else
cout << "all elements of a[] compare < " << y;

int z;
cin >> z;
int j = upper_bound(a,a+n,z) - a;
if (j < n)

cout << "a[" << j << "] = " << a[j] << " is the first entry to compare > "
<< z;

else
cout << "all elements of a[] compare <= " << z;

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Decision Problems and Optimisation Problems 46

Decision problems are of the form
Given the value x, can you …

Optimisation problems are of the form:
What is the smallest x for which you can …

An optimisation problem is typically much harder than the
corresponding decision problem, because there are many
more choices.

Can we reduce (some) optimisation problems to decision
problems?

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Discrete Binary Search 47

Let f(x) be the outcome of the decision problem for a given
x, so f is an integer valued function with range {0, 1}.
It is sometimes (but not always) the case in such problems
that increasing x does not make it any harder for the
condition to hold, i.e. if it is true for x then it is also true
for x + 1.
Thus f is all zeros up to the first 1, after which it is all
ones.
This is a monotonic function, so we can use binary search!
This technique of binary searching the answer, that is,
finding the smallest x such that f(x) = 1 using binary
search, is often called discrete binary search.
Overhead is just a factor of O(logA) where A is the range
of possible answers.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 48

Problem Statement: You have a bar of chocolate with n
squares. Each square has a tastiness ti.

You want to give a contiguous part of the bar to each of k
children. Each child will have happiness equal to the total
tastiness of the squares they get.

Maximise the happiness of the most unhappy child (i.e.
minimise their crying).

Input Format: First line, 2 integers, n, k with
1 ≤ k ≤ n ≤ 1, 000, 000. The next line will contain n
integers, ti, the tastiness of the ith piece. For all i,
1 ≤ i ≤ 100, 000.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 49

Sample Input:
5 2
9 7 3 7 4
Sample Output:
14
Explanation: Break the bar into the first two squares and
the last three squares.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 50

It is worth trying to approach the minimization problem
directly, just to appreciate the difficulty.

The problem is there’s no greedy choices you can make.
It’s impossible to determine where the first cut should end.
You can try a DP but the state space is large.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 51

We are asked to maximize the minimum sum of the k
pieces.

Let’s turn this into asking about a decision problem.

Define b(x) to be True iff we can split the bar into k
pieces, each with sum at least x.

Note: the at least is important. If we instead required the
sum of the smallest piece to be exactly x then the function
wouldn’t be monotonic.

Then the problem is asking for the largest x such that b(x)
is True.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 52

Rephrased Problem: Define b(x) to be True iff we can
split the bar into k pieces, each with sum at least x. What
is the largest x such that b(x) is True?

Key(and trivial) Observation: b(x) =⇒ b(x − 1), so
b(x) is non-increasing. Binary search!

We still need to be able to calculate b(x) quickly.

New Problem: Can I split the bar into k pieces, each
with sum at least x?

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 53

New Problem: Can I split the bar into k pieces, each
with sum at least x?

Note that we can rephrase this into a maximization
question. Given each piece has sum at least x, what is the
maximum number of pieces I can split the bar into?

Let’s try going one piece at a time. What should the first
piece look like?

Key Observation: It should be the minimum length
possible while having total ≥ x.

This applies for all the pieces.

So to get the maximum number of pieces needed, we
sweep left to right making each piece as short as possible.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 54

#include <bits/stdc++.h>
using namespace std;

const int N = 1001001;
long long bar[N];
int n, k;

bool canDo(long long x) {
long long curhap = 0;
int numpcs = 0;
for (int i = 0; i < n; i++) {

curhap += bar[i];
if (curhap >= x) {

if (++numpcs == k) // early exit
return true;

curhap = 0;
}

}
return false;

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 55

int main() {
cin >> n >> k;
for (int i = 0; i < N; i++) cin >> bar[i];
long long lo = 1;
long long hi = 1e12;
long long ans = -1;
while (lo <= hi) {

long long mid = (lo + hi) / 2;
// Trying to find the highest value that is feasible:
if (canDo(mid)) {

ans = mid;
lo = mid + 1;

} else {
hi = mid - 1;

}
}
cout << ans << '\n';

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Chocolate Bar 56

Complexity? O(n logA) where A is max answer.
This problem and solution is very typical of binary search
problems.
To start with, you are asked to maximize a value.
But we can rephrase it into maximizing a value that
satisfies a decision problem! In forming the decision
problem, you ask if the answer could be at least x, not just
exactly x.
Now with the minimum tastiness of each bar fixed, you
now switch to trying to maximize the number of pieces
you can make. And this can be greedied since we know
how small we can make each piece.
Notice why fixing x made the problem easier. Because we
had one less parameter influencing our choices and we
could make greedy decisions now.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Binary Search 57

One of the most common places binary search appears is
in problems that ask us to maximize the minimum of
something (or minimize the maximum of something).
Another way to see if it’s useful is just to see if the
quantity you are optimising is monotone.
And this is very common! Usually, you are told to
maximize a value because the problem is only more
restricted as it increases.
Until you get the hang of it, it’s worth just always trying
to apply it.
At worst, the decision problem can’t be any harder than
the optimization problem (though it may lead you down a
dead end).

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Ternary Search 58

Ternary search also exists. It finds the maximum of a
function that strictly increases to a peak, stays the same,
then strictly decreases.
Instead of splitting the range in two, we instead now split
it into three by querying two points. At each step we
discard one of the thirds based on comparison of the two
points.
Alternatively, we can binary search the finite difference.
This is the discrete form of the derivative, defined as
g(x) := g(x + 1)− g(x).
Appears much less often so won’t talk about it more but it
is a useful thing to know exists.
Exercise left to the reader to figure it out!

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 59

Problem Statement: You have just created a robot that
will revolutionize RoboCup forever. Well 1D RoboCup at
least.
The robot starts at position 0 on a line and can perform
three types of moves:

L: Move left by 1 position.
R: Move right by 1 position.
S: Stand still.

Currently the robot already has a loaded sequence of
instructions.
You need to get the robot to position x. To do so, you can
replace a single contiguous subarray of the robot’s
instructions. What is the shortest subarray you can replace
to get the robot to position x?

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 60

Input Format: First line, 2 integers, n, x, the length of
the loaded sequence and the destination.
1 ≤ |x| ≤ n ≤ 200, 000. The next line describes the loaded
sequence.

Sample Input:
5 -4
LRRLR
Sample Output:
4
Explanation: You can replace the last four instructions to
get the sequence LLLLS.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 61

How would one do the problem directly?

There is an O(n2) by trying all subsegments but we can’t
do better so long as we try all subsegments.

Okay, well we can try binary searching now. How?

Key Observation: If we can redirect the robot correctly
by replacing m instructions, then we can also do so by
replacing m + 1 instructions. Why?

Let’s turn this into a decision problem. f(m) is true if …?

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 62

f(m) is true if we can correctly redirect the robot by
replacing a subsegment of size m.

We need to do this in around O(n) now. How? It’s worth
considering how to do it in O(1) if you’re told exactly
what subsegment to replace.

Reduces to, given a list of n − m instructions, can you add
m more instructions to get the robot to position x.

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 63

Key Observation: In m instructions, the robot can move
to every square within distance m.

So we are reduced to finding if there is a subsegment of
size m such that its removal leaves the robot within
distance m of x.

Now we just need to find where the robot is after the
removal of each subsegment of size m.

For this, we precompute prefix and suffix sums, where L is
−1, S is 0 and R is 1.

Then the position of the robot after removing the segment
[i, i + m) is sum[0,..,i-1] (a prefix) plus
sum[i+m,..,n-1] (a suffix).

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 64

#include <iostream >
using namespace std;

const int N = 200200;
int n, x;
string moves;
// delta[i] = -1 if L, 0 if S, 1 if R
// pre[i] = sum of first i moves
// suf[i] = sum of last i moves
int delta[N], pre[N], suf[N];

void precomp() {
for (int i = 0; i < n; i++) {

if (moves[i] == 'L')
delta[i] = -1;

if (moves[i] == 'S')
delta[i] = 0;

if (moves[i] == 'R')
delta[i] = 1;

}

for (int i = 1; i <= n; i++)
pre[i] = pre[i-1] + a[i-1];

for (int i = 1; i <= n; i++)
suf[i] = suf[i-1] + a[n-i];

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 65

bool f (int m) {
for (int i = 0; i+m <= n; i++) {

// try replacing [i, i+m)
int posAfterCut = pre[i] + suf[n-(i+m)];
if (posAfterCut >= x-m && posAfterCut <= x+m)

return true;
}
return false;

}

int main() {
cin >> n >> x;
cin >> moves;
precomp();
int lo = 0;
int hi = n;
int ans = -1;
while (lo <= hi) {

int mid = (lo + hi) / 2;
// Trying to find the lowest value that is feasible:
if (f(mid)) {

ans = mid;
hi = mid - 1;

} else {
lo = mid + 1;

}
}
cout << ans << '\n';

}

Problem-
Solving

Paradigms

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 66

Complexity: O(n log n).
Hopefully you can see the similarities between this
example and the earlier example.
Again, we started with a problem where approaching it
directly was too slow.
But the problem naturally could be rephrased as finding
the minimum m such that a decision problem f(m) was
true.
So from that point onwards we only consider the decision
problem.
This still required some work but was more direct. The
idea of trying all subsegments of length m is relatively
straightforward. From that point on it was just trying to
optimize this problem with data structures.

	Greedy Algorithms
	Linear Sweep
	Binary Search

