
Getting
Started

Running Time

C++

Debugging
Getting Started

COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Term 3, 2023

Getting
Started

Running Time

C++

Debugging

Table of Contents 2

1 Running Time

2 C++

3 Debugging

Getting
Started

Running Time

C++

Debugging

Complexity and Time Limit 3

Your solution must give the correct output for each
possible input, but it must also run within the specified
time limit

If you know your algorithm is not correct or too slow, then
there is no point implementing or submitting it
You can assess whether your algorithm is fast enough
using complexity analysis

Calculate the number of states your algorithm will enter,
and multiply by the amount of work performed in each
state
Sometimes more sophisticated techniques are required, e.g.
recursive algorithms
Your solution will not be accepted if it times out on even
one test case, so assume the worst case input

Getting
Started

Running Time

C++

Debugging

Complexity and Time Limit 4

Modern computers can handle about 200 million primitive
operations per second

In some easy problems, the naïve algorithm will run in time

If not, you can use a variety of techniques to reduce the
number of states or the amount of work per state

We’ll see more advanced methods in future topics, e.g.
data structures

Getting
Started

Running Time

C++

Debugging

Example problem: Max Sum Window 5

Problem statement Given an array of positive integers S
and a window size k, what is the largest sum possible of a
contiguous subsequence (a window) with exactly k
elements?

Input The array S and the integer k
(1 ≤ |S| ≤ 1, 000, 000, 1 ≤ k ≤ |S|)

Output A single integer, the maximum sum of a window
of size k

Getting
Started

Running Time

C++

Debugging

Example problem: Max Sum Window 6

Algorithm 1 We can iterate over all size k windows of S,
sum each of them and then report the largest one

Complexity There are O(n) of these windows, and it
takes O(k) time to sum a window. So the complexity is
O(nk). So we will need roughly around 1,000,000,000,000
operations in the worst case.

This is way bigger than our 200 million figure from before!
We need a way to improve our algorithm.

Getting
Started

Running Time

C++

Debugging

Example problem: Max Sum Window 7

What are we actually computing?

For some window beginning at position i with a window
size k, we are interested in Si + Si+1 + . . .+ Si+k−1

Getting
Started

Running Time

C++

Debugging

Example problem: Max Sum Window 8

Let’s look at an example with k = 3

We compute:

S0 + S1 + S2

S1 + S2 + S3

and so on

Getting
Started

Running Time

C++

Debugging

Example problem: Max Sum Window 9

Algorithm 2 Instead of computing the sum of each
window from scratch, we can modify the sum of the
previous window.
To calculate

Wi = Si + Si+1 + . . .+ Si+k−1,

we can instead evaluate

Wi = Wi−1 − Si−1 + Si+k−1.

Complexity After the O(k) computation of the sum of the
first window, each subsequent sum can be computed in
O(1) time. Hence the total complexity of the algorithm is
O(k + n), which we can simplify to O(n) as n ≥ k.

Getting
Started

Running Time

C++

Debugging

Example problem: Max Sum Window 10

Implementation
#include <iostream >
#include <algorithm >
using namespace std;

const int N = 1e6 + 5;
int a[N];

int main() {
// read input
int n, k;
cin >> n >> k;
for (int i = 0; i < n; i++) cin >> a[i];

long long ret = 0, sum = 0;
for (int i = 0; i < n; i++) {

// remove a[i-k] if applicable
if (i >= k) sum -= a[i-k];
// add a[i] to the window
sum += a[i];

// if a full window is formed , and it's the best so far, update
if (i >= k - 1) ret = max(ret, sum);

}

// output the best window sum
cout << ret << '\n';
return 0;

}

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 11

In chess, a queen is allowed to move any number of
squares horizontally, vertically or diagonally in a single
move. We say that a queen attacks all squares in her row,
column and diagonals.

⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ Q ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 12

For N ≥ 4, it is always possible to place N queens on an
N-by-N chessboard so that no two attack each other.

Q
Q

Q
Q

Q
Q

Q
Q

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 13

Problem statement Given a board size N, list all the ways
of placing N queens so that no two attack each other.

Input An integer 4 ≤ N ≤ 12

Output For each valid placement of queens, print out the
sequence of column numbers, i.e. the column of the queen
in the first row, the column of the queen in the second
row, etc., separated by spaces and on a separate line, in
lexicographic order.

Sample For N = 6, the output should be:
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 14

Algorithm 1 We place queens one row at a time, by
simply trying all columns, and then recurse on the next
row. When N queens have been placed, we check whether
the placement is valid.

There are N squares for the queen in each row, so if we
simply consider all possibilities, there are NN placements
of queens to check.

Each placement must be checked for duplicates in any
column or diagonal (note that we have already assigned
exactly one queen per row). This check takes O(N) time.

Thus the naïve algorithm takes O(NN+1) time, which will
run in time only for N up to 8.

How can we improve on this?

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 15

We need to cut down the search space; NN is simply too
large for N = 12.

Many of the possibilities considered earlier fail because of
conflicts within the first few rows — indeed, a single pair
of conflicting queens in the first two rows could rule out
NN−2 of the possibilities.

We could improve by only recursing on valid placements,
and simply discarding positions that fail before the last
row.

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 16

Algorithm 2 We place queens one row at a time, by
trying all valid columns, and then recurse on the next row.
When N queens have been placed, we print the placement.

Unfortunately, as is typical of backtracking algorithms like
this, it is difficult to formulate a tight bound for the
number of states explored.

There are theoretically up to

N!

N!
+

N!

(N − 1)! + . . .+
N!

0! < N × N!

states, but in practice most of these are invalid.

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 17

The true numbers turn out to be as follows:

N 8 9 10 11 12
states 15720 72378 348150 1806706 10103868

Each state then requires an O(N) check to ensure that the
last queen has been placed legally, by scanning her column
and diagonals.

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 18

Implementation
#include <iostream >
using namespace std;

int n, a[12];

void print_queens() {
for (int k = 0; k < n; k++)

cout << a[k] + 1 << ' ';
cout << '\n';

}

bool check_queen (int i, int j) {
for (int k = 0; k < i; k++) {

if ((a[k] == j) || (i - k == a[k] - j) || (i - k == j - a[k])) {
return false;

}
}
return true;

}

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 19

Implementation (continued)
void go(int i) {

if (i == n) {
// we have placed all n queens legally , so print this solution
print_queens();
return;

}

for (int j = 0; j < n; j++) {
// check whether a queen can be placed at (i,j)
if (check_queen(i,j)) {

// place queen and recurse
a[i] = j;
go(i+1);

}
}

}

int main() {
cin >> n;
go(0);

}

Getting
Started

Running Time

C++

Debugging

Example problem: Queens 20

This problem is instructive, but in practice not a great
contest problem.

Why? Because there are only nine possible test cases!

This allows you to hard-code the answer in your source
code.

But how do you obtain the answer in order to hard-code
it?

You still have to write a solver, but you could let it run
locally for several minutes per test case while you work on
another problem.

Getting
Started

Running Time

C++

Debugging

Table of Contents 21

1 Running Time

2 C++

3 Debugging

Getting
Started

Running Time

C++

Debugging

C++ Documentation 22

You can find C++ documentation at cplusplus.com or
cppreference.com.

cplusplus.com is easier to read for a non-expert, whereas
cppreference.com is more thorough and technical.

These are the only online resources that you can use
during the contests, other than the course website and
associated platforms.

https://cplusplus.com/
https://en.cppreference.com/w/cpp/

Getting
Started

Running Time

C++

Debugging

C++ Standards 23

The original C++ standard was C++98.

All problems in the weekly problem sets will be judged
using C++11 or more recent versions.

In the contests, your submissions will be compiled using
the C++17 standard.

Getting
Started

Running Time

C++

Debugging

C++11 Features for Competitive Programming 24

C++11 has lots of nice things for us.
Very important:

long long width

Situational
unordered_set and unordered_map
random
tuple

Conveniences
auto type
range-based for loops
various functions in <algorithm>

There’s very little in the later C++ standards that affects
us.

Getting
Started

Running Time

C++

Debugging

Naming conflicts 25

You might want to use count as a function name, but the
<algorithm> header also defines a function named
count.

When you call count(), how does the compiler know
which one you are calling?

Two C++ features are relevant here.

Unlike C, C++ allows overloading of function names. If
two functions with the same name have different
signatures (e.g. different number of parameters, differently
typed parameters), then the compiler may be able to
resolve the conflict automatically.

Getting
Started

Running Time

C++

Debugging

Namespaces 26

A namespace defines a named scope, within which you can
define variables, functions and classes.

You can then refer to those entities by prepending the
name of the namespace, differentiating them from other
entities with the same name that might be defined
elsewhere in the project.

In the example from the previous slide, the <algorithm>
header is part of the C++ standard library, so all functions
in this header belong to the std namespace.

Therefore there is no conflict; count() refers to the local
function, whereas std::count() refers to the one from
<algorithm>.

Getting
Started

Running Time

C++

Debugging

Namespaces 27

A common theme in competitive programming is that in
competitive programming, you can (and often should) use
lot of shortcuts and hacks that would be considered bad
style or worse in other settings.

Namespaces are useful, but they make us type five extra
characters whenever we want to use something from the
standard library, which is a nuisance.

Instead, we include the global directive
using namespace std; immediately after our #include
directives. This tells the compiler to try looking in the std
namespace whenever it tries to resolve a variable or
function name.

Global using directives are a bad idea in most contexts!
Don’t do this in larger projects.

Getting
Started

Running Time

C++

Debugging

Namespaces 28

Now, we can write cout << ans << endl; rather than
std::cout << ans << std::endl;! Surely the precious
seconds saved will give us the edge to win a contest.

The downside of this is that we reintroduce naming
conflicts. If we name a variable or function as count,
rank or various other common words which name entities
in std, the compiler might complain.

No matter, we will just use names like cnt and rnk
instead if necessary.

Getting
Started

Running Time

C++

Debugging

Namespaces 29

#include <algorithm >
#include <cassert >
#include <iostream >
using namespace std;

// count nonzero array entries

const int N = 100100;
int a[N];

int main (void) {
int n;
cin >> n;

int count = 0;
for (int i = 0; i < n; i++) {

cin >> a[i];
if (a[i] != 0)

count++;
}

// check our answer
assert(count == n-count(a,a+n,0)); // conflict!

cout << count << '\n';
}

Getting
Started

Running Time

C++

Debugging

Namespaces 30

This causes a naming conflict.

In file included from /usr/include/c++/9/cassert:44,
from count-conflict.cpp:2:

count-conflict.cpp: In function ‘int main()’:
count-conflict.cpp:23:34: error: ‘count’ cannot be used as a function

23 | assert(count == n-count(a,a+n,0));
| ^

Getting
Started

Running Time

C++

Debugging

Namespaces 31

#include <algorithm >
#include <cassert >
#include <iostream >

// count nonzero array entries

const int N = 100100;
int a[N];

int main (void) {
int n;
std::cin >> n;

int count = 0;
for (int i = 0; i < n; i++) {

std::cin >> a[i];
if (a[i] != 0)

count++;
}

// check our answer
std::assert(count == n-std::count(a,a+n,0)); // no conflict

std::cout << count << '\n';
}

This is the ‘good’ way to resolve the naming conflict, by
omitting the using directive that caused the problem.

Getting
Started

Running Time

C++

Debugging

Namespaces 32

#include <algorithm >
#include <cassert >
#include <iostream >
using namespace std;

// count nonzero array entries

const int N = 100100;
int a[N];

int main (void) {
int n;
cin >> n;

int cnt = 0;
for (int i = 0; i < n; i++) {

cin >> a[i];
if (a[i] != 0)

cnt++;
}

// check our answer
assert(cnt == n-count(a,a+n,0)); // no conflict

cout << cnt << '\n';
}

This is the lazy way to resolve the naming conflict, by
renaming our local variable.

Getting
Started

Running Time

C++

Debugging

Input and Output 33

In every problem in the contests and almost every problem
in the weekly problem sets, input is from the standard
input stream stdin and output is from the standard
output stream stdout.

We will provide specific instructions for any problem that
requires you to read from and write to files.

C-style I/O (scanf, printf, getline, and so on) is
supported in the <cstdio> header.

C++-style I/O (cin, cout) is supported in the
<iostream> header.

Getting
Started

Running Time

C++

Debugging

Input 34

If we know the format of the input (as is the case in
contest problems), we can reliably extract it from cin
using the >> operator.
This is very convenient; it’s fast to type, and doesn’t
require us to think about pointers and addresses.
We can read an entire line into a string s using
getline(cin,s).
There is a trade-off in speed. Reading input from cin is
quite a bit slower than using scanf().

If you need to read 10MB per second, consider including
the following statements:
cin.tie(nullptr); // prevents cout from flushing on every cin read
cin.sync_with_stdio(false); // unsyncs iostream from cstdio

or just revert to scanf().

Getting
Started

Running Time

C++

Debugging

Output 35

We can similarly print output to cout using the <<
operator.

Almost always print newline characters as '\n' rather
than endl, since the latter flushes the output buffer,
making it slower.

Flushing is only necessary for interactive problems.

Getting
Started

Running Time

C++

Debugging

Floating-Point Output 36

Suppose x is a double, and we run cout << x << '\n'.
The default behaviour is to print to six digits of precision.
This is often insufficient.
Worse still, if x exceeds 1, 000, 000 in absolute value, it
will be printed in scientific notation (yes, really).
To insist on fixed-point (not scientific) notation, use the
manipulator std::fixed from the <ios> header, which is
included within <iostream>.
To change the number of decimal places, use the
manipulator std::setprecision() from the <iomanip>
header.
Therefore, to print to 9 decimal places, we write
cout << fixed << setprecision(9) << x << '\n';.
Consider just using printf() instead!

Getting
Started

Running Time

C++

Debugging

Memory 37

We will (almost) never need dynamic memory in
programming contests, so you don’t need to know about
malloc or free (or the analogous C++ operators new
and delete).
Instead, we will use the input size defined in the problem
to allocate as much (or more) static memory than we
could ever need.
Good habit to declare arrays slightly larger than necessary.

If the length is up to 100, 000, I will usually declare it with
size 100, 100. This is helpful in case I want to store the
elements off-by-one or similar.

In C++, array sizes must be constant expressions, so we
use the keyword const.
const int N = 100100;
int a[N];

Getting
Started

Running Time

C++

Debugging

Global Variables 38

Global variables are unsafe in larger projects, but we never
use more than one file so they’re fine for our purposes.

This saves us some typing, since we don’t have to
explicitly pass them in function calls.

Global arrays are stored on the heap.
Create a large array (say 107 integers for a prime sieve) on
the heap is fine.
However, it might not be possible to allocate enough
contiguous memory on the stack.

A convenience: global variables are initialised to the
default value, so an integer array will be 0-initialised
(rather than garbage values).

Getting
Started

Running Time

C++

Debugging

Integer Types 39

int is a 32-bit integer. Be wary of overflow.

Since C++11, long long is a 64-bit integer. On a 64-bit
processor, the performance difference is usually negligible.

Never use long. The language standard does not enforce
whether it is 32 or 64 bits.

You won’t need 128-bit or arbitrary-precision integers in
this course.

Getting
Started

Running Time

C++

Debugging

Floating-Point Types 40

Never use float. The extra precision from double is
necessary in most problems, and the performance
difference is again negligible.

You won’t need long double in this course.

Problems which require you to produce floating-point
output will typically allow answers within some relative
and/or absolute error. This will always be specified in the
output format.

Getting
Started

Running Time

C++

Debugging

String Types 41

C-style character arrays still work, and the <cstring>
header corresponds to the C library <string.h>.

We will usually use the string type instead, which
integrates directly with C++-style I/O and various extra
functions provided in the <string> header.

To access the character array underlying string s, we use
s.c_str(). This is useful for C-style formatted printing.

Getting
Started

Running Time

C++

Debugging

Converting Between Types 42

You can convert between types using explicit or implicit
casting, as in C.

C++ also introduces the stringstream, which you can
both insert to (<<) and extract from (>>).

This is very useful for converting between strings and
other types.

For example, you can read a string using cin, insert it to a
stringstream, and then extract integers from there.

In other situations, stoi() might suffice.

Getting
Started

Running Time

C++

Debugging

Pairs and Tuples 43

The <utility> header defines the class template
pair<T1,T2>, which allows you to couple together two
elements as a single unit.

Since C++11, this has been generalised to tuple<...>,
which supports any fixed-size collection of elements.

The elements of a pair or tuple can be of any type, and
they do not have to all be of the same type.

This is extremely useful. For example, it lets you sort
items while keeping track of their original indices, by
making pairs of the form (a[i],i).

Getting
Started

Running Time

C++

Debugging

Structures 44

C++ introduces classes, but we won’t use them.

It also supports C-style structs, which we will sometimes
use.

You can define a function as a member of a struct, which
we will occasionally use in this course.

You can also define operators such as operator== and
operator< for your structs, e.g. so that you can sort a
collection of them.

Getting
Started

Running Time

C++

Debugging

Algorithms 45

The <algorithm> header provides many useful functions
for working on ranges of elements.

Many of these (e.g. fill(), search(), count(), max(),
min()) are just conveniences that replace two or three
lines of very simple code.

Even so, the more code you write yourself, the more bugs
you can introduce.

Swapping values is notoriously inconvenient in C, but in
C++ we can just call swap(x,y).

Getting
Started

Running Time

C++

Debugging

Sorting 46

The <algorithm> header includes a sort() function,
which takes iterators (think generalised pointer) to the
range to be sorted (left-inclusive, right-exclusive).

Since C++11, this sorting algorithm is guaranteed to run
in O(n log n) time in the worst case.

This function takes an optional third argument, in which
you can provide a custom comparison to be used in place
of the default (operator<).

The default comparison for pairs is to compare the first
entries, with ties broken by comparing the second entries.

For example, to sort the first n entries of an integer array
a in descending order, we can call
sort(a,a+n,greater<int>()).

Getting
Started

Running Time

C++

Debugging

Shuffling and Searching 47

Sometimes, sorted input is the worst case! Use
random_shuffle().

<algorithm> also helps you avoid writing some binary
searches from scratch. We’ll discuss binary_search()
and related functions in the Paradigms lecture.

Getting
Started

Running Time

C++

Debugging

Next Permutation 48

next_permutation() rearranges the elements in a range
into the lexicographically next greater permutation.

For example, it would transform the character array
"permutation" to "permutatnio".

It returns true if such a permutation exists, or false if
the original permutation was already lexicographically
greatest.

An individual call to next_permutation() could take
linear time, but the complexity is amortized constant!

Why do we care about this peculiar function?

Getting
Started

Running Time

C++

Debugging

Next Permutation 49

next_permutation() helps us run exhaustive search (i.e.
brute force).

The following snippet iterates through all bit sequences of
length n in which exactly k bits are set.
int selected[n];
fill(selected ,selected+n-k,0);
fill(selected+n-k,selected+n,1);

do {
// ...

} while (next_permutation(selected ,selected+n));

Each of these sequences then corresponds to a different
unordered selection of k items from a collection of n items.

You can designate the selected items as those
corresponding to set bits.

Getting
Started

Running Time

C++

Debugging

Table of Contents 50

1 Running Time

2 C++

3 Debugging

Getting
Started

Running Time

C++

Debugging

Debugging 51

Debugging is often the most difficult, time-consuming and
frustrating part of competitive programming.

The best way to debug is not to make bugs in the first
place.

Take your time (especially in the weekly problem sets) and
read what you’re typing

In team contests, pair programming helps

Getting
Started

Running Time

C++

Debugging

How to Debug (pre-submission) 52

Suppose you have solved the problem conceptually and
implemented your algorithm, but your program fails the
sample test cases. What should you do?
Run unit tests to narrow down what part of your program
is malfunctioning.
The most primitive approach to debugging is to print
heaps of logs as you go.

Print out the intermediate states of anything that might
be important using cerr (or equivalently
fprintf(stderr,...)).

You may also want to look into more sophisticated
debugging tools.

GDB
Some IDEs have an inbuilt debugger

Getting
Started

Running Time

C++

Debugging

How to Debug (post-submission) 53

Suppose your program now passes the sample test cases,
but your submission was unsuccessful. What should you
do?

What verdict did you get?
TIME-LIMIT

check your complexity analysis
look for infinite loops

RUN-ERROR

estimate how much memory you are using
check for array out of bounds
check for accessing into or deleting from empty data
structures

Getting
Started

Running Time

C++

Debugging

How to Debug (post-submission) 54

For WRONG-ANSWER and some RUN-ERROR verdicts, it’s
often difficult to even identify what the bug is.

Write test cases, including edge cases.
Force yourself to read your code carefully line-by-line, e.g.
by opening it in a different editor or even printing out and
annotating a hard copy.

Write a slow (potentially brute force) algorithm that
certainly produces the correct answer. You can then run it
locally on medium to large cases, ignoring the time limit,
and compare its answers to your other program’s output.
In the problem sets, ask for help – you can discuss this
with other students and your tutor.
If necessary, rethink your algorithm. Are there any hidden
assumptions that you didn’t examine carefully enough?

Getting
Started

Running Time

C++

Debugging

General Tips 55

Read the tips page of the course website, which includes
this advice and more.

Try not to panic, especially in timed contests. Most of
your bugs will be minor errors, perhaps even single
character fixes.

https://www.cse.unsw.edu.au/~cs4128/22t3/tips/

Getting
Started

Running Time

C++

Debugging

General Tips 56

Over the course of the term, there will probably be a
couple of problems which you come very close to solving.
This is a normal part of competitive programming, and it
does average out in the long run.
No single problem is worth many marks, so it’s perfectly
OK to give up on a problem sometimes.
The problem diary gives you a chance to reflect on your
efforts.
In the weekly problem sets, make sure to also prioritise
your other tasks and responsibilities.
That said, if you can afford to sink days into a problem,
there are few feelings quite as gratifying as finally receiving
a CORRECT verdict on your 70th submission!

	Running Time
	C++
	Debugging

