
Exam Revision

Wrapping Up

Exam Revision
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Term 3, 2023



Exam Revision

Wrapping Up

Table of Contents 2

1 Wrapping Up



Exam Revision

Wrapping Up

Congratulations! 3

Congratulations on making it to the end! There was a lot
of difficult material and the problem sets were non-trivial.

There were also a fair few rough edges, thanks for sticking
through it all!



Exam Revision

Wrapping Up

Remaining Dates 4

Problem sets due 7th December

Diaries due 7th December, submit in Moodle

Final exam: 7th December, 11am–4pm.

Consultation: TBA.



Exam Revision

Wrapping Up

Feedback 5

This course is still iterating, and your feedback is very
valuable to us.

From student feedback so far, I intend to:

improve some diagrams in lectures,

replace a couple of the problem set questions, and

review the selection of topics, particularly Data Structures
II.



Exam Revision

Wrapping Up

myExperience 6

Please fill out the myExperience survey at
https://myexperience.unsw.edu.au.
Some aspects you might wish to give feedback on:

Topics. What should we add/remove?
Lecturing style or content, e.g. pacing, choice of examples.
Problem sets. Difficulty? Interesting? Deadlines?
Problem diaries. Should we keep doing them?
Contests/exam. Difficulty, format, etc.
Tut/labs. How can we make them more useful? New
format
Forum. How can we best help you outside of class time?
Anything we should include on the Tips page of the
website, e.g. debugging advice.

https://myexperience.unsw.edu.au


Exam Revision

Wrapping Up

Feedback 7

In addition to myExperience, you can also give us feedback
by:

commenting on the pinned feedback thread on Ed,
anonymously if you want, or

emailing me.



Exam Revision

Wrapping Up

Final Exam 8

5 hours, 7 problems1 worth 100 points each, with subtasks.

All topics except Computational Geometry.

Expect similar difficulty and style to the contest problems.
Problems comparable to a problem set E or F will only
appear as the very hardest problem or two in the set, in
order to distinguish the top couple of students.

Problems will use the theory we covered but typically
require some modifications first.

1might be six, TBC



Exam Revision

Wrapping Up

Final Exam 9

Problems will be in approximate order of difficulty of the
full problem.

Average last year was about 313/800; we’ll be aiming for
higher (at least 350/700), but it’s hard to predict.

Read all the problems! Difficulty is subjective, and
everyone has different strengths. Also, hard problems may
have easy subtasks.

Use the scoreboard to see what problems other students
have had success with, and prioritise those. This is
particularly useful to identify easy subtasks.



Exam Revision

Wrapping Up

Final Exam 10

Roughly same setup as the contests - submissions on
DOMJudge.

Open book - make use of lecture slides and code.

You will have access to your home directory.

Documentation available at https://cppreference.com
only; not https://cplusplus.com.

A practice final exam will be made available shortly.

https://cppreference.com
https://cplusplus.com


Exam Revision

Wrapping Up

Finals Advice 11

Be prepared for bugs to occur, don’t let them throw you
off.

Try to get some realistic gauge of how much of your time
is spent debugging on problem sets, what your most
common bugs are and what works for you debugging wise.

Reread your old diaries!

If you feel something is suspicious with your submissions,
feel free to send us a clarification.



Exam Revision

Wrapping Up

Study Advice 12

Perhaps the most difficult skill required is to recognise
what tools to use for which problem.

This isn’t a concern in the weekly problem sets, but the
contests should give you an idea of what to expect.

This skill is best acquired through experience - practice on
Codeforces by doing virtual participation in past rounds or
doing assorted problems with tags off.



Exam Revision

Wrapping Up

Study Advice 13

Review problem sets and contests. Try to recall what the
key parts of solutions were and how you derived them.

Look through examples in lectures and tutorials, make
sure you understand roughly how to do them.

I’ve also created a summary of what I think were some of
the key parts of each week.



Exam Revision

Wrapping Up

Summaries Summary 14

This is a list of what I think the biggest themes of each
week are. So things I’ve tried to convey and think are
important.

Note: This does NOT mean if something isn’t on this
slide then it won’t be on the exam.



Exam Revision

Wrapping Up

Lectures 1–2 (Intro, Getting Started) 15

Always ask first whether brute force is fast enough -
complexity analysis.

It’s worth remembering how to do a recursive brute force
like in N-Queens.

If brute force would TLE, instead try to make observations
that could form the basis of a greedy algorithm.

Often want to process in some order, so sorting is useful
and leads naturally to linear sweep.



Exam Revision

Wrapping Up

Lecture 3 (Problem Solving Paradigms) 16

Binary search is an efficient way to search sorted data -
use lower_bound or upper_bound to avoid bugs.

We can also use it to search a monotonic function by
computing function values on the fly.

Particularly useful case is discrete binary search, where
function values are true/false.

Whenever you are asked to find the largest/smallest x for
which some property holds, at least consider binary search.
Consider whether the property is monotonic, and if so, can
you test the property quickly for fixed x?



Exam Revision

Wrapping Up

Lectures 4–5 (Data Structures I) 17

Basic data structures - vector, stack, queue, heap (pq).

Make sure you remember what sets, maps and order
statistics trees do.

They don’t just store elements, they also maintain order!
Useful things they do:

Store elements.

Find the first element less than or greater than x.

Find number of elements less than x.

Find the kth element in order.



Exam Revision

Wrapping Up

Lectures 4–5 (Data Structures I) 18

Cumulative array is also helpful - allows sum over range in
O(1).

Union find manages disjoint sets. But remember the main
limitation, they don’t do well when you need to support
both insertion and deletion.

PS2:

Classrooms: good example of sweep with set using a
greedy observation.

Ancient Berland Roads: Both the idea of considering a
different order (the reverse) as well as how to maintain
extra metadata along with union find (e.g: total
population).



Exam Revision

Wrapping Up

Lectures 6–8 (Dynamic Programming) 19

You must be able to DP problems by YOURSELF - the
theory is secondary. I presented an iterative method to
design an appropriate state and recurrence - not the only
method, use whatever thought process works for you.
I expect you know how to do tree DP, exponential DP and
DP involving data structures.
You should at least be comfortable with each example
except Art, Key, Texture, where comfortable means you
can see how you’d solve them yourself.
Also review the week 6 revision lecture for more examples.
PS3:

Coloring Trees: good exercise in designing a good state
here.
Wi-Fi: typical example of DP with a data structure.



Exam Revision

Wrapping Up

Lectures 8–10 (Graph Algorithms) 20

Many basic things you will be assumed to know:
representing a graph, representing a tree in particular,
DFS, DAGs, SCCs, MST.

DFS is surprisingly useful - DFS tree analysis provides
structure, both for directed and undirected graphs

For trees specifically, know how to compute LCA and the
data structure for doing so. The same binary composition
structure answers most path queries on trees without
updates.

PS4: all problems are instructive.



Exam Revision

Wrapping Up

Lectures 10–11 (Shortest Paths) 21

Single source:

Unweighted? BFS

Non-negative weights? Dijkstra

Negative weights, detect negative cycles? Bellman-Ford

All pairs shortest path: Floyd-Warshall.

The most important skill is recognising and constructing
implicit graphs.

PS5: Again all problems but in particular Jzzhu and Cities
and President’s Path for creative applications of Dijkstra
and Floyd-Warshall.



Exam Revision

Wrapping Up

Lectures 12–13 (Data Structures II) 22

Pretty much the entire lecture is important. At minimum
definitely make sure you know how to do basic range/point
queries/updates that may involve lazy propagation.

Make sure you understand specifically how to do range
sets and range adds and e.g: how to do range sum queries
in combination with these.

And you know how to do these over trees/subtrees too
(this shouldn’t be any different from on a line).

The rest is all important to know too.

Same with example problems. Make sure in particular you
understand Mapping Neptune, it is a standard sweep with
a range tree.



Exam Revision

Wrapping Up

Lectures 12–13 (Data Structures II) 23

PS6:

Multiples of 3 and The Problem Set are important basic
problems to know how to do.

The idea behind On Changing Tree is a good example of
breaking up a formula into multiple parts. It is worth
noting that it was essentially irrelevant the original
problem was on a tree. This is generally true for range
trees over trees.

Points is a good example of searching for a specific
criterion.



Exam Revision

Wrapping Up

Lectures 14–16 (Network Flow) 24

Max flow is useful for some optimisation problems which
don’t permit a greedy or DP solution - clues include lack
of useful order.
Be familiar enough with Dinic’s that you can copy paste
and use it.
Be familiar with the basic flow constructions (vertex
capacities, undirected graphs, multiple sources and sinks,
bipartite matching).
Know that min cut is equal to max flow - commonly used
for assignment problems. Understand the common
constructions (Project Selection, Image Segmentation)
Know how to construct a flow graph to fit a set of
constraints (Jumping Frogs, Magic Hours).



Exam Revision

Wrapping Up

Lectures 14–16 (Network Flow) 25

PS7:

Power Transmission and Magic Potion are both good
exercises in flow graph construction.

Delivery Bears is a nice combination of flow with a
technique from earlier in the course.

Oil Skimming is a non-obvious but very elegant application
of flow.



Exam Revision

Wrapping Up

Lectures 16–17 (Mathematics) 26

Know how to do all operations modulo a prime.

Know how to do primality testing, prime factorisation and
finding all divisors both for a single n and for all n ≤ N.

Know how to compute binomial coefficient modulo a
prime.

Understand the Combinatorics examples. Especially
important: understand how to set up a combinatorial DP.

Understand how to do exponentiation quickly and the
covered examples of why matrix exponentiation is
powerful.



Exam Revision

Wrapping Up

Lectures 16–17 (Mathematics) 27

PS8:

SETDIFF: often a counting problem is easier if you group
the expression in a different way.

Math: understand prime factorisation properties.

The rest are all good examples of combinatorial DP.


	Wrapping Up

