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Introduction 3

Computational geometry is the most frustrating part of
solving programming problems.

Algorithms often involve an undesirable number of special
cases.

Or they will require the use of easy-to-get-wrong
geometric primitives.

But even when you handle these special cases, you can
have precision issues.
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Keep things in integers as much as possible!

Be cognisant of multiplications which may overflow or
divisions that do anything.

Try not to divide.

Division is evil.
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Never use floats.

Only use doubles when absolutely necessary.

Even if you have decimals, if they are fixed precision, you
can usually just multiply all the input and use integers
instead.
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When comparing doubles, use an epsilon value so there is
a tolerance for floating point error:
const double EPS = 1e-8;
if (fabs(x-y) < EPS) {

// equal
}

The magnitude of the epsilon will differ depending on the
problem, but usually anything between 10−6 and 10−9 is
safe.

Similar techniques should be used for ≤ and ≥.
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The most useful of the products.
We mostly deal with the “2D” cross product, where we
assume the third dimension is always zero.
Recall thatxA

yA
zA

×

xB
yB
zB

 =

yAzB − yBzA
zAxB − xAzB
xAyB − yAxB

 ,

so in particularxA
yA
0

×

xB
yB
0

 =

 0
0

xAyB − yAxB

 .
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CCW 9

We can use the cross product to implement the CCW
operation, which given three points A, B and C tells us if
the path from A to C via B is a left turn, a right turn or
straight, i.e. if the points are counterclockwise, clockwise,
or neither.

ccw(A,B,C) is left if (B − A)× (C − A) > 0.

ccw(A,B,C) is right if (B − A)× (C − A) < 0.

ccw(A,B,C) is straight if (B − A)× (C − A) = 0.
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Implementation
const double EPS = 1e-8;
typedef pair<double, double> pt;
#define x first
#define y second

pt operator -(pt a, pt b) {
return pt(a.x - b.x, a.y - b.y);

}

bool zero(double x) {
return fabs(x) <= EPS;

}

double cross(pt a, pt b) {
return a.x*b.y - a.y*b.x;

}

bool ccw(pt a, pt b, pt c) {
return cross(b - a, c - a) >= 0;

}
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Given two segments AB and CD, do they intersect?

Intersections can be proper or non-proper.

Two segments have a proper intersection if there exists a
single point which is strictly inside both segments.
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Segment-Segment Intersection 12

We can use the ccw operation from before to check if two
segments intersect.

If the two segments have a proper intersection, then the
path ABC should be in a different direction to the path
ABD.

The same is true of CDA and CDB.
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Segment-Segment Intersection 13

It turns out that these two conditions are both sufficient
and necessary.

However, if we also want to detect non-proper
intersections, we also have to very carefully consider the
other cases.
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Segment-Segment Intersection 14

What happens when the points are all collinear?

We can check for every cross product evaluating to zero.

What happens if the intersection doesn’t have to be
strictly inside both segments? This is the case where one
of the segments just touches the other one.

One of the cross products will evaluate to zero.
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Segment-Segment Intersection 15

Implementation
typedef pair<pt, pt> seg;
#define a first
#define b second

bool collinear(seg a, seg b) { // all four points collinear
return zero(cross(a.b - a.a, b.a - a.a)) &&

zero(cross(a.b - a.a, b.b - a.a));
}

double sq(double a) { return a * a; }

double dist(pt p, pt q) {
return sqrt(sq(p.x - q.x) + sq(p.y - q.y));

}

bool intersect(seg a, seg b) {
if (collinear(a, b)) {

double maxDist = max({dist(a.a, a.b), dist(a.a, b.a), dist(a.a, b.b),
dist(a.b, b.a), dist(a.b, b.b), dist(b.a, b.b)})

;
return maxDist < dist(a.a, a.b) + dist(b.a, b.b) + EPS;

}

return ccw(a.a, a.b, b.a) != ccw(a.a, a.b, b.b) &&
ccw(b.a, b.b, a.a) != ccw(b.a, b.b, a.b);

}
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Given a simple (not self-intersecting) polygon, what is its
area?

We can calculate this easily in time linear to the number of
vertices in the polygon by using the concept of signed area.

Intuitively, we want to add together some overestimate of
the area of the polygon, but then subtract away the parts
that aren’t in the polygon.
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Two common methods:

The trapezoidal rule, moving along the vertices of the
polygon and adding together the areas of these signed
trapezoids.

For every pair of adjacent vertices on the polygon,
calculate the signed area of the triangle formed between
those two vertices and some distinguished vertex, using the
cross product, then sum all of these.
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Polygon Area 18

Both of these methods can be implemented using only
integers if the input consists of only integers.

The area of a trapezium is h
2(a + b), and the 2D cross

product is double the signed area of the triangle formed by
the two vectors.
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Polygon Area 19

Implementation (trapezoidal rule)
double area(vector<pt> pts) {

double res = 0;
int n = pts.size();
for (int i = 0; i < n; i++) {

// (a + b ) * h/2 (/2 moved to the end)
res += (pts[i].y + pts[(i+1)%n].y) * (pts[(i+1)%n].x - pts[i].x);
// sometimes , h will be negative , which means we subtract area

}
return res/2.0;

}
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Implementation (cross product)
double area(vector<pt> pts) {

double res = 0;
int n = pts.size();
for (int i = 1; i < n; i++) {

res += cross(pts[i] - pts[0], pts[(i+1)%n] - pts[0]);
}
return res/2.0;

}
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Problem statement Given a simple polygon with n points
and two points which define a line of some width w, what
is the total area of the polygon, minus the area which
intersects the line?

Input A simple polygon with n vertices
(1 ≤ n ≤ 1, 000, 000), two points A and B, and the width
w, a single floating point number.

Output A single number, the required area.



Computational
Geometry

Introduction

Cross Product
Segment-
Segment
Intersection
Polygon Area
Convex Hull
Intersection
of
Half-Planes

Example
Problems

Example Problem: Polygon Area 22

We already know how to compute the area of a simple
polygon, but there doesn’t seem to be a simple way to
reduce this problem to just finding a polygon area.

We can try to intersect the line, which is really just a
really, really long rectangle, with our polygon, calculate
the points that form the resulting polygons, and use our
polygon area algorithm.

However, this is very hard to implement, and prone to
error.
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Let’s try to solve an easier problem in an easier way.

If the rectangle was vertical, we could use a slight
modification of our trapezoidal rule based algorithm.

For every trapezium that we add the area of, we clip the
sides by the rectangle if we intersect it.
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Example Problem: Polygon Area 24

Notice that rotating the entire input of our problem does
not change the answer.

So we can just rotate the input so that our line is vertical,
and apply the algorithm we have for our special case to
solve the entire problem.

To figure out the angle of rotation, we can use atan2(y,
x).

Since rotation is a constant time operation, our entire
algorithm is still linear.
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Implementation (rotation)
pt operator -(pt p, pt q) {

return (pt){p.x - q.x, p.y - q.y};
}

pt operator+(pt p, pt q) {
return (pt){p.x + q.x, p.y + q.y};

}

pt rotate(pt p, double a) {
pt res;
res.x = p.x * cos(a) - p.y * sin(a);
res.y = p.x * sin(a) + p.y * cos(a);
return res;

}

pt rotate(pt p, double a, pt o) {
return rotate(p - o, a) + o;

}

// this is pi/2 - atan2(a.y - b.y, a.x - b.x);
double theta = atan2(a.x - b.x, a.y - b.y);
a = rotate(a, theta, b);
for (int i = 0; i < n; i++) {

pts[i] = rotate(pts[i], theta, b);
}
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Implementation (calculating the area)
double res = 0;
for (int i = 0; i < n; i++) {

pt p = pts[i];
pt q = pts[(i+1)%n];

int sign = 1;
if (p.x > q.x) {

sign *= -1;
swap(p, q);

}
if (fabs(q.x - p.x) < 1e-9) continue; // so close it doesn't matter

double m = (q.y - p.y) / (q.x - p.x);
double c = p.y - m*p.x;

// the rectangle cuts out the bit from nx to mx
double nx = max(p.x, min(q.x, a.x - w));
double ny = m*nx + c;
double mx = min(q.x, max(p.x, a.x + w));
double my = m*mx + c;

// find the areas of the at most two pieces that aren't cut out
res += sign * abs(nx - p.x) * (ny + p.y) / 2;
res += sign * abs(q.x - mx) * (my + q.y) / 2;

}
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The convex hull of a set of points P is the smallest convex
shape that contains all points in P.

Intuitively, imagine the points as nails in a wooden board.
The convex hull can be formed by taking a rubber band
and stretching it around all nails so that every nail is inside
it.
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It is relatively simple to compute the convex hull of a set
of points in O(n log n) time, given that we have our ccw
operation.

Classically, this is done with the Graham scan, which starts
by sorting all points by their angle relative to some point
which is known to be on the convex hull and walking
through this angle sorted list using a stack.
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Andrew’s monotone chain algorithm is simpler, because it
avoids the angle sort, and achieves the same time
complexity.

The monotone chain algorithm computes two half-hulls,
the upper and the lower hull, which are combined to form
the final result.
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To compute the upper hull, we first sort all points by
x-coordinate, breaking ties by y-coordinate. We then walk
through the points in this order, maintaining a “candidate
half hull” with a stack.

When adding a point, we must maintain the invariant that
the point we just added as well as the two most recent
points on the stack is still convex, i.e. forms a right turn.

We can compute the lower hull in the same way, after
reversing the order of the points.

Sticking these together after removing duplicates gives the
full convex hull.
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Implementation
vector<pt> half_hull(vector<pt> pts) {

vector<pt> res;
for (int i = 0; i < pts.size(); i++) {

// ccw means we have a left turn; we don't want that
while (res.size() >= 2 &&

ccw(pts[i], res[res.size()-1], res[res.size()-2])) {
res.pop_back();

}
res.push_back(pts[i]);

}
return res;

}

vector<pt> convex_hull(vector<pt> pts) {
sort(pts.begin(), pts.end());
vector<pt> top = half_hull(pts);

reverse(pts.begin(), pts.end());
vector<pt> bottom = half_hull(pts);

top.pop_back();
bottom.pop_back();
vector<pt> res(top.begin(), top.end());
res.insert(res.end(), bottom.begin(), bottom.end());
return res;

}
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Intersection of Half-Planes 32

Given a set of half-planes in the form ax + by + c ≤ 0,
what is the shape defined by their intersection?

If the intersection is bounded, the intersection will be a
convex polygon (otherwise it will be a convex area).

Usually, in these problems, the possible point set is
restricted by a bounding box, so we can usually just add
the four sides of this box to our set of half planes and
ensure the intersection is bounded.
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Intersection of Half-Planes 33

It’s clear that the vertices of the intersection will be
defined by the intersections of the lines that bound the
half-planes.

Each of these O(n2) intersections will either lie in the final
result, or be excluded by some other half-plane.

We can just use a O(n) check, looping over all other
half-planes for each intersection, to see if our intersection
is excluded by some other half-plane.
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The remaining intersection points will be exactly the
vertices of the polygon required.

Taking the convex hull of these points will return the
polygon vertices in a sensible sorted order.

This algorithm runs in O(n3) time, and can be optimised
with a small insight to run in O(n2) time. There exists a
difficult O(n log n) algorithm.
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Implementation (primitives)
typedef pair<double, double> pt;

struct line {
double a, b, c;

};

struct half_plane {
line l;
bool neg;

};

pt intersect(line a, line b) {
double d = a.a*b.b - a.b*b.a;
double y = (a.a*b.c - a.c*b.a)/(a.b*b.a - a.a*b.b);
double x = (a.c*b.b - a.b*b.c)/(a.b*b.a - a.a*b.b);
return pt(x, y);

}

bool in_half_plane(half_plane p, pt q) {
if (p.neg)

return p.l.a*q.x + p.l.b*q.y + p.l.c <= EPS;
else

return p.l.a*q.x + p.l.b*q.y + p.l.c >= -EPS;
}
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Implementation (algorithm)
vector<pt> intersect_half_planes(vector<half_plane > half_planes) {

int n = half_planes.size();
vector<pt> pts;
for (int i = 0; i < n; i++) {

for (int j = i + 1; j < n; j++) {
pt p = intersect(half_planes[i].l, half_planes[j].l);
bool fail = false;
for (int k = 0; k < n; k++)

if (!in_half_plane(half_planes[k], p))
fail = true;

if (!fail)
pts.push_back(p);

}
}

vector<pt> res = pts;
if (pts.size() > 2)

pts = convex_hull(res);
return pts;

}
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Problem statement Given a point set P, what is the
largest number of points that lie on a single line?

Input A point set P with n vertices (1 ≤ n ≤ 5, 000). All
points will be distinct.

Output A single integer, the largest number of points that
are all collinear.
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The first thing we can notice is that we can define any line
with two points from the point set, so there are only
O(n2) interesting lines that we need to look at.

With this, we immediately have an O(n3) algorithm, by
enumerating all interesting lines and check if any point lies
on it using the cross product.

However, this is too slow for n up to 5,000.

Notice that if three points are collinear, then all three
pairs of these points define the same line. While the
equation of this line might not be calculated equal in each
case, the gradient is the same each time.



Computational
Geometry

Introduction

Cross Product
Segment-
Segment
Intersection
Polygon Area
Convex Hull
Intersection
of
Half-Planes

Example
Problems
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We can enumerate all interesting lines passing through A
in O(n) time, and count the number of times each
gradient occurs using a hash map, to achieve a total
complexity of O(n2) after considering all points A.

Note that this is similar to angle sorting all points with
respect to A, but ignoring the quadrants to some extent.
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Example Problem: Maximum Collinear Points 41

Implementation
for (int i = 0; i < n; i++) {

map< pair<int, int>, int> counts;
for (int j = 0; j < n; j++) {

if (i == j)
continue;

int rise = pts[j].y - pts[i].y;
int run = pts[j].x - pts[i].x;
if (run == 0)

counts[make_pair(1, 0)]++;
else {

int g = gcd(run, rise);
if (rise < 0)

g *= -1;
counts[make_pair(rise/g, run/g)]++;

}
}

for(map< pair<int, int>, int>::iterator it = counts.begin(); it !=
counts.end(); it++)

res = max(res, it->second+1);
}
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Problem statement You are a crotchety old man, who
loves the idea of kids playing on your lawn. However, wise
to the dangers of the world, you know that you must keep
watch on them lest anything happens to the angels which
play on your property.
You know that there are n (1 ≤ n ≤ 100, 000) kids playing
on integer points on your lawn, which is a 2D plane. You
decide to find a place on your porch, which covers the line
y = 0, where you can keep a watchful eye on the kids.
You want to find a point on your porch where the
maximum distance to any one kid is minimised. This point
need not have integer coordinates.
Output the maximum distance.
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Example Problem: Lawn 43

Since we have to find some floating point value, our first
guess is to apply binary search somehow, because we don’t
have any other way of searching for the answer.

How would we apply a binary search?

It’s clear that if all points are within X distance of our
chosen point on the porch, then all points are also within
X + ϵ distance to our chosen point as well.
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Example Problem: Lawn 44

Furthermore, we don’t actually care what the optimal
point on the porch looks like or where it is, just that it
exists.

So we can actually directly binary search for the answer
that we require.

How do we check if there exists some point on the porch
that is within some distance X of every point in our input?
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The points that are within some distance X of a point P
are exactly those contained within a circle with radius X
with its centre at P.

So to check if some point on the porch is within some
distance X of all of our points, we can check that there
exists a point on the porch that lies in the intersection of
all circles of radius X that are centred on the points.
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Example Problem: Lawn 46

We can implement this in linear time with a routine that
clips the line that represents the porch by the circles,
giving us an O(n logT) algorithm (where T depends on
the desired precision), which is fast enough.

However, while the clipping algorithm isn’t too bad to
implement, we’d like something easier if possible.
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Example Problem: Lawn 47

If we were restricted to only integer points on the porch,
we could iterate over all interesting points on the porch
(there are a finite number of these) and take the one that
has the smallest maximum distance to another point.

However, even if we could only use integers, this approach
would be too slow for coordinates of even reasonable
magnitude.
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Example Problem: Lawn 48

How do we know there are only a finite number of
interesting integer points?

It can be seen that there exists some point on the porch
that has all points to the right of it resulting in a higher
maximum distance.

In the same way, there exists some other point that has all
the points to the left of it also resulting in a higher
maximum distance.

Two easy candidates for these points are the points that
are just slightly to the right and just slightly to the left of
the input point set.
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Example Problem: Lawn 49

If we then think about the point where we reach the
optimal solution, we can see that this point must satisfy
both of these conditions.

Furthermore, not only is the maximum distance larger the
further we move away from our maximum point, but it is
strictly increasing as well.
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We call functions such as these, which first decrease and
then increase, bitonic.

To search for maximum or minimum points on bitonic
functions, we can use a modified binary search called a
ternary search, where instead of dividing our search range
into two pieces, we can divide it into three pieces and
update our search range.
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This gives us a simpler O(n logT) algorithm to solve this
problem, which may converge faster depending on how we
choose to split our ternary search range.

Splitting the range into thirds, quartiles, by the golden
ratio, or even taking the middle range to be of unit length
works.
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Implementation
typedef long double ld;

ld check(ld x) {
ld ret = 0;
for (int i = 0; i < n; i++)

ret = max(ret, distsqr(x, pts[i]));
return ret;

}

for (int it = 0; it < 70; it++) {
ld mid1 = (hi + 2*lo)/3;
ld mid2 = (2*hi + lo)/3;
if (check(mid1) > check(mid2))

lo = mid1;
else

hi = mid2;
}
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Given a set of n axis aligned rectangles, what is the area of
their union?

We can solve this using inclusion-exclusion in exponential
time, but we can do better.
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Let’s first consider the single dimensional case where we
have a set of intervals on the x-axis and we want to find
out the length of their union.

We can solve this in O(n log n) with a similar algorithm to
the one used in the “Stabbing” problem by considering a
sorted list of the start points and end points of the
intervals.

We iterate over each start point and end point in order
from left to right, keeping track of how many intervals are
“open” at the current moment, adding to our total length
whenever there are unclosed intervals.
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If we take this idea, we can directly apply it to the 2D case
to obtain an algorithm that runs in O(n2 log n) time.

We consider the horizontal start and end points of each
rectangle, and process them in sorted order like with the
1D intervals.
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At every stage, we maintain a set of “active intervals”,
which correspond to the rectangles that overlap our
x-position.

To calculate the answer for this x-position, we just need to
run the O(n log n) algorithm for the 1D case for every
x-coordinate to immediately get an O(Xn log n) algorithm,
where X is the maximum x-coordinate.

We can easily speed this up to O(n2 log n) by only
considering the O(n) “interesting” x-coordinates where our
active set changes.
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It turns out that we can still do better, and solve this
problem in O(n log n).

We are doing a lot of unnecessary computation to solve
our 1D subproblem, because our active set changes very
little on each event.
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We can use a range tree to handle each subproblem in
O(logX) time (per update), with O(1) time queries.
To do this, we simply make a node for each x-coordinate,
and use lazy range updates to increment the number of
rectangles “open” in a range when a rectangle starts, and
decrementing when one ends.
We can’t use the delta trick like in Card Trick (week 5),
because this isn’t a normal sum tree, it’s a sum of 1s for
nodes that are nonzero, and 0s for the others.
This uses O(X) space and O(logX) time, but we can use
coordinate compression to improve this to O(n) space
and O(log n) time.
Coordinate compression involves only storing “interesting”
positions, and some extra work to keep track of the fact
that there are now varying (non-1) “distances” between
nodes.
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