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Modular arithmetic 3

a ≡ b mod m iff there exists some integer k such that
a = b + mk
b mod m is the remainder of b when divided by m
In C/C++, the % symbol is used for the modulo operator
BUT: Be careful with negative numbers! In C/C++, the
behaviour is:

(−4)%3 == (−4)%(−3) == −1
(−4)%5 == (−4)%(−5) == −4
4%(−3) == 1
4%(−5) == 4

Technically % is not mod when negative numbers are
involved.
You can get actual mod when m is positive by doing
((a%m) + m)%m.
a%0 raises an error, reported as “floating point exception”.



Mathematics

Number
Theory
Modular
Arithmetic
Primes
GCD

Algebra

Combinatorics

Further Topics

Modular arithmetic 4

If a ≡ b mod m, then a + c ≡ b + c mod m

If a ≡ b mod m, then ac ≡ bc mod m

If ac ≡ bc mod mc, then a ≡ b mod m

ac ≡ bc mod m does not necessarily mean a ≡ b mod m!
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Modular arithmetic 5

For general m, we get addition, subtraction, multiplication
but not necessarily division (e.g: 2 · 1 = 2 · 4 = 2
(mod 6)). This makes numbers mod m a ring.

Exponentiation is just repeated multiplication, but can we
do it quickly?
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Fast exponentiation 6

Problem: Calculate an modulo m (n ≤ 1018,m < 231).

Key is to use a kind of divide and conquer. Runs in
O(log n) time (assuming constant time multiplication)

Observe that

an =

{
an/2 × an/2 if n is even
an/2 × an/2 × a if n is odd

This is equivalent to precomputing each a2k , and
combining powers according to the binary expansion of n
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Fast exponentiation 7

Example:

a9 = a4 × a4 × a
a4 = a2 × a2

a2 = a × a

Take results modulo m at every stage. Because m fits in
an integer, we can safely multiply pairs of results without
overflowing long long.
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Fast exponentiation 8

Implementation
typedef long long ll;

ll pow(ll x, ll n, int m) {
if (n == 0) return 1;

ll a = pow(x, n/2, m);
a = a * a % m;
if (n%2 == 1) a = a * x % m;
return a;

}
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Fast exponentiation 9

Complexity? O(log n) assuming constant time
multiplication.

More generally, for a large class of functions this allows us
to compute f(n)(x) with O(log n) overhead.

This generalisation shows up in many graph theory, DP
and math problems.

Most useful example is probably when f is multiplication
by a matrix.

Also compare to LCA code.
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Division 10

If m is a prime then we also get division! (this is
equivalent to saying that multiplication by non zero
numbers is a bijection)

Let p be a prime. This makes numbers mod p a field.
Essentially, this says you have addition, subtraction,
multiplication and division. Hence for the most part it’s
just like working in the rationals.

How to do division by a mod p is not immediately obvious.
We do it by finding a−1.
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Modular inverse 11

The inverse a−1 of a is an integer such that
a−1a ≡ aa−1 ≡ 1 mod m

Only exists if gcd(a,m) = 1, so if m is prime,
1, 2, . . . ,m − 1 have an inverse but 0 does not

Fermat’s little theorem am−1 ≡ 1 mod m for prime m

Hence a−1 ≡ am−2 mod m.

Euler’s theorem is a generalisation that works for general
modulus, based on the totient function1, ϕ(n)

An alternative for general modulus is to solve ax + my = 1
for integer x, using the Extended Euclidean algorithm

Either way, O(logm).
1counts the numbers less than n which are coprime to n
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Modular arithmetic 12

Knowing these basics is useful because many
combinatorics problems have answers that far exceed a
long long. Hence you will usually be asked to output the
answer mod M where generally M is a prime.

The 2 popular primes for competitions are 1, 000, 000, 007
and 1, 000, 000, 009.



Mathematics

Number
Theory
Modular
Arithmetic
Primes
GCD

Algebra

Combinatorics

Further Topics

Traps 13

OVERFLOWS! Especially when M is around 1 billion and
you have multiplications. Every operation you do should
be modded after. One nicer way is to add helper functions
add_mod and multiply_mod.

Depending on how careful you are, you may want to mod
the arguments to multiply_mod too.

Negatives! If you have subtractions, you should usually
write your own sub_mod function that does
(((a − b)%M) + M)%M

Mod is slow compared to add and subtract. If you are
doing a lot of add_mod and sub_mod, you might need to
optimize down how many mods you do.
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Primes 14

A prime number (or a prime) is a natural number greater
than 1 that has no positive divisors other than 1 and itself
Primes are the fundamental building blocks of all of
number theory
Fundamental Theorem of Arithmetic: any positive integer
greater than one can be uniquely expressed as a product of
prime powers
Problems involving factorization or multiplication often
reduce to looking at the prime factorization
The important algorithmic problems are primality testing,
prime factorization and finding all factors of a number
Depending on the problem we will either want this for a
specific number (but possibly very big) or for all numbers
(up to a smaller bound)
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Primality testing and Factorization 15

Algorithm For every possible factor f of n, check if it
divides.

Naive approach is O(n), but we can do better.

Observe that if an f1 >
√

n is a factor, then there must be
another f2 <

√
n that is also a factor. Therefore we need

only check factors f ≤
√

n.

We can easily tweak this to also give all prime factors.

Complexity O(
√

n) time
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Primality testing and Factorization 16

Implementation
#include <bits/stdc++.h>
using namespace std;

bool isprime(int x) {
if (x < 2) return false;

for (int f = 2; f*f <= x; f++)
if (x % f == 0)

return false;

return true;
}

// Returns prime factors in increasing order with right multiplicity.
vector<int> primefactorize(int x) {

vector<int> factors;
for (int f = 2; f*f <= x; f++)

while (x % f == 0) {
factors.push_back(f);
x /= f;

}

if (x != 1) factors.push_back(x);
return factors;

}
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Finding all primes/factorizations 17

We use the Sieve of Eratosthenes.

Algorithm Starting with 2, mark all multiples of 2 as
composite. Then, starting with the next smallest number
not marked composite (which therefore must be prime), 3,
mark out all its multiples and repeat until we hit the upper
bound. Every unmarked item must be a prime. This can
be trivially modified to also prime factorize all numbers.
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Finding all primes/factorizations 18

bool marked[N+1];
vector<int> primefactorization[N+1];
for (int i = 2; i <= N; i++) {

if (!marked[i]) {
primefactorization[i].push_back(i);
for (int j = 2*i; j <= N; j += i) {

marked[j] = true;
int tmp = j;
while (tmp % i == 0) {

primefactorization[j].push_back(i);
tmp /= i;

}
}

}
}
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Finding all primes/factorizations 19

Complexity For some upper bound N and each prime p,
we must strike out about N

p multiples, so the amount of
work we do is roughly N

p1
+ N

p2
+ . . .+ N

pP
. This is clearly

less than N + N
2 + N

3 + . . .+ N
N , so by harmonic series we

can say that this algorithm runs in O(N logN) time.
More precisely, it is known that

∑
p<N

1
p = O(log logN).

So the running time is O(N log logN).
The algorithm itself can be optimised even more, though
this is not usually necessary

Throw away the even numbers (2× speed up)
For each prime, start marking at its square because the
smaller multiples will be marked already
All primes that aren’t 2 or 3 are congruent to 1 or 5 mod 6.
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Finding factorization of all numbers 20

Two choices. Either find all prime factors then recover the
full factorization (exercise). Or do it directly.

Algorithm For all numbers d from 1 to N, add d as a
factor to all multiples of d up to N.

Complexity N
1 + N

2 + . . . = O(N logN).
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Useful algorithms 21

Single Primality Testing: O(
√

n) is easy. Miller-Rabin is
better and runs in O(12 · log n) for n < 264.

Single Factorization: Generally O(
√

n) is good enough.
Pollard’s rho runs in O(n1/4), expected.

Testing all primes/prime factorizing up to N:
O(N log logN) is good enough/optimal.

Factorization up to N: O(N logN) is optimal.
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Goldbach’s conjecture 22

Problem statement Goldbach’s conjecture states that
every even integer greater than 4 can be expressed as the
sum of two odd primes. For some even integer n, find a
pair of odd primes that sums to n.

Input A single integer n, 5 ≤ n ≤ 1, 000, 000

Output A line containing a and b, two odd primes that
sum to n, or “Goldbach’s conjecture is wrong” if no such
numbers exist
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Goldbach’s conjecture 23

Algorithm We know that we have to do something with
primes. So let’s start by generating all primes up to n,
using the sieve.

After we generate our list of primes, the remaining
problem is “given an integer, find a pair from this list that
sums to the integer”
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Goldbach’s conjecture 24

We can solve this problem in O(n) time using a set with a
fast membership test

Since our elements are all small integers, we can just use a
boolean array

Complexity To create our list of primes, we use our
O(n log log n) time, O(n) space sieve to transform this into
a simpler problem which we can solve in O(n) time and
O(n) space. So this algorithm runs in O(n log log n) time
and O(n) space.
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Goldbach’s conjecture 25

#include <iostream>
using namespace std;

const int N = 1001001;
int primes[N], P, notprime[N];

int main() {
// sieve
notprime[0] = notprime[1] = 1;
for (int i = 2; i < N; i++) {

if (notprime[i]) continue;
// if i is prime, mark all its multiples as not prime
primes[P++] = i;
for (int j = i*i; j < N; j += i)

notprime[j] = true;
}

int n;
cin >> n;
while (n) {

// scan primes[] for pair adding to n
for (int i = 1; i < P; i++) {

int p = primes[i], q = n-p;
if (!notprime[q]) {

cout << n << " = " << p << " + " << q << '\n';
break;

}
}
cin >> n;

}
}
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Greatest common divisor 26

gcd(a, b) is the greatest integer that divides both a and b

One of the most commonly used tools in solving number
theory problems

A few useful facts

gcd(a, b) = gcd(a, b − a)

gcd(a, 0) = a

gcd(a, b) is the smallest positive number in
{ax + by : x, y ∈ Z}
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Greatest common divisor 27

Can be computed with the Euclidean algorithm, which is
the repeated use of the first property above:

gcd(a, b) = gcd(a, b − a)

Usually, you’ll use a similar rule, gcd(a, b) = gcd(a, b%a)

This has a complexity of O(log(a + b)) because if a < b
then b%a < b

2 so a number halves each time.
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Greatest common divisor 28

Implementation
int gcd(int a, int b) {

return b ? gcd(b, a % b) : a;
}

Some versions of <algorithm> have a __gcd function
already defined, but it’s not always clear when it’s
available. It’s only one line; you may as well just write it
yourself

This also gives you lowest common multiple in O(log n)
since

lcm(a, b) = ab
gcd(a, b) .
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Extended Euclidean algorithm 29

As with the Euclidean algorithm, we incrementally apply
the gcd(a, b) = gcd(a, b − a) rule until we’ve found the
GCD, but we also explicitly write the intermediate
numbers as integer combinations of a and b, i.e. we find x
and y where

ax + by = gcd(a, b),

which is called Bézout’s identity

This is useful for solving linear equations. We can also use
it to find modular inverse.

The generalization is CRT, the Chinese Remainder
Theorem. This allows you to find a x that solves a family
of equations {aix ≡ bi (mod mi)}k

i=1 quickly.
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Extended Euclidean algorithm 30

Implementation
int gcd(int a, int b, int& x, int& y) {

if (a == 0) {
x = 0; y = 1;
return b;

}
int x1, y1;
int d = gcd(b % a, a, x1, y1);
x = y1 - (b / a) * x1;
y = x1;
return d;

}
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Matrices 32

Usually, complicated matrix operations do not come up

Most useful applications in competitions just involve
matrix multiplication

Solving linear systems using Gaussian elimination and
calculating rank is sometimes used
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Matrix Multiplication 33

Hopefully you still remember how to multiply matrices.

If C = A · B then

Ci,j =
N∑

k=1
Ai,kBk,j

This gives an immediate O(n3) algorithm. Good enough
for competitions.



Mathematics

Number
Theory
Modular
Arithmetic
Primes
GCD

Algebra

Combinatorics

Further Topics

Matrix Multiplication 34

// Implementation for square matrices.
struct Matrix {

int n;
vector<vector<long long>> v;

Matrix(int _n) : n(_n) {
v.resize(n);
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
v[i].push_back(0);

}

Matrix operator*(const Matrix &o) const {
Matrix res(n);
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)

res.v[i][j] += v[i][k] * o.v[k][j];
return res;

}
};
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Matrix Exponentiation 35

The most interesting applications involve matrix
exponentiation. This is the problem of calculating Ak

where k might be large (e.g: k = 1018).

We use the same repeated squaring trick we use for
calculating ak. The only difference is in our definition of
multiply.

Complexity is O(n3 log k) where n is the side length of the
matrix.
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Matrix Exponentiation 36

// Implementation for square matrices.
struct Matrix {

int n;
vector<vector<long long>> v;
// Assume these have been implemented.
Matrix(int _n);
Matrix operator*(const Matrix &o) const;

static Matrix getIdentity(int n) {
Matrix res(n);
for (int i = 0; i < n; i++)

res.v[i][i] = 1;
return res;

}

Matrix operator^(long long k) const {
Matrix res = Matrix::getIdentity(n);
Matrix a = *this;
while (k) { // building up in powers of two

if (k&1) res = res*a;
a = a*a;
k /= 2;

}
return res;

}
};
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Applications to Graphs 37

The adjacency matrix of a directed graph is a square
matrix with side length n and entries
Ai,j = num edges i → j.

We can rephrase this to say A is the matrix that counts
the number of length 1 paths between vertices.

Then it is not hard to check that Ak is the matrix whose
(i, j)-th entry is the number of length k paths from i to j.

So we can find the number of length k paths from a to b
in O(n3 log k).

We can similarly e.g: find the shortest length k path from
a to b.
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Applications to Recurrences 38

One very nice application is solving linear recurrences with
constant coefficients.

These are recurrences of the form

an = c1an−1 + . . .+ ckan−k

where ci are constants. The question is to find an for a
large n (say n = 1018).

Well known example: Fibonacci numbers.
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Example: Fibonacci numbers 39

Fibonacci numbers are specified by:

F(0) = 0
F(1) = 1
F(n) = F(n − 1) + F(n − 2) for n ≥ 2
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Example: Fibonacci numbers 40

You should know an O(n) time, O(n) memory (even O(1)
memory!) algorithm.

Here is another algorithm. We can solve the recurrence2

for the closed form:

F(n) = φn − ψn

φ− ψ
,

where φ = 1+
√

5
2 and ψ = 1−

√
5

2 .

“Constant time” - it’s a little more complicated than that

Precision issues - the numbers in the sequence grow
exponentially quickly

2maybe you remember this from MATH1081
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Example: Fibonacci numbers 41

Here is a better algorithm. We can rewrite our earlier
recurrence in the form:(

Fk+2
Fk+1

)
=

(
1 1
1 0

)(
Fk+1
Fk

)
Repeatedly multiplying this out, we get:(

Fn+1
Fn

)
=

(
1 1
1 0

)n (1
0

)
And we can calculate the middle matrix in O(log n)!

Hence we can find Fn in O(log n) (assuming multiplication
is O(1), for this to be true we need to be working mod
some M).
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Applications to Recurrences 42

This works more generally for any constant coefficient
linear recurrence

an = c1an−1 + . . .+ ckan−k

We get that

an+k
...

an+1

 =



c1 c2 c3 · · · ck−1 ck
1 0 0 · · · 0 0
0 1 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


an+k−1

...
an



Exponentiating the matrix gives us an in
O(log n · (cost of matrix multiplication)) = O(k3 log n).
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Example: Freddy Frog 43

Problem Statement: Freddy the Frog has entered a new
pond. This pond has n + 1 lilypads in a row. Freddy is at
lilypad 0 and wants to get to lilypad n.
Freddy has mastered k different kinds of jumps, the ith
jumping Freddy forward di lilypads.
How many ways can Freddy reach the nth lilypad? Two
ways are different if the sequence of jumps Freddy
performs is different. Output the answer modulo
1, 000, 000, 007.

Input Format: First line, 2 integers n and k
(1 ≤ n ≤ 109, 1 ≤ k ≤ 100).
The next line has k integers, the jumps Freddy has
mastered. Each integer is unique and in the range [1, 100].
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Example: Freddy Frog 44

Sample Input:
4 2
1 2
Sample Output: 5
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Example: Freddy Frog 45

There is a straight forward DP here. Let Wn be the
number of different ways to reach lilypad n. What is the
recurrence for Wn?

Wn =
k∑

i=1
Wn−di

where the di are Freddy’s jump distances.

This gives an O(nk) solution. How do we speed it up?

Either notice we are repeating the same operation over
and over, hence exponentiation is a good idea. Or directly
note this is a linear recurrence with constant coefficients.
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Example: Freddy Frog 46

const long long MOD = 1000*1000*1000+7;
const int MAXJUMP = 100;

struct Matrix {
Matrix(int _n);
Matrix operator*(const Matrix &o) const; // modulo MOD throughout
static Matrix getIdentity(int n);
Matrix operator^(long long k) const;

};

int main() {
int n, k;
cin >> n >> k;
Matrix rec(MAXJUMP);
for (int i = 0; i < k; i++) {

int d;
cin >> d;
rec.v[0][d-1] = 1; // top row of transition matrix

}

for (int i = 1; i < MAXJUMP; i++)
rec.v[i][i-1] = 1; // other rows of transition matrix

rec = rec^n;
// (w_n, w_{n-1},...,w_{n-99}) is n steps forward
// from (w_0,w_{-1},w_{-2},...,w_{-99})
// = (1,0,0,...,0)
cout << rec.v[0][0] << '\n';

}
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Summary 47

Matrix exponentiation (and exponentiation in general) is
useful whenever you need to find an answer for a large n
(up to 1018) with the answer built up repeatedly from the
same small pieces.

For example, in Freddy Frog we had to find the number of
paths for a large n. But paths were built up from the same
repeated building blocks, the jumps Freddy has mastered.
Hence we should suspect matrix exponentiation.
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Combinatorics 49

2 key tools for solving combinatorics problems. DP and
math. Often need a combination of both.

We prefer DP whenever possible. In particular, DP helps
when we have to build up the structures we are counting.

Math is helpful for determining the right thing to count
and for reducing complexity.
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Binomial coefficients 50

The binomial coefficient
(n

k
)

is the number of ways to
make an unordered selection of k elements out of a set of
n distinguishable elements

One of the most widely used tools in combinatorics
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Binomial coefficients 51

Algorithm 1 Compute directly from the formula(
n
k

)
=

n!
k!(n − k)! =

n(n − 1) · · · (n − k + 1)
k!

Complexity O(min(k, n − k)) to compute the factorials,
although parts of this can be precomputed for repeated
uses. The intermediate values can become very large,
however this problem can be avoided by rearranging this
formula in terms of alternating multiplication and division
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Algorithm 2 Compute from the recurrence(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
Complexity There are O(nk) total values of

(n
k
)
, and it

takes O(1) time to compute each value, so this takes
O(nk) time
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However, we actually rarely use either of the above
approaches because generally you’ll be working mod a
prime P.

And math mod P is nicer because we can’t overflow and
don’t have precision issues!
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Problem statement Compute
(n

k
)

mod 1, 000, 000, 007

Input Two integers n and k, 0 ≤ k ≤ n ≤ 1, 000, 000

Output A line containing
(n

k
)
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Algorithm We can’t use the recurrence here; O(nk) is too
slow when n and k are each up to 1,000,000

The only viable method is using the formula(
n
k

)
=

n!
k!(n − k)!

We need to be able to divide in our modulus, i.e. compute
inverses

Luckily, 1,000,000,007 is a prime (what a crazy random
happenstance!)
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We can solve the problem in O(1) per query after
computing factorials and their inverses, using Fermat’s
little theorem and fast exponentiation

We precompute every factorial and its corresponding
inverse, since there are only O(n) of either of these.

Complexity After O(n logMOD) precomputation, we can
answer each query in O(1) time.
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Implementation
typedef long long ll;

const int N = 1001001;
ll f[N];
ll modpow(ll a, ll b, int c); // as earlier, but modulo c

ll inv(ll x) {
return modpow(x, MOD-2, MOD); // Fermat's little theorem

}

int main() {
// factorials
f[0] = 1;
for (int i = 1; i < N; i++)

f[i] = (i * f[i-1]) % MOD;

int T;
cin >> T;
for (int i = 0; i < T; i++) {

int n, k;
cin >> n >> k;
ll res = (f[n] * inv(f[n-k])) % MOD;
res = (res * inv(f[k])) % MOD;
cout << res << '\n';

}
}
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Probability and expected value problems are usually just
combinatorics problems where you have to divide by
something.

Note that expectations are linear: for random variables X
and Y and a constant c,

E(X + c) = E(X) + c
E(X + Y) = E(X) + E(Y)

E(cX) = cE(X)
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Fun riddle: n people each throw their hats into the air. A
random hat lands on each person’s head. What’s the
expected number of people that get their own hat back?

Answer: 1. The probability that each individual person get
their own hat back is 1/n, hence by linearity of
expectations, the expected number of people that gets
their own hat back is 1/n · n = 1.

This is a demonstration of a more general principle: to
count something, often we should break it into smaller
parts which we instead count.
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Problem Statement: Given a tree, pick two vertices at
random. 3

What is the expected length of the unique simple path
between the 2 vertices?

Input Format: First line one integer, n
(1 ≤ n ≤ 100, 000), the number of vertices. Followed by
n − 1 lines describing the edges in the tree, each as a pair.

3Pick the first uniformly at random then the second. The same vertex
may be picked twice.



Mathematics

Number
Theory
Modular
Arithmetic
Primes
GCD

Algebra

Combinatorics

Further Topics

Example: Path Length on Tree 61

First it is worth noting that the number of choices is just
n2. So expected value is equal to

(sum of lengths over all paths)
n2

Ignoring the denominator, this is just a combinatorics
problem.
There are 2 ways to go about this. One is to approach it
directly.
Let u be the first vertex picked and v the second. Then it
suffices to find the sum of path lengths of all paths with u
as an endpoint. The answer is then the sum of this over
all u. In other words,

(sum of lengths over all paths)

=
n−1∑
u=0

n−1∑
v=0

path_length(u, v)
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Consider for now just the sum over all v in the subtree of
u.

n−1∑
u=0

∑
v∈subtree(u)

path_length(u, v)

Then this is just the sum of depths of the subtree at u.
How to calculate this quickly for all u?

Tree DP!
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const int N = 100100;
vector<int> children[N]; // assume prepopulated , with root 0
int subtreeSize[N]; // size of each subtree
long long sumOfDepths[N]; // sum of depths of each subtree

void calcSubtreeSums(int c = 0) {
subtreeSize[c] = 1;
for (int ch : children[c]) {

calcSubtreeSums(ch);
subtreeSize[c] += subtreeSize[ch];
// Each depth in ch's subtree increases by 1
// when we move from ch to c.
sumOfDepths[c] += subtreeSize[ch] + sumOfDepths[ch];

}
}
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Common nuisance: handling subtrees is easy, but the part
above u is a pain. Usually doable but more technically
involved.

An alternative fix here is to instead count over the lca, not
over u.

(sum of lengths over all paths)

=
n−1∑
l=0

∑
(u,v)

lca(u,v)=l

path_length(u, v)
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Not hard to implement. lca(u, v) = l holds exactly when

u and v are in the subtree of l but

they are not both in the same subtree of one of the
children of l.

Next slide has code but it isn’t the main point of this
example. Just for completeness.
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const int N = 100100;
vector<int> children[N]; // assume prepopulated , with root 0
int subtreeSize[N]; // size of each subtree
long long sumOfDepths[N]; // sum of depths of each subtree

// counts unordered pairs, so double the answer
long long sumOfPathLengths(int l = 0) {

long long sumPaths = 0;
for (int ch : children[l]) {

sumPaths += sumOfPathLengths(ch);
}
// 1 to make sure we count paths starting at l.
long long numNodesSeen = 1;
long long sumDepthsSoFar = 0;
for (int ch : children[l]) {

// consider all paths from nodes seen to nodes in this subtree.
sumPaths += sumDepthsSoFar * subtreeSize[ch];
// again, we add subtreeSize[ch] since we need sum of depths relative to

l, not ch
sumPaths += numNodesSeen * (sumOfDepths[ch] + subtreeSize[ch]);
sumDepthsSoFar += sumOfDepths[ch] + subtreeSize[ch];
numNodesSeen += subtreeSize[ch];

}
return sumPaths;

}
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Nicer solution: Break our sum down into smaller parts.
What are our parts? Natural thing that paths break down
into.

Edges.

For each edge, we will count the number of paths
containing it. Then we claim:

(sum of lengths over all paths)
=

∑
e∈E(G)

num_paths_containing(e)
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Question: What is a formula for number of paths
containing the edge e : u → v? Suppose u is the parent of
v.

Answer: (number of nodes outside the subtree of v)
multiplied by (number of nodes in the subtree of v).

Using our earlier array names, this is just

(n − subtree_size[v])× subtree_size[v].
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const int N = 100100;
vector<int> children[N]; // assume prepopulated , with root 0
int subtreeSize[N]; // size of each subtree

int n;

// counts unordered pairs, so double the answer
long long sumOfPathLengths(int c = 0) {

long long sumPaths = 0;
for (int ch : children[c]) {

sumPaths += sumOfPathLengths(ch);
sumPaths += (n - subtreeSize[ch]) * subtreeSize[ch];

}
return sumPaths;

}
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Problem Statement: You are trying to form a committee
again. You have already selected n people for the
committee. Each person now needs a role.
There are k possible roles. For the ith role, the committee
needs between li and ui people with this role (inclusive).
Each person needs to be assigned exactly one role. How
many ways are there to assign the roles? Two assignments
are different if any person is assigned a different role.
Output the answer modulo 1, 000, 000, 007.
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Input Format: First line, 2 integers, n and k
(1 ≤ n ≤ 200, 1 ≤ k ≤ 500).
Next k lines each describe a role, using the pair of values li
and ui (0 ≤ li ≤ ui ≤ n).

Sample Input:
4 2
1 3
1 2

Sample Output: 10
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2 different directions we can start with.

First we can try to do maths and find a closed form.

One can certainly write out an equation, but it has a lot of
binomial coefficients and it is very unclear how to get a
closed form.

But remember: this is Programming Challenges, not Math
Challenges.

So we try our second option. Build the answer up role by
role.

Aka: DP.
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What order should we do the DP in and what is the state?
Since restrictions are tied to roles, it makes sense to assign
each role at once. Else our state will have to keep track of
how many people of each role we’ve assigned.
So we want to have the state dp[r] which is number of
different assignments using just the roles up to the rth
role. Our transition is to assign role r to a set of people
(we assign one role at a time, as opposed to one person at
a time). Is our state big enough?
Pretty clearly we need to store something about the
people who have already been assigned roles.
As a start, we will try an exponential DP. We can use the
state dp[r][S] where S is the set of people who have been
assigned a role.
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Then dp[r][S] will be the number of valid assignments,
using exactly roles 1 to r and assigning roles to exactly the
set of people S.

It is worth being careful with definitions here.

dp[r][S] contains the answer to the problem, assuming only
the first r roles exist and only the people in the set S exist.
So it is the number of assignments to S of the first r roles
such that, for each of the first r roles, the number of
people with that role is in [li, ui].

What are the choices/transitions?

Transitions correspond to increasing r to r + 1 and hence
picking a set of people to give the role r + 1.
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Then we need to pick a subset of people to give role r + 1
to. This gives:

dp[r + 1][S] =
∑
S′⊆S

|S′|∈[lr+1,ur+1]

dp[r][S \ S′]

where S′ is the set of people we give role r + 1 to.

This is valid but so so slow.
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To speed it up we should note it does not matter which
set of S people we assigned a role to. People are
interchangeable (as we all know).

So dp[r][S1] = dp[r][S2] whenever S1 and S2 are sets of the
same size.

So instead we will just calculate dp2[r][t] (renamed for
clarity). dp2[r][t] will be the number of valid assignments,
for roles 1 to r where exactly t people have been assigned
a role.

We should be careful to spell out exactly what this means.
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The easiest definition is dp2[r][t] := dp[r][{1, . . . , t}].

So dp2[r][t] is the number of ways to assign exactly the
roles 1 to r to a generic set of t people. Again, we only
count assignments where for each of the first r roles, the
number of people with that role is in the set [li, ui].

But we do consider these t people to be different.

This is important because otherwise we may undercount.
E.g: we need to be sure we count assignment (1, 2) as
different from assignment (2, 1).
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What is the recurrence? What are our choices/transitions?
Again, our choices/transitions are assigning people with
the role r + 1.
To calculate dp2[r + 1][t] we need to consider all ways of
assigning role r + 1 to a subset of the first t people.
That is

dp2[r + 1][t] =
∑

S′⊆{1,...,t}
|S′|∈[lr+1,ur+1]

dp2[r][t − |S′|]

(compare to previous recurrence)
Still slow. To speed this up, we should note that it no
longer matters what set S′ we pick, just its size.
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Slow recurrence:

dp2[r + 1][t] =
∑

S′⊆{1,...,t}
|S′|∈[lr+1,ur+1]

dp2[r][t − |S′|]

How many ways are there of picking a subset S′ of
{1, . . . , t} when |S′| = s for given s?

Answer:
(t

s
)
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So by grouping together all sets S′ that have the same
size, we get

dp2[r + 1][t] =
ur+1∑

s=lr+1

(
t
s

)
· dp2[r][t − s]

This recurrence is O(n) assuming we precompute our
binomial coefficients.

Much better!
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#include <bits/stdc++.h>
using namespace std;

const long long MOD = 1000000007;
const int N = 220, K = 550;
long long binom[N][N];

long long madd(long long a, long long b) {
return (a + b) % MOD;

}

void precomp() {
for (int i = 0; i < N; i++) {

binom[i][0] = 1;
for (int j = 1; j <= i; j++)

binom[i][j] = madd(binom[i-1][j-1], binom[i-1][j]);
}

}
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int l[K], u[K];
long long dp[K][N];

int main() {
precomp();

int n, k;
cin >> n >> k;

// 1-indexing is nicer as now our base case corresponds to r = 0.
for (int r = 1; r <= k; r++)

cin >> l[r] >> u[r];

// Base case:
dp[0][0] = 1;
for (int r = 1; r <= k; r++) {

for (int t = 0; t <= n; t++) {
for (int s = l[r]; s <= u[r]; s++) {

// Careful: there are no subsets of {1,..,n} with size s > t.
if (t - s < 0) continue;
dp[r][t] = madd(dp[r][t], binom[t][s]*dp[r-1][t-s]);

}
}

}
cout << dp[k][n] << '\n';

}
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Complexity? O(nk) state space with O(n) recurrence,
hence O(n2k).
This is common for many counting problems.
First, you should always consider whether you can get
away with DP for combinatorics. For non-simple, non-well
known examples it is generally a lot easier than finding a
closed form.
Until you are used to it, it is worth starting with the
exponential DP.
Then to improve the state space and recurrence, you want
to exploit symmetry. Usually the objects we are assigning
are indistinguishable, so you just need to keep the count of
assigned objects.
This is why binomial coefficients show up so often in
combinatorial DP problems.



Mathematics

Number
Theory
Modular
Arithmetic
Primes
GCD

Algebra

Combinatorics

Further Topics

Example: Diverse Committee 84

The key is to be careful with what exactly your DP state
means.

Make sure you understand what the DP state meant in
this example and why the recurrence had binomial
coefficients in it.
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|A ∪ B| = |A|+ |B| − |A ∩ B|

|A ∪ B ∪ C| =
|A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C|

In general,

|A1 ∪ A2 ∪ . . . ∪ An| =
∑

I⊆{1,...,n},I ̸=∅

(−1)|I|+1|
∩
i∈I

Ai|

More often you will actually want |X \ ∪n
i=1Ai|.
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In English: Suppose you have a bunch of bad properties
{p1, . . . , pn}. You want to count the number of elements
of some set X that satisfy none of these properties.
(elements for which p1 is false AND p2 is false AND ...).
Inclusion Exclusion tells you you can flip this problem on
its head and instead count sets of elements that DO
satisfy these bad proprties.
E.g: the number of elements that satisfy neither {p1, p2} is
(# in X)
- (# that satisfy p1)
- (# that satisfy p2)
+ (# that satisfy both)
And often it is easier to count elements that satisfy
properties than ones that don’t!
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Concrete example: how many ways can I roll 2 dice such
that die 1 is ≤ 4, die 2 is ≤ 5.

It is

total number of ways (36)

− ways where die 1 is > 4 (2 ∗ 6 = 12)

− ways where die 2 is > 5 (1 ∗ 6 = 6)

+ ways where die 1 is > 4, die 2 is > 5 (2 ∗ 1 = 2)

= 20
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Problem Statement: Count the number of permutations
of length n such that for each of the first k elements,
pi ̸= i.
Output the answer modulo 1,000,000,007.

Input Format: Only line, 2 integers, n and k
(1 ≤ n ≤ 100, 000, 1 ≤ k ≤ 15).
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Why is this hard to do directly?

Roughly because if you assign one of the first k values to
the first position then this affects the answer a lot. So
you’ll have to remember this.

Using this, one can do an exponential DP. But
inclusion/exclusion is cleaner here and generalizes better.
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Instead of counting permutations that don’t have fixed
points, inclusion/exclusion tells us we should count
permutations that DO!

Formally, the bad properties we want to avoid are
{P1, . . . ,Pk} where Pi is the property that pi = i.

So we instead count the number of permutations that
satisfy some subset of the {P1, . . . ,Pk} and then
aggregating this over all subsets.
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Why is this easier? How do we count the permutations
that satisfy e.g: P1 and P2? What does this even mean?

It means that p1 = 1 and p2 = 2. That’s it.

So the number of permutations satisfying P1 and P2 is
just (n − 2)!.

So for any subset of the bad properties, S ⊆ {P1, . . . ,Pk},
the number of permutations satisfying S is just (n − |S|)!.
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Hence the number of permutations avoiding all bad
properties is just ∑

S⊆{P1,...,Pk}

(−1)|S|(n − |S|)!
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#include <bit>
#include <iostream>
using namespace std;

typedef long long ll;

const ll MOD = 1000*1000*1000+7;
const int N = 100100;
ll fact[N];

inline ll madd(ll a, ll b) { return ((a + b) % MOD + MOD) % MOD; }

int main() {
fact[0] = 1;
for (int i = 1; i < N; i++)

fact[i] = (i * fact[i-1]) % MOD;

int n, k;
cin >> n >> k;
ll ans = 0;
for (int i = 0; i < (1 << k); i++) {

int bitcount = popcount(i); // __builtin_popcount() before C++20
int sign = (bitcount % 2) ? -1 : 1;
ans = madd(ans, sign * fact[n-bitcount]);

}
cout << ans << '\n';

}
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Complexity? O(n + 2k).

Actually we can do better. In the code, note that we don’t
care what the exact subset is, just its size.

So we can do all
(k

i
)

subsets of size i at once, for each
value of i ∈ [0, k].
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inline ll madd(ll a, ll b) { return ((a + b) % MOD + MOD) % MOD; }
inline ll mmult(ll a, ll b) { return (a*b) % MOD; }
// Add your modinv (and probably your modpow) code here
ll modinv(ll x);

ll fact[N], invfact[N];

ll choose(ll n, ll r) {
return mmult(fact[n], mmult(invfact[r], invfact[n-r]));

}

int main() {
fact[0] = invfact[0] = 1;
for (int i = 1; i < N; i++) {

fact[i] = (i * fact[i-1]) % MOD;
invfact[i] = modinv(fact[i]);

}

int n, k;
cin >> n >> k;
ll ans = 0;
for (int i = 0; i <= k; i++) {

int sign = i % 2 ? -1 : 1;
// (-1)^i * (K choose i) * (N-i)!
ll cways = mmult(choose(k, i), fact[n-i]);
ans = madd(ans, sign * cways);

}
cout << ans << '\n';

}
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Complexity? O(n logMOD).

Why was inclusion/exclusion helpful here? Because
counting permutations with fixed points is much easier
than counting permutations without fixed points.
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This covered some of the critical topics in maths, though
far from all of them.

I’ve biased towards topics that are more algorithmic and
less mathematical.

Some further critical topics I omitted:

In Number Theory: Chinese Remainder Theorem. The
crucial tool for solving systems of linear congruence
equations.

Fast polynomial multiplication using FFT.

Computational geometry.
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Some fun stuff to look at (beyond course scope):

Grundy numbers
Surreal numbers
Blue/Red/Green
Hackenbush
Chinese remainder theorem
Burnside’s lemma
Pick’s theorem
Euler’s totient function
Simpson’s rule
Minkowski sums
Karatsuba algorithm

Möbius inversion formula
Cycle Space
Matroids
Shank’s algorithm
Cayley’s formula
Kirchhoff’s matrix tree
theorem
Catalan numbers
Stern-Brocot tree
Continued fractions
AKS
Miller-Rabin


	Number Theory
	Modular Arithmetic
	Primes
	GCD

	Algebra
	Combinatorics
	Further Topics

