		ductio				

Admir

Classes

Assessment

Competitions and Practice

Solving Problems

Introduction COMP4128 Programming Challenges

School of Computer Science and Engineering UNSW Sydney

Term 3, 2023

Instructors

Introduction

Admin

Classes

Assessment

Competitions and Practice

Solving Problems • Lecturer: Raveen de Silva (he/him)

• Email me: cs4128@cse.unsw.edu.au

 Tutors and lab assistants: see https://www.cse.unsw.edu. au/~give/Admindata/23T3/COMP4128_timetable.html

• Sign up for the Ed forum

Course Goals

Introduction

Admin

- Classes
- Assessment
- Competitions and Practice
- Solving Problems

• Learn algorithms and data structures

• Develop problem solving ability

 $\bullet\,$ Practice implementing algorithms in C++

• Prepare for programming competitions

Why competitive programming?

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- It's fun
 - Most of the time
 - For those who enjoy a challenge
- Become part of a community
 - Rapidly growing at UNSW
 - Active society (CPMSoc)
- Develop your skills
 - Learn to solve *self-contained* problems *quickly* and *accurately*
 - The exact skills required in most technical interviews!

Prerequisites

Introduction

Admin

- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- \bullet Significant programming experience in C or C++
- Understanding of fundamental data structures and algorithms up to COMP2521
 - Arrays, structs, heaps, merge sort, BSTs, graph search, etc
- COMP3121/3821, although most content will be reintroduced
- Most important: enthusiasm for problem solving

Topic Overview

Introduction

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Problem Solving Paradigms
- Data Structures
- Dynamic Programming
- Graph Algorithms & Shortest Paths
- Network Flow
- Mathematics

There is a tentative course schedule on the website.

Table of Contents 8 Introduction Classes 2 Classes

5 Solving Problems

Lectures

Introduction

Admin

Classes

Assessment

Competitions and Practice

Solving Problems • Tue 14:00 - 16:00 at Patricia O'Shane G02

• Thu 14:00 - 16:00 at Old Main Building G31

• Live streams and recordings on Echo360, via Moodle

Introduction

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

• Lectures for each topic will present the theory, and apply this to some example problems

• Any code in lectures will be in C++ $\,$

• Slides will be available before each lecture

• Please ask questions at any time if anything is unclear

Consultation

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Weeks 1–10:
 - Tue and Thu 16:00 17:00 at my office (K17 202)
 - Email me for other arrangements (remote and/or other times)
 - I'm not usually on campus other than Tuesday and Thursday afternoons
- Additional consultations during STUVAC and the exam period, schedule TBA

Tute/Labs

Introduction

Admin

Classes

Assessment

Competitions and Practice

Solving Problems

• Face to face (W14A, F09A, F11A, F15A)

• See timetable for rooms

• Online (W14B)

• Blackboard Collaborate, access via Moodle

Tute/Labs

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- One hour tutorial, usually on one or two example problems based on recent lectures
 - F2F: work through tutorial sheet in small groups
 - Online: tutor will lead discussion and demonstrate how to implement and test a solution
- Two hours lab
 - Work on the weekly problem sets with your classmates
 - Tutors will help you with the problem sets and other questions
 - Tutors will give hints for all problems
 - Get problem diaries marked off

Timetable Notes

Introduction

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- All times are in AEST (UTC+10) until the 1st of October, then AEDT (UTC+11) thereafter
- No tute/labs in week 6 (flexibility week)
- Lecture schedule in week 6 TBC

• Likely one revision lecture, maybe one guest lecture

Table of Contents 15 Introduction Assessment 3 Assessment

5 Solving Problems

Assessment Breakdown

Introduction

Admir

Classes

Assessment

Competitions and Practice

Solving Problems • Weekly problem sets: 40%

• Problem diary: 8%

• Contests: 18%

• Final: 34%

Problem Sets

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- A set of 5 problems will be released each week except weeks 6 and 10
- Problem sets are conducted on vjudge
 - Make an account using your zID as the username
 - Join our group
- Suggested timeframe is two to three weeks

Problem Sets

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- \bullet Worth 5% each, for a total of 40%
- Marks are awarded non-linearly. As a rough guide:
 - for PS, aim for 1 per set
 - for CR, aim for 2 per set
 - for DN, aim for 3 per set
 - for HD: aim for 4 per set

Problem Sets

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Some problems will take you minutes, others will take you days
- Work together
 - You are encouraged to discuss problems and share test cases
 - Code must be written individually
 - Acknowledge any collaboration in a header comment
 - Review plagiarism policy

Late Submissions

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- No deadlines, no late penalties
 - Special Consideration not required
- Don't fall behind!
 - Contact me and your tutor if you experience interruptions to your studies
 - We will try to keep you up to date, including estimates if required

Problem Diary

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Up to 3 pages (excl code snippets) explaining:
 - your problem-solving process,
 - any challenges you encountered and
 - how you overcame them.
- Write about every problem, whether you solved it or not
- No need to give detailed descriptions or proofs as in the Algorithms courses
- Get marked off during lab time, and submit any outstanding entries by end of exam period
- \bullet Worth 1% each, for a total of 8%

Contests

22

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Register on DOMjudge (coming soon)
- Individual (unlike ICPC)
- Aims:
 - practice coding in a time-constrained environment
 - practice solving problems using a variety of available techniques
 - prepare for the final exam

Contest 1

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- At the end of week 1, you will undergo a timed contest with 5 problems, to be completed within 48 hours
- No new material will be tested; only COMP2521 knowledge (e.g. sorting, binary search) is needed
- Test whether your programming fundamentals are sufficient to proceed to the later stages of the course
- We recommend that you try to complete the task within a shorter time frame, say 5 hours, but the full time is available in this case to minimise stress for you

Contests 2 and 3

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- In weeks 5 and 9 (TBC), you will undergo a timed contest with 3 problems, to be completed within 3 hours
- We will run up to 8 timeslots over a 24 hour period, to allow for time differences
- Further details will be released closer to the date of each contest
- Each problem will be worth 100 points and have a 50 point subtask
- Marks are awarded non-linearly. As a rough guide:
 - for PS, aim for 50 points
 - for CR, aim for 100 points
 - for DN, aim for 150 points
 - for HD, aim for 200 points

Final Exam

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- The final exam will be a timed contest with \sim 8 problems, to be completed within 5 hours
- Ideally participate from CSE labs
- Remote option if you can't attend in person, e.g. overseas
- Further details will be released closer to the date of the exam

Table of Contents 26 Introduction Competitions and Practice **4** Competitions and Practice

5 Solving Problems

Competitions: ACM-ICPC

Introduction

Competitions and Practice

- Regional Finals on October 1
 - 2 bonus marks for volunteering (email me), or for participating or volunteering in the Preliminary Contest on Sep 3
 - ANZAC League
 - Practice contests
 - Round 6 on Sep 13, Round 7 on Sep 20

Competitions: other

28

- Big companies
 - Meta: Hacker Cup

Practice

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- The best practice is to solve lots of interesting problems
- Join CPMSoc
 - Fortnightly workshops
 - Other events including competitions
- Online problem sets and competitions
 - Online judges: Codeforces, TopCoder, CodeChef, AtCoder, etc
 - Informatics Olympiad training resources: USACO, ORAC
 - Maths: Project Euler

Table of Contents 30 Introduction Solving Problems

The Anatomy of a Contest Problem

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Problem statement, describing the problem using flavour text
- Input and output specification
- Constraints
- Time limit (usually 1s) and memory limit (usually enough)
- Sample testcases, sometimes with explanation

Judging

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Your program will first be compiled
 - If this fails, you get COMPILE-ERROR
 - C++ compile errors are notoriously opaque
- Your program will then be run on the sample testcases and several secret testcases, including
 - large cases for stress testing
 - edge cases to catch bugs

Verdicts

Introduction

Solving Problems

- There are several reasons for your submission to be unsuccessful
 - WRONG-ANSWER: your program produced incorrect output for at least one test case
 - TIME-LIMIT: your program exceeded the time limit for at least one test case
 - RUN-ERROR: many possible reasons, but most commonly because your program crashed for at least one test case
 - If more than one of these apply, you could get any of them (depends on the judge)
- The CORRECT verdict is given if your program produced correct output within the time limit for every test case

How to Solve a Problem

Introduction

Solving

Problems

- Read the problem statement
 - Reformulate and abstract the problem away from the flavour text
 - Check carefully for any special conditions which might be easy to miss – seemingly small changes to the statement can change the problem greatly
- Identify the input and output specification and any constraints that apply
- Confirm your understanding of the problem using the sample cases

How to Solve a Problem

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- Design an algorithm to solve the problem
 - Estimate the runtime of your algorithm
- Implement the algorithm
 - Debug the implementation often the most time consuming step
- Submit!

Example problem: A + B

- Admin
- Classes
- Assessment
- Competitions and Practice
- Solving Problems

- **Problem statement** Alice and Bob are two friends who are visiting a milk bar. The milk bar is owned by the crotchety old Mr Humphries. If Alice buys *A* dollars worth of items and Bob buys *B* dollars, how much must they pay in total?
- Input Two integers, A and B ($0 \le A, B \le 10$)
- **Output** A single integer, the total amount Alice and Bob must pay.

Example problem: A + B

Example problem: A + B

Introduction

Admin

Classes

Assessment

Competitions and Practice

Solving Problems

• Complexity O(1) time and O(1) space

Implementation

```
#include <iostream>
using namespace std;
int main() {
    // read input
    int a, b;
    cin >> a >> b;
    // compute and print output
    cout << (a + b) << '\n';
}</pre>
```