School of Computer Science and Engineering
UNSW Sydney

Term 3, 2023



O Admin
© Classes

© Assessment
@ Competitions and Practice

© Solving Problems



@ Lecturer: Raveen de Silva (he/him)

o Email me: ¢s41280@cse.unsw.edu.au

e Tutors and lab assistants: see https://www.cse.unsw.edu.
au/~give/Admindata/23T3/COMP4128_timetable.html

@ Sign up for the Ed forum


mailto:cs4128@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~give/Admindata/23T3/COMP4128_timetable.html
https://www.cse.unsw.edu.au/~give/Admindata/23T3/COMP4128_timetable.html
https://edstem.org/au/join/QgW77B

Learn algorithms and data structures

Develop problem solving ability

@ Practice implementing algorithms in C4++

Prepare for programming competitions



Why competitive programming?
Introduction
@ It's fun
adn e Most of the time
e For those who enjoy a challenge
@ Become part of a community
e Rapidly growing at UNSW
e Active society (CPMSoc)
@ Develop your skills

e Learn to solve self-contained problems quickly and
accurately

o The exact skills required in most technical interviews!


https://www.unswcpmsoc.com/

Prerequisites

Introduction

Significant programming experience in C or C4++
Admin

Understanding of fundamental data structures and
algorithms up to COMP2521

e Arrays, structs, heaps, merge sort, BSTs, graph search, etc

COMP3121/3821, although most content will be
reintroduced

Most important: enthusiasm for problem solving



Topic Overview

Introduction

@ Problem Solving Paradigms
Admin

Data Structures

@ Dynamic Programming

Graph Algorithms & Shortest Paths

Network Flow

@ Mathematics

There is a tentative course schedule on the website.


https://www.cse.unsw.edu.au/~cs4128/23t3/outline/#course-schedule

@ Admin
© Classes

© Assessment

@ Competitions and Practice

© Solving Problems



@ Tue 14:00 — 16:00 at Patricia O’Shane G02

@ Thu 14:00 — 16:00 at Old Main Building G31

@ Live streams and recordings on Echo360, via Moodle


https://moodle.telt.unsw.edu.au/mod/lti/view.php?id=5887898

Lectures 10

Introduction

@ Lectures for each topic will present the theory, and apply
Classes this to some example problems

@ Any code in lectures will be in C4++

@ Slides will be available before each lecture

@ Please ask questions at any time if anything is unclear



Introduction

Classes

Consultation 11

o Weeks 1-10:
e Tue and Thu 16:00 — 17:00 at my office (K17 202)

e Email me for other arrangements (remote and/or other
times)

e |I'm not usually on campus other than Tuesday and
Thursday afternoons

o Additional consultations during STUVAC and the exam
period, schedule TBA



@ Face to face (W14A, FO9A, F11A, F15A)

o See timetable for rooms

@ Online (W14B)

o Blackboard Collaborate, access via Moodle


https://www.cse.unsw.edu.au/~give/Admindata/23T3/COMP4128_timetable.html
https://moodle.telt.unsw.edu.au/mod/lti/view.php?id=5027115

Tute/Labs 13

Introduction
@ One hour tutorial, usually on one or two example problems
based on recent lectures

Classes o F2F: work through tutorial sheet in small groups

e Online: tutor will lead discussion and demonstrate how to
implement and test a solution

@ Two hours lab

o Work on the weekly problem sets with your classmates

o Tutors will help you with the problem sets and other
questions

e Tutors will give hints for all problems

o Get problem diaries marked off



Introduction

Classes

Timetable Notes 14

@ All times are in AEST (UTC+10) until the 1st of October,
then AEDT (UTC+11) thereafter

e No tute/labs in week 6 (flexibility week)

@ Lecture schedule in week 6 TBC

o Likely one revision lecture, maybe one guest lecture



@ Admin
© Classes

© Assessment
@ Competitions and Practice

© Solving Problems



@ Weekly problem sets: 40%

@ Problem diary: 8%

o Contests: 18%

o Final: 34%



Problem Sets 17

Introduction

@ A set of 5 problems will be released each week except
weeks 6 and 10

Assessment

@ Problem sets are conducted on vjudge

o Make an account using your zID as the username

e Join our group

@ Suggested timeframe is two to three weeks


https://vjudge.net
https://vjudge.net/group/cs4128-23t3?r=ZZuDvkWPoC78AhUWskq1

Introduction

Assessment

Problem Sets

e Worth 5% each, for a total of 40%

@ Marks are awarded non-linearly. As a rough guide:
e for PS, aim for 1 per set
o for CR, aim for 2 per set
o for DN, aim for 3 per set

o for HD: aim for 4 per set

18



Problem Sets 19

Introduction

@ Some problems will take you minutes, others will take you
days

Assessment

@ Work together

e You are encouraged to discuss problems and share test
cases

o Code must be written individually
o Acknowledge any collaboration in a header comment

o Review plagiarism policy


https://student.unsw.edu.au/plagiarism

Late Submissions 20

Introduction

@ No deadlines, no late penalties
Assessment o Special Consideration not required
@ Don't fall behind!

o Contact me and your tutor if you experience interruptions
to your studies

o We will try to keep you up to date, including estimates if
required



Introduction

Assessment

Problem Diary

Up to 3 pages (excl code snippets) explaining:
e your problem-solving process,
e any challenges you encountered and

e how you overcame them.

@ Write about every problem, whether you solved it or not

No need to give detailed descriptions or proofs as in the
Algorithms courses

@ Get marked off during lab time, and submit any
outstanding entries by end of exam period

Worth 1% each, for a total of 8%

21



Contests 22

Introduction

@ Register on DOMjudge (coming soon)
e Individual (unlike ICPC)

Assessment

@ Aims:

e practice coding in a time-constrained environment

e practice solving problems using a variety of available
techniques

o prepare for the final exam


https://comp4128.raveen.dev/domjudge/register

Introduction

Assessment

Contest 1 23

@ At the end of week 1, you will undergo a timed contest
with 5 problems, to be completed within 48 hours

@ No new material will be tested; only COMP2521
knowledge (e.g. sorting, binary search) is needed

@ Test whether your programming fundamentals are
sufficient to proceed to the later stages of the course

@ We recommend that you try to complete the task within a
shorter time frame, say 5 hours, but the full time is
available in this case to minimise stress for you



Contests 2 and 3 24

Introduction

@ In weeks 5 and 9 (TBC), you will undergo a timed contest
with 3 problems, to be completed within 3 hours

@ We will run up to 8 timeslots over a 24 hour period, to
S allow for time differences

@ Further details will be released closer to the date of each
contest

@ Each problem will be worth 100 points and have a 50
point subtask
@ Marks are awarded non-linearly. As a rough guide:
e for PS, aim for 50 points
e for CR, aim for 100 points
o for DN, aim for 150 points
e for HD, aim for 200 points



Introduction

Assessment

Final Exam 25

@ The final exam will be a timed contest with ~ 8 problems,
to be completed within 5 hours

@ ldeally participate from CSE labs

@ Remote option if you can't attend in person, e.g. overseas

@ Further details will be released closer to the date of the
exam



@ Admin
© Classes

© Assessment
@ Competitions and Practice

© Solving Problems



Introduction

Competitions
and Practice

Competitions: ACM-ICPC 27

@ Regional Finals on October 1

e 2 bonus marks for volunteering (email me), or for
participating or volunteering in the Preliminary Contest on
Sep 3

o ANZAC League

o Practice contests

o Round 6 on Sep 13, Round 7 on Sep 20


http://sppcontest.org/south-pacific-icpc
https://sppcontest.org/anzac-contests

o CPMSoc

e Term 3 Launch Week Contest underway, ending September
15

e Annual Programming Competition, date TBA

e other contests, workshops, etc
@ Big companies

o Meta: Hacker Cup


https://contest.unswcpmsoc.com/
https://www.facebook.com/codingcompetitions/hacker-cup

Practice 29

Introduction

@ The best practice is to solve lots of interesting problems

@ Join CPMSoc

o Fortnightly workshops
Competitions
and Practice

o Other events including competitions
@ Online problem sets and competitions

o Online judges: Codeforces, TopCoder, CodeChef, AtCoder,
etc

e Informatics Olympiad training resources: USACO, ORAC

e Maths: Project Euler


https://www.unswcpmsoc.com/
https://codeforces.com
https://www.topcoder.com/tc?module=ProblemArchive
https://www.codechef.com
https://atcoder.jp
https://train.usaco.org
https://orac.amt.edu.au
https://projecteuler.net

@ Admin
© Classes

© Assessment
@ Competitions and Practice

© Solving Problems



Introduction

Solving
Problems

The Anatomy of a Contest Problem

Problem statement, describing the problem using flavour
text

Input and output specification

@ Constraints

31

@ Time limit (usually 1s) and memory limit (usually enough)

Sample testcases, sometimes with explanation



Introduction

Solving
Problems

Judging 32

@ Your program will first be compiled

o If this fails, you get COMPILE-ERROR

o C++ compile errors are notoriously opaque

@ Your program will then be run on the sample testcases and
several secret testcases, including

e large cases for stress testing

e edge cases to catch bugs



Verdicts 33

Introduction

@ There are several reasons for your submission to be
unsuccessful

e WRONG-ANSWER: your program produced incorrect output
for at least one test case

o TIME-LIMIT: your program exceeded the time limit for at

Solving least one test case
Problems

o RUN-ERROR: many possible reasons, but most commonly

because your program crashed for at least one test case

o If more than one of these apply, you could get any of them
(depends on the judge)

@ The CORRECT verdict is given if your program produced
correct output within the time limit for every test case



How to Solve a Problem 34

Introduction

@ Read the problem statement

o Reformulate and abstract the problem away from the
flavour text

e Check carefully for any special conditions which might be
2Shine easy to miss — seemingly small changes to the statement

Problems
can change the problem greatly

@ Identify the input and output specification and any
constraints that apply

@ Confirm your understanding of the problem using the
sample cases



How to Solve a Problem 35

Introduction

@ Design an algorithm to solve the problem

o Estimate the runtime of your algorithm

Solving
Problems

@ Implement the algorithm

e Debug the implementation — often the most time
consuming step

@ Submit!



Example problem: A + B 36

Introduction

@ Problem statement Alice and Bob are two friends who
are visiting a milk bar. The milk bar is owned by the
crotchety old Mr Humpbhries. If Alice buys A dollars worth
of items and Bob buys B dollars, how much must they pay
in total?

Solving
Problems

@ Input Two integers, A and B (0 < A, B < 10)

@ Output A single integer, the total amount Alice and Bob
must pay.



o Problem Output A + B

@ Algorithm Calculate A 4+ B, and then print it out.



Complexity O(1) time and O(1) space

Implementation

#include <iostream>
using namespace std;

int main() {
// read input
int a, b;
cin >> a >> b;

// compute and print output
cout << (a + b) << '\n';




	Admin
	Classes
	Assessment
	Competitions and Practice
	Solving Problems

