
Contest 2 Editorial

COMP4128 23T3

18th October 2023

A1. Project Allocation (subtask)

Algorithm

Since k = 1, we must give the first two projects to different people: AB and BA are both valid, whereas
AA and BB are both invalid. The choice we make for these two tasks doesn’t impose any restrictions on
the future allocations, so we can choose the better of the two valid arrangements for each pair. The last
project should be given to whoever will produce greater quality.

Implementation Notes

General

� Make sure to correctly handle both the odd and even cases for n.

– You can assign the last task first.

– Alternatively, explicitly or implicitly add a dummy task with ai = bi = 0 at the end of the
odd case.

Reference Solution

// Solution by Raveen

#include <iostream >

using namespace std;

const int N = 1010;

int a[N], b[N];

int main (void) {

int n, k;

cin >> n >> k;

for (int i = 0; i < n; i++)

cin >> a[i] >> b[i];

int ans = 0;

if (n % 2 == 1) { // last task

ans += max(a[n-1],b[n -1]);

n--;

}

for (int i = 0; i < n; i += 2) // each pair is AB or BA

ans += max(a[i]+b[i+1], b[i]+a[i+1]);

cout << ans << ’\n’;

}

1

A2. Project Allocation (subtask)

Algorithm

It is natural to solve in increasing order of the number of projects. Each project will then be given to either
Arda or Bimala, so long as the difference doesn’t exceed k. To know which of these allocations is valid,
we’ll need to also keep around the number of projects given to Arda (or equivalent information).

Subproblem: let f(i, j) be the maximum total quality from the first i tasks, with j of them done by
Arda.

Recurrence: for i ≥ 1 and |j − (i− j)| ≤ k, we have

f(i, j) =

f(i− 1, j) + bi if j = 0,

max (f(i− 1, j − 1) + ai, f(i− 1, j) + bi) if 0 < j < i,

f(i− 1, j − 1) + ai if j = i.

Base cases: f(0, 0) = 0, and if |j − (i− j)| > k then f(i, j) = −∞.

Overall answer: the best total quality after all tasks are allocated, i.e. max0≤j≤n f(n, j).

Order of computation: increasing i is sufficient, since f(i, ·) depends only on f(i− 1, ·).

Implementation Notes

General

� It might be tempting to choose 0 as the default value for invalid states. Remember that this value
has to be something that can’t be achieved by a valid state; zero is unfortunately the value of the
base case (only).

� It’s easier to check validity on the fly or implicitly1 than to explicitly restrict the loop counter j.

� Both 0 projects allocated and n projects allocated are valid states, so declare the DP table slightly
larger than the input number n.

� The DP can be implemented either bottom up or top down.

Reference Solutions

// Solution by Raveen , bottom up

#include <algorithm > // max

#include <cstdlib > // abs

#include <iostream >

using namespace std;

const int INF = 1000*1000*1000+7;

const int N = 1010;

int dp[N][N];

// dp[i][j] is best score where i projects have been allocated

// j of them to Arda and the remaining i-j to Bimala

int a[N], b[N];

int main (void) {

int n, k;

cin >> n >> k;

for (int i = 1; i <= n; i++)

cin >> a[i] >> b[i];

for (int i = 0; i <= n; i++)

for (int j = 0; j <= n; j++)

dp[i][j] = -INF;

dp [0][0] = 0;

1a past subproblem with value −∞ must be invalid

2

for (int i = 1; i <= n; i++)

for (int j = 0; j <= i; j++)

if (abs(j - (i-j)) <= k) { // check valid

if (j > 0 && dp[i -1][j-1] != -INF) // Arda does project i

dp[i][j] = dp[i -1][j-1] + a[i];

if (j < i && dp[i -1][j] != -INF) // Bimala does project i

dp[i][j] = max(dp[i][j], dp[i -1][j] + b[i]);

}

int ans = 0;

for (int j = 0; j <= n; j++)

ans = max(ans , dp[n][j]);

cout << ans << ’\n’;

}

// Solution by Isaiah , top down

#include <algorithm > // max

#include <cstdio >

using namespace std;

const int INF = 1000*1000*1000+7;

const int N = 1010;

int n, k, a[N], b[N];

int cache[N][2*N];

// cache[i][j] is best score from project i (1- based) to project n

// where so far Arda has done j projects more than Bimala has

bool seen[N][2*N];

int dp(int i, int j) {

if (abs(j) > k) // invalid

return -INF;

if (i > n) // done , no more score from here

return 0;

if (seen[i][j]) // already solved

return cache[i][j];

seen[i][j] = true;

return cache[i][j] = max(a[i] + dp(i+1, j+1), // Arda does project i

b[i] + dp(i+1, j-1)); // Bimala does project i

}

int main () {

scanf("%d%d", &n, &k);

for (int i = 1; i <= n; i++)

scanf("%d%d", &a[i], &b[i]);

printf("%d\n", dp(1, 0));

}

3

B1. Tower Power (subtask)

Algorithm

The grid is only 1000× 1000, so we can store it in its entirety.

We then proceed by brute force. Each tower can fire to fewer than m + n land plots, so we can walk in
all four directions and count the visible plots one-by-one.

Implementation Notes

General

� Any kind of bounds checking should be fine here. Alternatively you could explicitly place dummy
towers throughout rows 0 and m + 1, and throughout columns 0 and n + 1.

� Make sure not to count the tower’s position towards its own power.

Reference Solution

// Solution by Ryan

#include <iostream >

using namespace std;

const int N = 1010;

bool grid[N][N];

int m, n, k;

int getPower (int r, int c) {

int rl = r;

while (rl >= 1 && !grid[rl][c]) // walk north

rl --;

int rh = r;

while (rh <= m && !grid[rh][c]) // walk south

rh++;

int cl = c;

while (cl >= 1 && !grid[r][cl]) // walk west

cl --;

int ch = c;

while (ch >= c && !grid[r][c2]) // walk east

ch++;

// exclude (r,c) from both NS and EW

return (rh - rl - 2) + (ch - cl - 2);

}

int main (void) {

cin >> m >> n >> k;

for (int i = 0; i < k; ++i) {

int r, c;

cin >> r >> c;

cout << getPower(r, c) << ’\n’;

grid[r][c] = true;

}

}

4

B2. Tower Power (full)

Algorithm

It is helpful to first think about the more restrictive bounds 1 ≤ m,n, k ≤ 100, 000. We now have a grid
too large to store in memory. Remembering that most plots will remain empty throughout, we should
hope to represent the grid much more concisely. The important information is:

� in each row, which cells have a tower, and

� in each column, which cells have a tower.

We need to represent each row and column’s cells in a data structure that allows:

� arbitrary insertion and

� query of the towers immediately before and after a new position,

each in faster than linear time. The correct data structure is std::set, with the above operations
handled by the member functions insert() and upper bound(). 2

This leaves one last issue: the original bounds allowed m and n up to 109. This means that we can’t
make a set for every row and every column. No matter; most of the rows and columns remain empty
throughout, so we can just create them for the rows and columns that appear in the input. Similar to
coordinate compression, the appropriate container is a std::map.

Implementation Notes

General

� If you choose to use dummy towers again, make sure to place them only in the rows and columns
that will eventually have at least one tower.

� Some students got the verdict COMPILE-ERROR because the linker identified their program as ex-
ceeding the memory limit. Refer to the last dot point on the tips page of the course website for
more details.

� The power of each tower is less than m + n, so 32-bit integers are sufficient.

� Make sure you don’t query a non-existent entry of the map. Recall that square bracket indexing
creates an empty entry if no entry exists already.

Reference Solution

// Solution by Evan

#include <cstdio >

#include <set >

#include <map >

using namespace std;

map <int , set <int >> row , col;

int main () {

int m, n, k;

scanf("%d %d %d", &m, &n, &k);

for (int i = 0; i < k; i++) {

int r, c;

scanf("%d %d", &r, &c);

auto next_col = row[r]. lower_bound(c);

int east = (next_col == row[r].end()) ? n : (* next_col - 1);

int west = (next_col == row[r]. begin ()) ? 1 : (* prev(next_col) + 1);

auto next_row = col[c]. lower_bound(r);

int south = (next_row == col[c].end()) ? m : (* next_row - 1);

int north = (next_row == col[c]. begin ()) ? 1 : (* prev(next_row) + 1);

2lower bound() is equivalent, since the value being queried cannot be in the set, because no two towers coincide.

5

https://www.cse.unsw.edu.au/~cs4128/23t3/tips/

printf("%d\n", south - north + east - west);

row[r]. insert(c);

col[c]. insert(r);

}

}

6

C1. One Millionth Visitor (subtask)

Algorithm

The day of the first visit is the smallest ai value (say a1, without loss of generality). Then the second
visit could be person 1’s second visit, or anyone else’s second visit. Therefore it occurs on day

min(a1 + b1, a2, a3, . . . , an).

This should inspire a solution based on simulating the visits one-by-one.

� Maintain the next visit day of each of the n visitors.

� For each visit:

– pick the smallest of these days, and

– update it by adding the appropriate bi value.

We need a data structure which supports:

� query minimum and

� update minimum (or equivalently, both delete minimum and arbitrary insert)

in faster than linear time. The appropriate data structure is a min heap.

Implementation Notes

General

� The largest day that could be relevant is day 1, 000, 000, 000 (if there is only one person, who
visits every one thousand days, and we want the one millionth visit). Therefore 32-bit integers are
sufficient.

� We’ll need to associate to every day in the heap the index of the person visiting that day, in order
to look up the appropriate bi value. In a happy coincidence, this also orders visits on the same day
for us.

Reference Solution

// Solution by Raveen

#include <iostream >

#include <queue >

#include <utility >

using namespace std;

typedef pair <int , int > visit; // (day , index)

const int N = 1001001;

int a[N], b[N];

int main (void) {

int n, k;

cin >> n >> k;

priority_queue <visit ,vector <visit >,greater <visit >> pq;

for (int i = 1; i <= n; i++) {

cin >> a[i] >> b[i];

pq.emplace(a[i],i);

}

for (int j = 1; j < k; j++) {

visit next = pq.top();

pq.pop();

pq.emplace(next.first+b[next.second],next.second);

}

cout << pq.top().second << ’\n’;

}

7

C2. One Millionth Visitor (full)

Algorithm

Now that k is up to 1012, we cannot hope to simulate the visits one-by-one.

However, the number of visits by a person up to a particular day is easily answered, using division.
Adding these numbers over all people gives us the total number of visits up to a particular day. This
quantity is of course monotonic,3 so we can use binary search to determine the day of the kth visit.

If we know the day that the prize is awarded, and the total number of visits on all prior days, it just
remains to step one-by-one through the people and count the visits on this last day, until the prize is
awarded.

Implementation Notes

General

� With the larger bounds, we will easily overflow 32-bit integers. However, the complications do not
end here!

– The largest day that could be relevant is day 1018 (if there is only one person, who visits every
one million days, and we want the 1012th visit).

– However, if we set this as the upper bound of our binary search, the total number of visits
might overflow long long (if there are one million people, who each visit every day, the
number of visits could be up to 1024).

– The correct choice is 1018/n.

* Each of the n people must visit at least once every one million days, so the total visits
are at least 1012, i.e. not smaller than k.

* Also, each of the n people could visit once per day, so the total visits will not exceed 1018

and hence fit in a long long.

� Make sure you only count visits from day ai!

� The testdata for C1 was unfortunately stronger than for C2, as some of the random cases were
regenerated with a different seed for C2 rather than copied. Some students solved C2 but not
C1, despite having bugs in their programs. Fortunately, no student whose submission for C1 was
rejected would have solved C2 with the same program, so the error at least affected everyone
equally. We apologise for the error.

Reference Solution

// Solution by Raveen

#include <iostream >

using namespace std;

typedef long long ll;

const int N = 1001001;

ll a[N], b[N];

ll n, k;

ll eval (ll day) {

ll ret = 0;

for (int i = 1; i <= n; i++)

if (day >= a[i]) // only count people who have started visiting

ret += (day - a[i])/b[i] + 1;

return ret;

}

ll binarysearch (void) {

3since the number of visits up to day x is less than or equal to the number of visits up to day x+ 1

8

ll lo = 0;

ll hi = 1LL*N*N*N/n;

ll bestSoFar = -1;

// Range [lo , hi];

while (lo <= hi) {

ll mid = (lo + hi) / 2;

if (eval(mid) >= k) {

bestSoFar = mid;

hi = mid - 1;

} else {

lo = mid + 1;

}

}

return bestSoFar;

}

int main (void) {

cin >> n >> k;

for (int i = 1; i <= n; i++)

cin >> a[i] >> b[i];

ll day = binarysearch (); // first day to have at least k visits

ll cnt = eval(day -1); // number of visits strictly before that day

for (int i = 1; i <= n; i++) // test who visited that day

if (day >= a[i] && (day - a[i]) % b[i] == 0)

if (++ cnt == k) { // kth visit found

cout << i << ’\n’;

return 0;

}

}

9

