
Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Dynamic Programming
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Table of Contents 2

1 Reminder: Algorithmic Complexity

2 What is dynamic programming?

3 2D DP

4 Exponential DP

5 DP with Data Structures

6 More example problems

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Reminder: Algorithmic Complexity 3

The running time of your solution is important!
If you don’t think about the time complexity of your
algorithm before coding it up, sooner or later you’ll end up
wasting a lot of time on something something that’s too
slow.

This is especially tragic in exam environments.
For simple code, analysing complexity can be as simple as
multiplying together the bounds of nested for loops.
For recursive solutions, a rough bound is
O(time spent in recursive function ×
number of recursion branchesrecursion depth)

For DP, it usually comes down to carefully determining the
state space and cost of recursion.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Reminder: Algorithmic Complexity 4

On most online judges (this applies to the problem sets), a
rough guideline is 50 million operations per second.

Constant factors occasionally matter, e.g. if you have no
recursion, or only tail-recursion, you might manage more
operations than this.
If you do float arithmetic, everything will be slow

This means that for n ≤ 1, 000, 000, an O(n log n)
algorithm will probably run in time, but an O(n2)
algorithm will definitely time out.
Best way to get a gauge of an online judge’s speed is to
submit a simple for loop and compare the number of
iterations it can do in 1 second to your local environment.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Table of Contents 5

1 Reminder: Algorithmic Complexity

2 What is dynamic programming?

3 2D DP

4 Exponential DP

5 DP with Data Structures

6 More example problems

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Greedy algorithms don’t always work 6

We like greedy algorithms because they cut down the state
space
If a locally suboptimal choice can never contribute to the
globally optimal solution, we don’t have to expand nearly
as many states
But what if this doesn’t work? Hill climbing etc
We would like some way to explore many options at each
stage, but efficiently - avoid repeating work

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

D Y N A M I C
P R O G R A M M I N G

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

What is dynamic programming? 8

Wikipedia: “a method for solving complex problems by
breaking them down into simpler subproblems”
If we can then keep recursively breaking down those
simpler subproblems into even simpler problems until we
reach a subproblem which is trivial to solve, we are done.
This sounds a lot like Divide & Conquer…
The key aspect of Dynamic Programming is subproblem
reuse: If we have a divide & conquer algorithm that
regularly reuses the same subproblem when breaking apart
different larger problems, it’d be an obvious improvement
to save the answer to that subproblem instead of
recalculating it.
In a way, dynamic programming is smart recursion

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

A problem we’ve seen before 9

Problem statement Compute the nth Fibonacci number
(1 ≤ n ≤ 1, 000, 000)
Naïve solution Recall that f(1) = f(2) = 1, and
f(n) = f(n − 1) + f(n − 2). Write a recursive function and
evaluate.
Time Complexity We recurse twice from each call to f,
and the recursion depth is up to n. This gives a
complexity of O(2n).
Example call tree for f(5): f(5)

f(4)

f(3)

f(2) f(1)

f(2)

f(3)

f(2) f(1)

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

A problem we’ve seen before 10

Let’s take a closer look at the call tree for f(5):

f(5)

f(4)

f(3)

f(2) f(1)

f(2)

f(3)

f(2) f(1)

What is f(3)? A problem we’ve seen before.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

A problem we’ve seen before 11

If we don’t duplicate work:

f(5)

f(4)

f(3)

f(2) f(1)

f(2)

f(3)

The call tree gets a bit smaller.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

A problem we’ve seen before 12

This’ll make a much bigger difference on a bigger case:

f(6)

f(5)

f(4)

f(3)

f(2) f(1)

f(2)

f(3)

f(2) f(1)

f(4)

f(3)

f(2) f(1)

f(2)

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

A problem we’ve seen before 13

This makes a much bigger difference on a bigger case:

f(6)

f(5)

f(4)

f(3)

f(2) f(1)

f(2)

f(3)

f(4)

In fact, we reduce the number of calls from O(2n) to O(n).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

The essence of dynamic programming 14

In general, a dynamic programming (DP) algorithm comes
in three parts:

An exact definition of the subproblems. It is convenient to
define these subproblems as entities in a state space and
refer to individual subproblems as states.

In our example, each f(i) is a state, and the state space
includes all these states for i from 1 to n.

A recurrence relation, which facilitates the breaking
down of subproblems. These define the transitions between
the states.

In our example, the recurrence relation is
f(n) = f(n − 1) + f(n − 2).

Base cases, which are the trivial subproblems.
In our example, the base cases are f(1) = 1 and f(2) = 1.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Sum Representation 15

Problem statement Given an integer n
(0 ≤ n ≤ 1, 000, 000), in how many ways can n be written
as a sum of the integers 1, 3 and 4?
Example If n = 5, there are 6 different ways:

5 = 1 + 1 + 1 + 1 + 1
= 1 + 1 + 3
= 1 + 3 + 1
= 3 + 1 + 1
= 1 + 4
= 4 + 1.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Sum Representation 16

Subproblems Let f(n) be the number of ways in which n
can be represented using the numbers 1, 3 and 4. Each
state is represented by a single integer, n.
Recurrence For n ≥ 4, if we already know the answers for
f(n − 1), f(n − 3) and f(n − 4), then the answer for f(n) is
given by

f(n) = f(n − 1) + f(n − 3) + f(n − 4)

Base cases By inspection, we can see that f(0) = 1,
f(1) = 1, f(2) = 1 and f(3) = 2.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Sum Representation 17

Complexity Since we have O(n) values of f to calculate,
each taking O(1) time to calculate, assuming that the
subproblems it depends on have already been calculated,
the algorithm has overall time complexity O(n).
Implementation
f[0] = 1, f[1] = 1, f[2] = 1, f[3] = 2;
for (int i = 4; i <= n; i++)

f[i] = f[i-1] + f[i-3] + f[i-4];

A neat trick allows us to optimise this implementation to
use O(1) memory without changing the time complexity.
f[0] = 1, f[1] = 1, f[2] = 1, f[3] = 2;
for (int i = 4; i <= n; i++)

f[i%4] = f[(i-1)%4] + f[(i-3)%4] + f[i%4];

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Implementing & Understanding DP 18

There are two main ways of implementing (and thinking
about) DP solutions.
These are most commonly referred to as top-down
(memoised) and bottom-up

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Top-down 19

Top-down dynamic programming takes the mathematical
recurrence, and translates it directly into code.
Answers to subproblems are cached to avoid solving them
more than once. Caching function return values is widely
known as memoisation.
Top-down implementations are usually the easiest, because
this is how most people think about DP solutions.
int f(int n) {

// base cases
if (n == 1 || n == 2) return 1;
// return the answer from the cache if we already have one
if (cache[n]) return cache[n];
// calculate the answer and store it in the cache
return cache[n] = f(n-1) + f(n-2);

}

Warning: if 0 is a valid answer to a subproblem, initialise
your cache array to something that isn’t a valid answer.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Bottom-up 20

Bottom-up dynamic programming starts at the base cases
and builds up all the answers one-by-one.
f[1] = 1, f[2] = 1;
for (int i = 3; i <= n; i++) f[i] = f[i-1] + f[i-2];

Warning: when answering a subproblem, we must make
sure that all subproblems it will look at are already
answered.

In this example, the order in which states depend on each
other is straightforward; this is not always the case.
In general, the dependency between DP states forms a
directed acyclic graph (DAG).
If the state dependency graph has a cycle, it’s not a valid
DP

Some algorithms are easier to think about this way. For
example, the Floyd-Warshall algorithm is a DP, most easily
implemented bottom-up.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Top-down or bottom-up? 21

Top-down generally admits a more direct implementation
after finding a recurrence.

It is more convenient on recursive structures like trees.
It only ever touches states that are necessary to compute,
which can make it significantly faster for some problems.

Often, there are characteristics of the state space that
allow for space optimisations only possible going
bottom-up.
More generally, in bottom-up you tend to have more
control which is useful for more advanced techniques.
Especially if you want to speed up recurrence with a data
structure.
Summary: If you have a choice, pick your preference.
However, for trees, we’ll generally only do top down. And
for many more advanced techniques, we’ll probably only
do bottom up.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

How to actually DP 22

Cool. Now we know what DP is (hopefully).
The above helps you recognize and (hopefully) code a DP
someone tells you.
But, personally, I don’t actually find any of this useful for
finding the right states or the right recurrence.
I’ll talk a bit about a useful strategy for me and do some
examples to demonstrate.
But really, the only method I know that for sure works is
practice.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

How to actually DP 23

To get a gauge of whether a problem is DP and what the
DP might look like, I prefer to start with the recurrence
rather than the state.
I see DP as a way to compute the answer by taking 1 step
at a time.
Your state should contain the minimum amount of
information needed so that we can figure out what steps
are valid.
I also think there’s a lot of trial and error, which I haven’t
done a good job of emphasizing so far.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

How to actually DP 24

1 Choose some order to do the problem in. So essentially,
how are you going to build up your solution?

Often implicit in the state but I find it useful to split off
since it strongly suggests what your state might be.

2 Pick a tentative state. At minimum it should contain the
parameters necessary to determine the end result.

E.g: If you need to output the best answer assuming you
take X items, then number of items should probably be in
your state.

3 Determine if you stored enough in your state to know
what moves you can make. Try to get a recurrence for
your state.

If your recurrence seems to need more than you are storing
then try adding this data to your state and repeating.

4 Repeat this until it stabilizes or you realise you should try
something else.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

How to actually DP 25

Now, you should have at least some DP.
Be happy about this, you’ve probably just changed
something from exponential to polynomial.
Is it good enough though? Calculate your complexity.
What if it isn’t? A few directions to go from here. I’ll just
list 2 common questions to ask yourself.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

How to actually DP 26

1 Look at your state. Is it bad? If so, can you fix this?
Is everything in our state necessary? Can we determine the
valid moves from a subset of the state? More difficult, can
we move anything around to improve the state?
Maybe our order to start with was incorrect.

2 Look at your recurrence. Is there some nice structure to it?
If so, it is likely a suitable data structure will speed it up.

In particular, any recurrences that are ranges should make
you think of range tree

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Table of Contents 27

1 Reminder: Algorithmic Complexity

2 What is dynamic programming?

3 2D DP

4 Exponential DP

5 DP with Data Structures

6 More example problems

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Dynamic Programming in More Dimensions 28

All the DP problems we’ve seen so far have a simple,
one-dimensional state.
However, it is easy to extend DP to states of higher
dimensions.
The hardest part of finding a DP solution is usually
identifying a state that makes sense for the problem, and
more dimensions just add more possibilities.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 29

Problem Statement To further your academic career,
you have decided to steal some textbooks from the library.
Unfortunately the bag you have brought is far too small,
and won’t fit all of the books.
There are N books, the ith has a given size si and a value
vi (representing how valuable it is to you). Your bag has a
given maximum capacity S: the sizes of all the books you
take with you must total less or equal to this.
Security is coming, and you want to maximise the total
value of the books you’re taking. What is the maximum
value you can fit in your bag?
Constraints 1 ≤ N ≤ 1, 000, 1 ≤ S ≤ 1, 000.
1 ≤ si, vi ≤ 1, 000, 000. All numbers are integers.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 30

We can’t try every possible selection of books, because
that would be O(2N) possibilities.
We can start optimising by first observing that the order
we put the books in the bag doesn’t matter.
In order to place a book in our bag, what information do
we need to know?

1 The amount of space remaining in our bag
2 A guarantee that we haven’t already put this book in our

bag
If we order the books by their given numbers, we have an
ordering for free: if we are up to book i, then we’ve
already considered books 1 through i − 1, and not books i
through N.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 31

This suggests the state:

(i, r)

where i is the book we are currently considering such that
we have already considered all the books before i, and r is
the amount of space remaining in the bag.
We ask the question f(i, r): how much value can I fit into r
units of space, using only books i through N?
Then f(1, S) will give the answer to the problem.
Can we find a recurrence that answers this question in
terms of smaller ones?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 32

f(i, r): how much value can I fit into r units of space, using
only books i through N?
If we consider only book i, we have two choices:

If we put book i in our bag, we will lose si space and gain
vi value. Then the best value we could get would be
f(i + 1, r − si) + vi.
If we don’t put book i in our bag, we will not lose any
space or gain any value. Then the best value we could get
would be f(i + 1, r). We increment i because we have
already decided not to use book i, changing our mind later
won’t help.

Thus we obtain the recurrence:

f(i, r) = max(f(i + 1, r − si) + vi, f(i + 1, r))

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 33

What if r − si < 0? To simplify the recurrence, we can
simply include in our base cases:
f(i, r) = −∞ for all r < 0, for all i.
Then no solution that tries to use such an answer will ever
be the best one.
What about base cases that can actually result in
successful answers?
f(i, 0) = 0 for all i
Also, f(N + 1, r) = 0 for all r ≥ 0 (we’ve run out of books
to look at).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 34

Complexity Our state includes two parameters, one with
N possibilities and the other with S possibilities, so there
are a total of NS states.
Each state checks a constant number (at most 2) other
states to obtain an answer, so each state takes O(1) time
to calculate.
Thus, the total time complexity of this algorithm is O(NS).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 35

Top-Down Implementation
// 2D cache , should be initialised to -1 because 0 is a valid answer
int cache[N+1][S+1];

int f(int i, int r) {
// base cases
if (r < 0) return -2e9;
if (i > n || r == 0) return 0;
// check cache
if (cache[i][r] != -1) return cache[i][r];
// calculate answer
return cache[i][r] = max(f(i + 1, r - s[i]) + v[i], f(i + 1, r));

}

This implementation reduces the need to bounds-check for
the large number of base cases.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: 0-1 Knapsack 36

To find a bottom-up implementation, we need to be very
careful about the order of the loops.
Note that each state depends on i which are greater, and r
which are less or equal.
Also, we need to bounds-check carefully now, to make
sure we don’t read outside our array.
Bottom-Up Implementation
int dp[N+2][S+1];

for (int i = N; i >= 1; --i) {
// everything from larger i will be available here
for (int r = 0; r <= S; ++r) {

// we have declared the array larger , so if i == N, dp[i+1][...] will
be zero.

int m = dp[i+1][r];
// bounds check so we don't go to a negative array index
if (r - s[i] >= 0) m = max(m, dp[i+1][r-s[i]] + v[i]);
dp[i][r] = m;

}
}

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Table of Contents 37

1 Reminder: Algorithmic Complexity

2 What is dynamic programming?

3 2D DP

4 Exponential DP

5 DP with Data Structures

6 More example problems

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Exponential DP 38

Sometimes your state needs to be much bigger than the
DPs you are used to.
A common trick is to make your state a set.
So your state space is 2n · (extra metadata).
Seems bad but still a lot better than n! which is usually
the alternative.
Especially useful with NP-hard problems involving finding
a permutation. TSP (Travelling Sales Person) is the most
well-known such example.
Practically, often these can be detected by having small
bounds, like N ≤ 20.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Exponential DP 39

To represent our state, we don’t store an actual set. This
is unwieldly and probably slow.
Instead we use a bitset.
A bitset is an integer which represents a set. The ith least
significant bit is 1 if the ith element is in the set, and 0
otherwise. For example the bitset 01101101 represents the
set {0, 2, 3, 5, 6}.
In this way, we can use an integer to index any subset of a
set, amongst other things.
This is much faster, especially if you use built-in bit
operations to manipulate the set.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Bitsets 40

Useful operations for manipulating bitsets:
Singleton set: 1<<i
Set complement: ~x
Set intersection: x & y
Set union: x | y
Symmetric difference: x ^ y
Membership test: x & (1<<i)
Size of set (with GCC): __builtin_popcount(x)
Least significant bit (or an arbitrary bit): x & (-x)
Iterate over all sets and subsets:
// for all sets
for (int set = 0; set < (1<<n); set++) {

// for all subsets of that set
for (int subset = set; subset; subset = (subset -1) & set) {

// do something with the subset
}

}

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Roof Tiling 41

Problem statement You want to tile your roof with n
tiles in a straight line, each of which is either black or
white. Due to regulations, for every m consecutive tiles on
your roof, at least k of them must be black. Given n, m
and k (1 ≤ n ≤ 60, 1 ≤ k ≤ m ≤ 15, m ≤ n), how many
valid tilings are there?
Example If n = 2, m = 2 and k = 1, there are 3 different
tilings: BB, BW, or WB.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Roof Tiling 42

A counting problem, a bit different from what we might be
used to. Our DP will associate with a state how many
configurations correspond to that state. The rest (for
now) will mostly be the same.
Let’s start with an obvious state. How about the number
of valid tilings with n tiles. Then hopefully we can step to
n + 1 by laying one more tile.
Then our step is to lay either a black tile or white tile.
But uhhh... how do we know if we can lay a white tile?
We need to know if there are only k − 1 black tiles in the
last m − 1 tiles. If so, the next tile must be black.
Whoops, we should add that to our state.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Roof Tiling 43

Okay, our state is n, the number of tiles laid and b, the
number of black tiles that are in the last m − 1 tiles.
Now we know whether the n + 1-th tile must be black.
So we compute
dp[n][b] = #tilings of n tiles
where b of the last m-1 tiles are black

Then:

dp[n + 1] = dp[n][k − 1] + 2
m−1∑
j=k

dp[n][j]

Oh oops, we should compute dp[n][b] not dp[n].
Well...ah crap.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Roof Tiling 44

This is impossible.
And it makes sense, we only store how many tiles in the
last m − 1 are black.
But say we add a black tile to the right. Then how do we
know if (num black tiles) increases or stays the same?
You need to know what the (m − 1)th tile was.
And because of this, in one step’s time you need to know
what the (m − 2)th tile was. And so on. So we really need
to know what all these tiles are.
So we should amend our state to be which of the last
m − 1 tiles are black (actually last m tiles for simplicity).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Roof Tiling 45

Let f(i, S) be the number of ways to have tiled the first i
tiles, such that out of the last m tiles, the ones that are
black are exactly the ones in the set S.
For the recurrence, we can either set the new tile to be
black or white. Reflecting this in our state is just applying
the right bit operations from earlier.
Recurrence

f(i, S) = f(i−1, S >> 1)+f(i−1, (S >> 1)|(1 << (m−1))),

where |S| ≥ k, or 0 otherwise; in the first term, tile (i − m)
is white, and in the second it is black.
Base case We have f(m, S) = 1 iff |S| ≥ k. We don’t
need to consider f(i, S) for any i < m.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Roof Tiling 46

Complexity There are O(n2m) total states to calculate,
and each state takes O(1) to compute, so this algorithm
runs in O(n2m) time. We also exploit the fact that the
answer for f(n, S) only ever relies on the answers for
f(n − 1,T), allowing us to use only O(2m) memory.
Implementation
// base case
for (int set = 0; set < (1<<m); set++) {

dp[m%2][set] = (bitcount(set) >= k);
}

for (int i = m+1; i <= n; i++) {
memset(dp[i%2], 0, sizeof(dp[i%2]));
for (int set = 0; set < (1<<m); set++)

if (bitcount(set) >= k)
dp[i%2][set] = dp[(i+1)%2][set>>1] + dp[(i+1)%2][(set>>1)|(1<<(m-1))

];
}

// answer is sum over all sets of dp[n%2][set]

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Travelling Sales Person 47

Problem Statement: Given a weighted, bidirectional
graph with N nodes, find the shortest path starting from
node 0 that visits every node exactly once.

Sample Input:

0

1 2

3

1 2
1

3 3

Sample Output: 5, path is 0 → 1 → 2 → 3.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Travelling Sales Person 48

Let us try the problem in a natural order, in increasing
number of nodes on a path.
So our state is (#nodes in path) and we store the
shortest path with that many nodes.
Then our recursion is...whoops, we need to know where we
are as well.
So let us amend the state, our state is
(#nodes in path, last node in path).
Then our recursion is to try every next node.
But how do we know if we have visited a node twice?
We have to keep this in our state...

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Travelling Sales Person 49

So our state is (S, e). We store the shortest path that
uses the nodes in S exactly once and ends at e. We will
denote this f(S, e).
Now we know what next moves we can make. So we have
a hope of forming a recurrence.
Our recurrence is try all cities we could have came from.

f(S, e) = min
p∈S\{e}

f(S \ {e}, p) + d[p][e]

Alternatively, I find it more natural to push this forward
and think of the next cities we can go to.
Exercise: Translate the above into bit operations.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Travelling Sales Person 50

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 20;
const int INF = 1e9;
int N, adj[MAXN][MAXN]; // assume this is given.
int dp[1<<MAXN][MAXN];

int ans = INF;
for (int state = 0; state < (1<<N); state++) {

for (int city = 0; city < N; city++) dp[state][city] = INF;
}
dp[1][0] = 0;

for (int state = 1; state < (1<<N); state++) {
for (int city = 0; city < N; city++) {

int cdp = dp[state][city];
if (state == (1<<N) - 1) ans = min(ans, cdp);
for (int nxt = 0; nxt < N; nxt++) {

// Already visited nxt.
if (state & (1<<nxt)) continue;
dp[state|(1<<nxt)][nxt] =

min(dp[state|(1<<nxt)][nxt], cdp + adj[city][nxt]);
}

}
}

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Table of Contents 51

1 Reminder: Algorithmic Complexity

2 What is dynamic programming?

3 2D DP

4 Exponential DP

5 DP with Data Structures

6 More example problems

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

DP with Data Structures 52

Sometimes you have the right state space but the cost of
recursion is too high.
In such cases, take a look at the recursion and see if it has
a nice structure.
Often the recursion step can be sped up with the right
choice of data structure.
One common example is your recursion naturally involves
a range query.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

DP with Data Structures 53

You have already seen one example of this in week 2, LIS.
The recurrence we end up with by going left to right is:

bestEndingAt[i]
= max (bestWithEnd[1], bestWithEnd[a[i]]) + 1

Note in LIS, it was not clear from the outset that a range
tree would play a role. You had to write down the
recurrence to see it.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 54

Problem statement You have a number
(1 ≤ N ≤ 100, 000) of fireworks available to you, each
situated at some point on the horizon, where each can
only be launched at some particular time. You can use any
number of the fireworks, but you cannot change the order
in which they are launched. Furthermore, for each firework
you launch, the previous firework launched must be
located in the combo range of that firework. Given the
ordering that you must launch the fireworks in, their
positions xi (1 ≤ xi ≤ 500, 000) on the horizon, their
scores si and their combo ranges (li, ri), what is the
maximum sum of scores you can obtain?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 55

For example, suppose we had three fireworks located at
positions 1, 2 and 3 in that order, and that their combo
ranges were (1,5), (3,5) and (0,1) respectively.
We can launch any of them singly, because there would be
no previous firework restricting the combo range.
However, we could never launch the second firework with
any of the others, because the only firework before it (the
first one) lies outside its combo range, and it does not lie
in the combo range of the only firework after it (the third
one).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 56

Due to the problem, we have a natural order to start with.
Then the obvious state to start with is just the last
firework we’ve launched. For each firework, we store the
highest obtainable score with a chain ending at that
firework.
If for each previous firework, we have the best chain of
zero or more fireworks leading up to it, we just want to
pick the best eligible previous firework.
In this case, we just need to consider if the firework we’re
coming from is inside our combo range.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 57

Top-Down Implementation
int f(int i) {

if (i == 0) return 0;
if (cache[i]) return cache[i];
int m = s[i];
for (int j = 1; j < i; j++) {

if (x[j] >= l[i] && x[j] <= r[i]) {
m = max(m, f(j) + s[i]);

}
}
return cache[i] = m;

}

Bottom-Up Implementation
ll res = 0;

for (int i = 1; i <= n; i++) {
dp[i] = s[i];
for (int j = 1; j < i; j++) {

// try the jth as the penultimate firework
if (x[j] >= l[i] && x[j] <= r[i]) {

dp[i] = max(dp[i], dp[j] + s[i]);
}

}
// update answer
res = max(res, dp[i]);

}

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 58

We have n states to calculate, and each one takes O(n)
time.
This is an O(n2) algorithm, and with N up to 100,000,
this is not going to run in time.
It seems unlikely that we can change the state space to be
anything other than linear, but the recurrence looks simple
enough.
What is the actual recurrence?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 59

Recurrence Let f(i) be the best score possible ending at
the ith firework (in the given order). Then

f(i) = si +max(f(j)),

where the maximum is taken over j < i where li ≤ xj ≤ ri,
and is zero if no such j exists.
This is a range constraint.
So we should be able to use a range tree, and obtain a
better solution!
There are still n states, but now each one takes only
O(log n) time to calculate, so we obtain a solution in
O(n log n) time.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Fireworks 60

Bottom-Up Implementation
int query(int a, int b); // max query range tree of size 500,000
int update(int a, int v); // update index a to value v

ll res = 0;
for (int i = 1; i <= n; i++) {

// calculate best score ending in i-th firework using the range tree
dp[i] = query(l[i], r[i] + 1) + s[i];
// add i-th firework to RMQ
update(x[i], dp[i]);
// update final answer if necessary
res = max(res, dp[i]);

}

A top-down implementation is not as easy to come up
with in this case. Why?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 61

Problem Statement: Consider the N + 1 points on the
real line 0, 1, . . .N. You are given M segments, each has a
range [si, ei] and a cost ci.
Output the minimum cost necessary to obtain a subset of
the segments which covers all N + 1 points.
Input Format: First line, N,M. 1 ≤ N,M ≤ 100, 000.
The following M lines describe a segment as a triple
(si, ei, ci).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 62

Sample Input:
5 4
0 5 10
0 3 4
2 5 4
0 4 5
Sample Output:
8
Explanation: Take the second and third segments.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 63

What order should we attempt the problem in?
Let’s try just processing the segments one by one.
What is the state?
To answer the question, we need to store what indices we
have covered.
Okay, that’s a bit excessive.
Note: There was nothing special about the order of the
segments, we essentially processed the segments in an
arbitrary order.
It is generally better to at least have some meaningful
order.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 64

Alternatively, we can focus on the array.
Then a natural order is left to right.
But what would our state be then? This is less obvious.
A first guess would be i, where we are up to, and S which
indices to the left of i are covered.
But this just gets us back to where we started.
The key here is to make the state just i. Then we denote
dp[i] to be the min cost of segments to cover exactly [0, i].

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 65

A very reasonable question is, is this enough to form a
recursion?
Let’s just try!
To go from i to i + 1 what do we need to do?
We need to cover index i + 1. What does this mean for
our set of segments?
We need to pick a segment ending at i + 1! (Note, we are
defining dp[i] to be the min cost to cover exactly [0, i]. So
we ignore segments ending past i + 1)
So we now have our choices. How do we form the
recurrence?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 66

Let’s say we pick segment [s, i + 1] with cost c. What do
the rest of our segments have to satisfy?
Answer: They must cover a range [0, e] where e ≥ s − 1.
So assuming we pick this segment, we have

dp[i + 1] = c + min
j∈[s−1,i]

dp[j]

Complexity? O(N · M)

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 67

A bit too slow but at least not exponential.
But we have a hope of speeding this up, the state space is
good (optimal even). It is the recurrence blowing us out.
Let’s look at it again:

dp[i + 1] = c + min
j∈[s−1,i]

dp[j]

Looks structured...
Ranges! omg...
So we would hope we can support this with a range tree!

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 68

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int MAXN = 100000;
const ll INF = (1ll << 61);
// (start , cost)
vector<pair<int, ll>> segments[MAXN+5];
int N, M; ll dp[MAXN+5];
// (Point Update , Range Min) range tree
void update(int p, ll v);
ll query(int s, int e); // [s, e)

int main() {
cin >> N >> M;
for (int i = 0; i < M; i++) {

int s, e, c;
cin >> s >> e >> c;
segments[e].emplace_back(s, c);

}
for (int i = 0; i <= N; i++) {

dp[i] = INF;
for (auto seg : segments[i]) {

ll prevcost = seg.first == 0 ? 0 : query(seg.first-1, i);
dp[i] = min(dp[i], prevcost + seg.second);

}
update(i, dp[i]);

}
cout << dp[N] << '\n';

}

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Segment Cover 69

Complexity? O(N + M logN).
There are many problems along these lines, of doing DP
on a line with choices given by intervals. It shouldn’t be a
surprise many involve range trees.
A key was to be clear what the state represented. Exercise:
An alternative is to make dp[i] the min cost for covering
at least [0, i]. Work out the details for this approach.
Exercise: What changes if we require the intervals to cover
the entire interval [0,N] not just the integer parts?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Table of Contents 70

1 Reminder: Algorithmic Complexity

2 What is dynamic programming?

3 2D DP

4 Exponential DP

5 DP with Data Structures

6 More example problems

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 71

Problem Statement: You have a H × W block of marble,
divided into 1 × 1 cells. Each cell has a value. You want
to pick a subset of cells to make a building. The
restrictions are:

Each cell of the building must lie on either the ground or
another cell of the building.
The cells chosen for the building for each of the H rows
must be contiguous.

What is the maximum possible sum of values of a valid
building?
Input: First line 2 integers, H,W. 1 ≤ H,W,≤ 1000.
Next H lines each have W integers, the value of the cells.
These values can be negative.
Source: Australian Informatics Invitational Olympiad
2014.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 72

Sample Input:
3 4
-9 1 -9 1
1 1 -9 1
1 1 1 1
Sample Output:
7
Explanation: Pick all 4 cells in the bottom row, the left 2
in the second row and just the 2nd in the third row.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 73

This is less obviously DP. Let’s just pick something to look
at and start from there.
One natural starting point is to consider the problem cell
by cell.
What order? Let’s say bottom to top, and left to right
within each row.
So our state is cell we are considering.
And our choice needs to be whether to put the next cell
into the building.
But how do we know if we can include the next cell?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 74

Okay, our state is too small, what do we need to add?
What cells on the previous row are in our building.
Something about what cells in our current row are in our
building. Why?
Actually we need to store exactly what cells in our current
row are in our building.

What is the size of our state space now?
Depends a bit on your implementation. Maybe something
like O(WH · W2 · W2).
This is a problem. We can optimize recurrence but if our
state space is too large we are just dead in the water.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 75

Let’s try a different state.
We can note that each row is very structured, perhaps we
can do a row at a time.
Instead of building cell by cell, let’s build row by row.
So instead of having O(1) moves, our moves are ”pick a
contiguous selection of cells on this row and put it in our
building”.
What is our state? How do we know if a move is valid?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 76

We need to know if the segment we have chosen lies
within the segment of the building on the previous row.
So our state should be what row we are up to and what
cells in the previous row are in the building.
How big is our state?
O(H · W2).
Still a bit too large but this is progress. It is possible to
speed up the recurrence to O(1) so we are nearly there.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 77

If you were solving the problem yourself, you would
probably keep trying this direction for a while.
But ultimately, it seems this is the limit of how small we
can make the state space.
Each of the parameters is necessary.
We probably need to pick a different direction for our DP.
Let’s go back to the drawing board.
Draw things!

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 78

Let’s try going left to right. So we are now making our
building column by column.
What are our moves? Same as before, let’s try picking the
cells for each column.
What is our state? How do we know a move is valid?
Boils down to, what are the constraints for a valid building
in terms of its columns?
Key Observation: It is ternary! The building increases
height up to a point then decreases in height.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 79

Key Observation: It is ternary! The building increases
height up to a point then decreases in height.
Okay, let us start with the obvious state, which column we
are up to.
Is this enough to know which moves we can make?
No. We don’t even know if the building increased in
height from the previous column.
What do we need to store to know this?
Okay, our state is now
(current column, height of previous column).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 80

Key Observation: It is ternary! The building increases
height up to a point then decreases in height.
State:
(current column, height of previous column).
Is this enough?
Note: It is always okay to decrease in height. But if our
move increases the height, how do we know if it is a valid
move?
No. Not enough. We need to know if at least once in the
past our building has decreased in height.
New state:
(current column, height of previous column,
has the height of the building ever decreased?)

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 81

Key Observation: It is ternary! The building increases
height up to a point then decreases in height.
State:
(current column, height of previous column,
has the height of the building ever decreased?)
Is this enough?
It is enough to tell us what moves are valid in the current
column.
What is the state space?
O(WH).
So we should be optimistic. So we should try to define a
recurrence.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 82

State:
(current column, height of previous column,
has the height of the building ever decreased?)
Let f(w, h, b) be the best building up to and including
column w, with h cells picked in column w and
b = 1 ⇐⇒ the height of the building has decreased at
some stage.
Recurrence? Try b = 0 and b = 1 separately.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 83

For b = 0. We can’t decrease in height from our previous
column and we can’t ever have decreased in height in the
past.

f(w + 1, h, 0) = max
h′≤h

f(w, h′, 0) +
h∑

i=0
b[w + 1][i]

where we say f(w,−1, 0) = 0 for convenience.
For b = 1. Then due to the ternary condition we can’t
increase from our previous column.

f(w + 1, h, 1) = max
h′≥h,b′∈{0,1}

f(w, h′, b′) +
h∑

i=0
b[w + 1][i]

Complexity?
O(WH) state space, O(H) recurrence. Overall O(WH2).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 84

But state space is good, we can hope to speed up the
recurrence.
Let’s take a look at it. Let’s try b = 0.

f(w + 1, h, 0) = max
h′≤h

f(w, h′, 0) +
h∑

i=0
b[w + 1][i]

This looks relatively structured. Why?
Everything is a range yay.
The first part is a range max. We know how to do these.
The second part is a range sum of input. We can
precompute this. How?
So we should be able to do O(WH logH).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 85

A bit overkill it turns out. Here’s a useful trick.
Let’s look at it again:

f(w + 1, h, 0) = max
h′≤h

f(w, h′, 0) +
h∑

i=0
b[w + 1][i]

For any specific f(w + 1, h, 0), it takes O(H) to compute
the first max.
However, we need this for all h ≤ H. And we can do all of
them at once in O(H). Why?
Cause your algo for finding max

h′≤h
f(w, h′, 0) finds

max
h′≤j

f(w, j, 0) for all j ≤ h too.

So for each column we can compute all these values in
O(H) at once.
This reduces complexity to O(WH).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 86

Recap. Our state: f(w, h, b).
Recurrences:

f(w + 1, h, 0) = max
h′≤h

f(w, h′, 0) +
h∑

i=0
b[w + 1][i]

f(w + 1, h, 1) = max
h′≥h,b′∈{0,1}

f(w, h′, b′) +
h∑

i=0
b[w + 1][i]

We speed up the sums by precomputing a cumulative sum
for each column. We speed up the maxes by doing them
all at once for each column.
O(WH) states with recursion cost O(H) per column, hence
overall recursion cost O(WH).

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 87

#include <bits/stdc++.h>
using namespace std;

const int MAX_DIM = 1000;
const long long INF = (1ll << 60);
// input and precomp.
int W, H;
long long b[MAX_DIM][MAX_DIM]; //(w,h)
long long columnsum[MAX_DIM][MAX_DIM];
long long dp[MAX_DIM][MAX_DIM][2]; // (w,h,b)

void precomp() {
// TODO: read input here.
for (int w = 0; w < W; w++) {

for (int h = 0; h < H; h++) {
dp[w][h][0] = dp[w][h][1] = -INF;
columnsum[w][h] = b[w][h];
if (h > 0) columnsum[w][h] += columnsum[w][h-1];

}
}

}

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 88

int main() {
precomp();
vector<long long> maxdown(H, 0), maxup(H, 0);
long long ans = 0;
for (int w = 0; w < W; w++) {

for (int h = 0; h < H; h++) {
dp[w][h][0] = maxup[h] + columnsum[w][h];
dp[w][h][1] = maxdown[h] + columnsum[w][h];
ans = max(ans, max(dp[w][h][0], dp[w][h][1]));

}
// Remember: we could have chosen no blocks as well.
maxup[0] = max(0ll, dp[w][0][0]);
for (int h = 1; h < H; h++) {

maxup[h] = max(maxup[h-1], dp[w][h][0]);
}
maxdown[H-1] = max(dp[w][H-1][0], dp[w][H-1][1]);
for (int h = H-2; h >= 0; h--) {

maxdown[h] = max(maxdown[h+1], max(dp[w][h][0], dp[w][h][1]));
}

}
printf("%lld\n", ans);

}

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example: Art, Key, Texture 89

Let’s summarize.
The problem seems difficult and convoluted. But I think
all of it is very natural except for looking left to right and
characterizing the condition for going left to right.
Even for that part, it is always worth making examples and
trying different orders.
Our choice of state space was, mostly, dictated just by the
order we picked.
Our recurrences followed through by translating our
requirement.
Speeding up the recurrence is natural from looking at the
formula.
Moral (hopefully): None of this is magic. Almost all of it
is fairly logical.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 90

Problem statement You have a set of N (1 ≤ N ≤ 30)
rows from a chessboard of N rows and M columns, with
some of the squares cut out from the right. How many
ways are there to place K rooks on this chessboard
without any rook threatening any other rook?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 91

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 92

Let us pick an order.
How about row by row.
Then our state is which row we are up to, we will store the
number of ways to put rooks up to this row.
Our moves are try all places we can put a rook on the
curent row.
How do we know if a move is valid?

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 93

In other words, how do we know which columns are free?
Crap...okay we need to keep the set of free columns in our
state.
We can use a bit set like before.
State space?
About O(2M · N), not good enough.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 94

But we are counting things. Can we instead just store the
number of rooks we’ve placed. Then hopefully the number
of ways we can place a rook on our new row is
(length of row) - (#rooks placed).
Alas, no dice :(we don’t know whether the rooks we’ve
placed are in a column we can place to or not.
Can we fix this?
Key Observation: There was nothing special about the
ordering of rows in this problem. Usually the order is
suggested by the problem but in this case, there is no
reason to have the rows in the order they are in.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 95

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 96

Let’s sort the sequence, so that the size of each row is
non-decreasing
Now, we know that if we place a rook on a row, we know
that we can assume that every previously placed rook is in
a cell that our row covers

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 97

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 98

Now, we can say that any rooks already placed will be
either to the left or directly above us
We can then formulate a recurrence that only needs to
know about the current row and the number of rooks
If we’re on a row i on length L, then for every
configuration of the rows above with k rooks already
placed, we can place a rook for this row in (L − k) places

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 99

Subproblems Let f(i, j) be the number of ways to place j
rooks on the first i rows, sorted by length.
Recurrence

f(i, j) = f(i − 1, j) + f(i − 1, j − 1) ∗ (Li − (j − 1))

Base case The number of ways to place 0 rooks on 0
rows is 1.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 100

Implementation
cache[0][0] = 1;
for (int i = 1; i <= n; i++) {

for (int j = 0; j <= k; j++) {
// can place no rooks in this row
cache[i][j] = cache[i-1][j];
// or place a rook in this row
if (j > 0)

cache[i][j] += cache[i-1][j-1] * (L[i-1] - (j-1))
}

}
cout << cache[n][k] << endl;

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 101

This time around, the magic was in reordering the rows.
This is magic. But this general idea is very useful. If you
aren’t given an order, make an order. It can’t be worse
than having no order.
You see a similar idea in 0-1 knapsack. To avoid storing a
bitset of used items, we just pick any arbitrary order to
process the items in.

Dynamic
Programming

Reminder:
Algorithmic
Complexity

What is
dynamic
programming?

2D DP

Exponential
DP

DP with Data
Structures

More example
problems

Example problem: Rooks 102

Another path to a solution is to do the problem in column
order.
But you have to do it from right to left.
Then you get the same property as this solution.
Note: column order isn’t symmetrical as all rows are
required to start from column 0.

	Reminder: Algorithmic Complexity
	What is dynamic programming?
	2D DP
	Exponential DP
	DP with Data Structures
	More example problems

