
Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Dynamic Programming II
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Table of Contents 2

1 DP Optimizations

2 Convex Hull Trick
Construction
Application
Examples

3 Divide and Conquer Optimization
Divide and Conquer Framework
Proving monotonicity of opt
Modifications

4 Wrapping Up

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

DP Optimizations Overview 3

Sometimes when you’re doing DP your solution will be too
slow but your recurrence is very structured.
You’ve seen this before with ranges and range trees.
This lecture will show a few more cases of structured
recurrences where there are well known techniques for
speeding them up.
Again, this does not help if your state space is too large.
This should not really change your overall approach to DP
but you should keep an eye out for recurrences that can be
sped up.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Table of Contents 4

1 DP Optimizations

2 Convex Hull Trick
Construction
Application
Examples

3 Divide and Conquer Optimization
Divide and Conquer Framework
Proving monotonicity of opt
Modifications

4 Wrapping Up

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Motivation 5

One of the easiest to apply and most useful optimizations.
Handy when your recurrence is formed by linear functions.
Though once you get good at spotting these, more things
look like a linear function than you might expect!

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

General setting for CHT 6

Suppose you are doing a 1D DP, calculating dp[1..N] in
order of increasing i.
Suppose you also have:

an array m[1..N] in decreasing order - think of these as
gradients, and
an array p[1..N] - think of these as the positions of the
points for which you are calculating dp[·].

You have some base case value dp[0] and the recurrence is

dp[i] = min
j<i

(dp[j] + m[j] · p[i]) .

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Motivation 7

Take a look at the recurrence

dp[i] = min
j<i

(dp[j] + m[j] · p[i]) .

Hopefully you see an O(N2) solution.
What do those terms in the min look like?
Equations for lines with dp[j] as the y-intercept and m[j] as
the slope.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Motivation 8

Recurrence:

dp[i] = min
j<i

(dp[j] + m[j] · p[i])

Suppose so far we have

dp[0] = −2, m[0] = 2
dp[1] = −1, m[1] = 1
dp[2] = 5, m[2] = −1

and we want to calculate dp[3] (leave p[3] unfixed for
now).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Motivation 9

Recurrence:

dp[i] = min
j<i

(dp[j] + m[j] · p[i])

Then dp[3] is the minimum of a set of lines at the
x-coordinate p[3], where our lines are:

y = m[0]x + dp[0] = 2x − 2
y = m[1]x + dp[1] = x − 1
y = m[2]x + dp[2] = −x + 5

So far we have calculated each value dp[i] in O(N), by
iterating through all of these lines. We will see how to
speed this up.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Motivation 10

To speed up this recurrence, we will build a data structure
that exactly supports the operations we need.
It will export 2 methods:

void add(int m, int b): Add a line ℓ = m · x + b.
Requirement: m is strictly less than the gradient of all
lines in the data structure already.
int query(q): Over all lines {ℓi = mix + bi} that we
have added so far, return

min
i
(mi · q + bi).

We will have add run in O(1) amortized and query run in
O(log n) where n is the number of lines added so far.
Afterwards we will apply this data struture as a black box
to some DP problems.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 11

To get the right complexity, we need some observations
first regarding the set of lines we are querying.
For concreteness, let us return to our earlier example.
Suppose we have

b[0] = −2, m[0] = 2
b[1] = −1, m[1] = 1
b[2] = 5, m[2] = −1

where m[i] are the gradients and b[i] are the y-intercepts.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 12

1

1https://www.geogebra.org/graphing

https://www.geogebra.org/graphing

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 13

Remember our aim is to query the minimum over these 3
lines at the x-coordinate q.
What could this possibly be?
Let’s emphasize what the minimum value is at each
x-coordinate.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 14

2

2https://www.geogebra.org/graphing

https://www.geogebra.org/graphing

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 15

Key Observation: This is the upper convex hull of the
areas below the lines.
This means each line is optimal for a contiguous range of
x (possibly empty) and as we move left to right, the
gradient of the optimal line never increases.
Our goal is to maintain the convex hull by maintaining the
set of line segments that the convex hull is made out of.
We will say a line ℓ is dominant at x-coordinate x if it is
the line that forms the convex hull at x, i.e. the line that
gives the minimum in the equation

query(q) = min
i

(mi · q + bi) .

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 16

For this, it suffices to store the lines that make up the
convex hull in left to right order, i.e. in decreasing order of
gradient.
Note: Importantly, this does not contain all the lines. It
omits any line that is never in the upper convex hull.
Given this data, we can calculate the range of x at which
each line ℓ is dominant.
The segment is the range between the intersection of ℓ
with the line before it and the line after it in the convex
hull.
We keep the lines in a vector.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 17

struct line { long long m, b; };
double intersect(line a, line b) {

return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;
/*
* The intersection points are
* intersect(cht[0], cht[1]), intersect(cht[1], cht[2]), ...
* Line i is optimal in the range
* [intersect(cht[i-1], cht[i]), intersect(cht[i], cht[i+1])]
* where for i = 0, the first point is -infinity,
* and for i = N-1, the last point is infinity.
*/

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 18

Recall the 2 methods our data structure is meant to
support are:

What’s the line on the upper convex hull at x = q?
Equivalently, what is

min
i

(mi · q + bi)

over all the lines?
Add the line

y = m[i] · x + dp[i].

We handle the former with binary search.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Query Implementation 19

Our aim is to find the line that is dominant at x = q.
Suppose our lines are ordered in decreasing gradient order.
Then recall the range at which line ℓi is dominant is

[intersect(ℓi−1, ℓi), intersect(ℓi, ℓi+1)]

where for i = 0, the left term is −∞ and for the last line,
the right term is +∞.
So to find the i for which the segment contains q, it
suffices to find the minimum i such that

intersect(ℓi, ℓi+1) ≥ q.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Query Implementation 20

struct line { long long m, b; };
double intersect(line a, line b) {

return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;

/* Recall that the range the ith line is dominant in is:
* [intersect(cht[i-1], cht[i]), intersect(cht[i], cht[i+1])]
* We want to find the line that is dominant at x.
* To do this, we note that the sequence (intersect(cht[i], cht[i+1]))
* is monotonically increasing in i.
* Hence we can binary search for the minimum i such that
* intersect(cht[i], cht[i+1]) >= x
*/

long long query(long long x) {
int lo = 0; int hi = cht.size()-2;
// Find largest idx such that x <= intersect(cht[idx], cht[idx+1])
// If this doesn't exist then idx should be cht.size()-1.
int idx = cht.size()-1;
while (lo <= hi) {

int mid = (lo+hi)/2;
if (intersect(cht[mid], cht[mid+1]) >= x) {

idx = mid; hi = mid-1;
} else { lo = mid+1; }

}
return cht[idx].m*x + cht[idx].b;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Add Implementation 21

To add a line we crucially use the fact that m[1..N] is in
decreasing order.
Since the convex hull is sorted in non-increasing order of
gradients, the new line has to go on the end of our convex
hull.
However, this may cause some lines to disappear from the
convex hull.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Add Implementation 22

For example, consider adding the line y = −2x + 2 to the
earlier example:

What is the new convex hull?

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Add Implementation 23

So some of the lines may become useless and we need to
remove them.
When does a line ℓ become useless? When the line we just
added covers the entire range ℓ is dominant in.
Observation: The useless lines are always at the end of
the convex hull.
So we just need to keep popping the last line of the
convex hull as long as it is useless.
How do we check if the last line is useless?
For this, it helps to draw pictures and move your new line
ℓ around.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Add Implementation 24

You will hopefully observe some variant of the following:
The last line cht[N − 1] be the last line is useless if

intersect(cht[N−1], ℓ) ≤ intersect(cht[N−2], cht[N−1]).

Recall that cht[N − 1] is dominant in the range
(intersect(cht[N − 2], cht[N − 1]),∞).
The above essentially says ℓ is better than cht[N − 1] for
this entire range.
Another way of phrasing this is that the intersections
(intersect(cht[i], cht[i + 1])) need to be kept in increasing
order.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Full Implementation 25

struct line { long long m, b; };
double intersect(line a, line b) {

return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;

void add(line l) {
auto n = cht.size();
while (n >= 2 &&

intersect(cht[n-1], cht[n-2]) >= intersect(cht[n-1], l)) {
cht.pop_back();
n = cht.size();

}
cht.push_back(l);

}

long long query(long long x) {
int lo = 0; int hi = cht.size()-2;
// Find largest idx such that x <= intersect(cht[idx], cht[idx+1])
int idx = cht.size()-1;
while (lo <= hi) {

int mid = (lo+hi)/2;
if (intersect(cht[mid], cht[mid+1]) >= x) {

idx = mid; hi = mid-1;
} else { lo = mid+1; }

}
return cht[idx].m*x + cht[idx].b;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Construction 26

Complexity? O(1) amortized per add. O(log n) per query.
But do remember, we did assume the gradients are in
decreasing order. It is non-trivial to remove this
assumption.
In certain special cases, we can actually get a better
complexity!

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Modifications 27

One common case is when we make queries in
non-decreasing order.
Formally, say our code calls query with

query(q1), query(q2), . . . , query(qQ).

Then q1 ≤ q2 ≤ . . . ≤ qQ.
In this case, the index of the dominant line for each qi
only increases.
So we keep track of the index of the dominant line.
Whenever we query, we check if the current dominant line
is still the dominant line for the new query point.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Modifications 28

If cp is the current dominant line, this amounts to
checking if

p[i] ≤ intersect(cht[cp], cht[cp + 1]).

While this does not hold, increase cp.
The above had an omission - there is a special case. Since
the number of lines in the convex hull can decrease, cp
may be out of bounds. To fix this, after each update we
just need to update cp to point to the last line if it is out
of bounds.
If you want to rigorously check this, the invariant you are
maintaining is

intersect(cht[cp − 1], cht[cp]) ≤ p[i].

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT Data Structure Modifications 29

struct line { long long m, b; };
double intersect(line a, line b) {

return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;
int cp;

void add(line l) {
auto n = cht.size();
while (n >= 2 &&

intersect(cht[n-1], cht[n-2]) >= intersect(cht[n-1], l)) {
cht.pop_back();
n = cht.size();

}
cht.push_back(l);
cp = min(cp, (int)cht.size()-1);

}

long long query(long long x) {
while (cp+1 != cht.size() &&

intersect(cht[cp], cht[cp+1]) < x) cp++;
return cht[cp].m*x + cht[cp].b;

}

Complexity? Now updates and queries are both O(1)
amortized.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

More Modifications 30

Currently query returns the minimum over all lines.
We could also instead return the maximum.
If so, our invariant is that our gradients should be
increasing.
We are now calculating the lower convex hull of the area
above all lines.
But we can actually use the exact same code! (literally no
modifications needed)

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

More Modifications 31

Not hard to adjust for gradients non-increasing (instead of
decreasing) - just one extra special case.
Can also have no conditions on the gradients. We still
keep lines in sorted gradient order.
However, we now need to keep lines in a set since
insertions are arbitrary.
Not that common mostly because it is tedious to get right.
Alternatively we can also use a “Li Chao tree”.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

More Modifications 32

Another useful modification is when everything (gradients
and query points) is in integers.
Currently we use doubles to compute the intersection
points. This gives us the precise ranges at which we
dominate (up to precision errors)
[intersect(cht[i − 1], cht[i]), intersect(cht[i], cht[i + 1])].
Doubles are not precise though even for the range of a
long long. Usually not problematic for competitions since
numbers generally only go up to 109 but you have to keep
it in mind if you need to query higher.
If we only care about integer coordinates of x then we can
round these down and work entirely in integers:

(⌊intersect(cht[i − 1], cht[i])⌋ , ⌊intersect(cht[i], cht[i + 1])⌋]

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

More Modifications 33

Just be careful. If you want to do this, make sure it is
clear to you why the above is exclusive-inclusive.
In integers, whether your inequalities are strict or not
actually matters. When you compare with an intersection
point, mentally check if it agrees with the above ranges.
If we only care about positive integers, we can omit the
floor and just use regular integer division.
But if you care about negatives, note that integer division
isn’t floor; it rounds towards 0.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

CHT without floats 34

struct line { long long m, b; };
long long floordiv(long long a, long long b) {

return a / b - (a%b && ((a<0) ^ (b<0)));
}
long long intersect(line a, line b) {

floordiv(b.b - a.b, a.m - b.m);
// for POSITIVE ints: can do:
// return (b.b - a.b) / (a.m - b.m);

}
vector<line> cht;
void add(line l) {

auto n = cht.size();
while (n >= 2 &&

intersect(cht[n-1], cht[n-2]) >= intersect(cht[n-1], l)) {
cht.pop_back();
n = cht.size();

}
cht.push_back(l);

}
long long query(long long x) {

int lo = 0; int hi = cht.size()-2;
int idx = cht.size()-1;
while (lo <= hi) {

int mid = (lo+hi)/2;
// NOTE: It is critical here that this is >= not >.
if (intersect(cht[mid], cht[mid+1]) >= x) {

idx = mid; hi = mid-1;
} else { lo = mid+1; }

}
return cht[idx].m*x + cht[idx].b;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Application 35

The above construction gives us exactly the data structure
we needed.
As a reminder, it supports 2 methods:

void add(int m, int b): Add a line l = mx + b.
Requirement: m is strictly less than the gradient of all
lines in the data structure already.
Complexity: O(1).
int query(q): Over all lines {ℓi = mi · x + bi} that we
have added so far, return

min
i

(mi · q + bi) .

Complexity: O(log n) in general, we can make it O(1) if
queries are given in non-decreasing order.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Application 36

There are 2 knobs we can tweak for our data structure.
If queries are in non-decreasing order, we can replace our
query code with an O(1) routine.
If everything is in integers, we can use integer division.

However, aside from these, we can essentially use it as a
black box!
So the construction is good to know, but application-wise,
you can just copy paste it in if need be.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick Application 37

Let us return to our earlier DP problem. We had the
recurrence

dp[i] = min
j<i

(dp[j] + m[j] · p[i])

where we assumed the m[j] are in decreasing order.
Since the gradients are decreasing, we fulfil the one
requirement of our CHT data structure.
Hence we can directly apply convex hull trick as a black
box.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick 38

int main() {
// Base case:
dp[0] = baseCaseCost;
line l;
l.m = m[0];
l.b = dp[0];
add(l);

for (int i = 1; i < N; i++) {
dp[i] = query(p[i]);
line l;
l.m = m[i];
l.b = dp[i];
add(l);

}
return 0;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Convex Hull Trick 39

Complexity? O(N logN).
This is a significant improvement from O(N2)!
Note, we could even get O(N) if our p[i] are
non-decreasing.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Key Takeaways 40

DPs with recurrences in the form

dp[i] = min
j<i

(dp[j] + m[j] · p[i])

can be done in O(N logN).
Use a data structure for CHT which supports:

void add(int m, int b): Add a line l = m · x + b.
Requirement: m is strictly less than the gradient of all
lines in the data structure already.
int query(q): Over all lines {ℓi = mi · x + bi} that we
have added so far, return

min
i

(mi · q + bi) .

You can treat this data structure as a black box. However
it is good to at least know how to tweak it using the 2
knobs mentioned above.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

In Practice 41

In practice, the difficulty of CHT comes from:
Recognizing that it is useful.

Often you just have to write out the recurrences.
Be suspect whenever the recurrence is given by a formula.

Figuring out how to calculate the gradients and
y-intercepts.

You will often have to juggle around terms in the
recurrence to make it work.
This comes mostly with practice.

Essentially, the recurrence

dp[i] = min
j<i

(dp[j] + m[j] · p[i])

tells us that we need the gradient to be a function of only
j and the query point to be a function of only i.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 42

Problem Statement:
You have to cover N points on a walkway.
To cover the walkway from point x to point y inclusive
costs C + (x − y)2 where C is a fixed, given constant.
Note that you can cover a single point with cost C.
What is the minimum cost needed to cover all the points?
Input Format:
First line 2 integers, N,C, 1 ≤ N ≤ 106, 1 ≤ C ≤ 109.
The next N lines contain the points in increasing order.
All points are in the range [1, 109].
Source: 2012 University of Chicago Invitational
Programming Contest.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 43

Hope you can see a O(N2) DP.
Calculate dp[1..N], where dp[i] is the min cost to cover
exactly the points up to the ith.
But the recurrence here is a very nice formula. Let us
unpack it.

dp[j] = min
i<j

(
dp[i − 1] + C + (x[j]− x[i])2)

= min
i<j

(
dp[i − 1] + C + x[i]2 + x[j]2 − 2 · x[i] · x[j]

)
Focus on the last term. What does this look like?
A linear function (if you squint hard enough)! So we
should try to fit this into our CHT framework.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 44

Recurrence:

dp[j] = min
i<j

(
dp[i − 1] + C + x[i]2 + x[j]2 − 2 · x[i] · x[j]

)
.

If you recall, we were earlier looking at recurrences of the
form

min
i<j

(dp[i] + m[i] · p[j]) .

What should m[i] and p[j] be?
We should have m[i] = −2x[i] and p[j] = x[j], since we
need the gradient to be determined by i and the query
point by j.
Note that our gradients are decreasing, which is required
for CHT!

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 45

Recurrence:

dp[j] = min
i<j

(
dp[i − 1] + C + x[i]2 + x[j]2 − 2 · x[i] · x[j]

)
.

We also need to modify the y-intercept of the line; it isn’t
just dp[i] anymore. What should it be?
Key: It needs to include all terms dependent on i.
So it needs to include dp[i − 1] and x[i]2. Why?
But it can’t include x[j]2 for obvious reasons.
So we should add the x[j]2 part when we calculate dp[j].
You can choose whether to add C when you calculate dp[j]
or instead add C to the y-intercept.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 46

Recurrence:

dp[j] = min
i<j

(
dp[i − 1] + C + x[i]2 + x[j]2 − 2 · x[i] · x[j]

)
.

So for each i we will add a line with y-intercept

dp[i − 1] + x[i]2

and gradient −2x[i].
To calculate dp[j], we query our CHT with point x[j].
Define r := query(x[j]). Then

dp[j] = r + C + x[j]2.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 47

/* Insert CHT code here: You can use the version with only
* positive integer queries and non-decreasing queries */

void add(line l);
long long query(long long x);

const int MAXN = 1000000;
int N;
long long x[MAXN+1];
long long C;

long long dp[MAXN+1];

int main() {
scanf("%d %lld", &N, &C);
for (int i = 0; i < N; i++) {

scanf("%lld", &x[i]);
}
for (int i = 0; i < N; i++) {

// Compare to formulas written in slides
dp[i] = query(x[i]) + C + x[i]*x[i];
line l;
l.m = -2*x[i];
// Base case is i == 0, dp[i-1] = 0.
l.b = (i == 0 ? 0 : dp[i-1]) + x[i]*x[i];
add(l);

}
// Again, calculating dp[N-1] using the same formula as above.
printf("%lld\n", dp[N-1]);

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 48

Complexity? We note our query points p[j] = x[j] are
increasing in j, so we can use the O(1) amortized CHT.
Then the complexity is just O(N).
Since our query points are integers, we can also use the
version of CHT with no doubles.
Using just integer division doesn’t change the complexity
but in practice is a large speed up (I get a 3 times speedup
locally).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Covered Walkway 49

This is how many CHT problems go.
First you come up with a normal DP that is too slow.
This step is the same as in the previous DP lecture.
Then you note the recurrence is a nice formula.
Write it out.
Now, split up the recurrence as in this example.
Figure out which part corresponds to the slope and query
point and how to split up the constant into the y-intercept
and the part added when you calculate dp[j].
Usually this is just breaking up the terms based on if they
depend on j or on i.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 50

Problem Statement:
You have N soldiers in a line, the ith of which has
effectiveness xi.
You want to partition the soldiers into squadrons. Each
squadron consists of a subsegment of contiguous soldiers.
Say these soldiers have total effectiveness S. Then the
effectiveness of the squadron is AS2 + C where A < 0 and
C are given constants.
Maximize the sum of the effectiveness of the squadrons.
Input Format:
First line contains three integers, N,A,C.
1 ≤ N ≤ 106,−5 ≤ A ≤ −1, |C| ≤ 104.
Next line contains N integers, the effectiveness of the
soldiers in order.
Each effectiveness satisfies 1 ≤ xi ≤ 100.
Source: APIO 2010.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 51

Sample Input:
4 -1 -20
2 2 3 4
Sample Output: −101
Explanation: Split the soldiers into groups of
{1, 2}, {3}, {4}, with effectiveness {−36,−29,−36}.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 52

Hope you can see a O(N2) DP.
Calculate dp[1..N], where dp[i] is the min cost to partition
exactly the first i soldiers.
Where to go next?
Look at the recurrence!

dp[j] = max
i<j

(
dp[i − 1] + C + A(xi + xi+1 + . . .+ xj)

2)
This is kind of messy but should remind you a bit of the
last example.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 53

Useful trick: We want to clean up the sum in the square.
It is often easier to work with cumulative arrays than sums.
Define S[N] to be the cumulative sum,
S[i] := (x1 + . . .+ xi).
Then let’s rewrite the recurrence.

dp[j] = max
i<j

(
dp[i − 1] + C + A(S[j]− S[i − 1])2)

= max
i<j

(
dp[i − 1] + C + A · S[i − 1]2 + A · S[j]2

−2A · S[i − 1] · S[j])

This gives a much cleaner separation between terms in i
and terms in j.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 54

Recurrence:

dp[j] = max
i<j

(
dp[i − 1] + C + A · S[i − 1]2 + A · S[j]2

−2A · S[i − 1] · S[j])

What does this look like?
The key is the last term. If you unpack the important
parts, a line!

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 55

Again, main question is to convert this into
b[i] + m[i]× p[j] form. Let us do the latter part first.
What is m[i]? −2A · S[i − 1]. So p[j] = S[j].
Gradient is increasing (since A is negative), which is
correct for maximization problems.
How about the constant? Which parts form b[i], and
which parts should we add directly to dp[j]?
Again, we need b[i] to include dp[i − 1] + A · S[i − 1]2.
This time around we will also include C in b[i].

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 56

Recurrence:

dp[j] = max
i<j

(
dp[i − 1] + C + A · S[i − 1]2 + A · S[j]2

(−2A · S[i − 1] · S[j])

So for i we will add a line with y-intercept

dp[i − 1] + A · S[i − 1]2 + C

and gradient −2A · S[i − 1].
To calculate dp[j], we query our CHT with point S[j].
Define r := query(S[j]). Then

dp[j] = r + A · S[j]2.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 57

/* Insert CHT code here: You can use the version with only
* positive integer queries and non-decreasing queries */

void add(line l);
long long query(long long x);

const int MAXN = 1000000;
int N;
long long a, c;
long long S[MAXN+1];
long long dp[MAXN+1];

int main() {
scanf("%d", &N);
scanf("%lld %lld %lld", &a, &c);
for (int i = 1; i <= N; i++) {

long long x; scanf("%lld", &x);
S[i] = S[i-1] + x;

}
for (int i = 1; i <= N; i++) {

line l;
l.m = -2*a*S[i-1];
l.b = dp[i-1] + a*S[i-1]*S[i-1] + c;
add(l);
dp[i] = query(S[i]) + a*S[i]*S[i];

}
printf("%lld\n", dp[N]);
return 0;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Mini Commando 58

This time around we want to maximize the value.
However, our code for CHT works for both min (with
decreasing gradients) and max (with increasing gradients)
without modification.
Complexity? We note our query points p[j] = S[j] are
increasing in j, so we can use the O(1) amortized CHT.
Then the complexity is just O(N).
One should be a bit cautious here of overflows. Here S[i]
can go up to 108, but we take S[i]2, and dp[i] can go up to
around 1013. This is okay with long longs.
Our y-intercepts go up to around 1016, so we’re going to
lose precision if we use double for our intercepts. This
seems to be OK since our query points only go up to 108

(it gets AC) but it’s at least a concern.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Table of Contents 59

1 DP Optimizations

2 Convex Hull Trick
Construction
Application
Examples

3 Divide and Conquer Optimization
Divide and Conquer Framework
Proving monotonicity of opt
Modifications

4 Wrapping Up

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Optimisation 60

Here the structure comes in the choices we make during
the DP.
The most common setting is a 2D DP.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 61

Problem Statement:
You have N kids in a row. Each has a noisiness si > 0.
You want to partition the kids into K rooms.
Each room must contain an contiguous segment of the
kids.
The noisiness of a room containing kids [i, j] is

(si + si+1 + . . . sj)
2.

What is the minimum total noisiness that is attainable?
Input Format:
First line 2 integers, N,K.
1 ≤ K ≤ min(100,N), 1 ≤ N ≤ 104.
Next line contains N integers, the noisiness of the kids in
order.
Each noisiness is in the range [1, 1000].

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 62

Hope you can see an O(N2K) DP.
Our state will be dp[k][i], the minimum noisiness to
partition the first i kids into k groups.
We will proceed in increasing k and increasing i order.
Recurrence is

dp[k][i] = min
j<i

(
dp[k − 1][j] + (sj+1 + . . .+ si)

2) .
Naively this recurrence is O(N2), there are O(N) values of
j and the sum takes O(N) to calculate. How do we speed
up this recurrence to O(N)?
Cumulative sum!

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 63

#include <bits/stdc++.h>
using namespace std;

const long long INF = 1e17;
const int MAXN = 10000;
const int MAXK = 100;
int N, K;
// 1-indexed. S[i] = sum(s_1 + ... + s_i)
long long S[MAXN+1];
long long dp[MAXK+1][MAXN+1];

int main() {
scanf("%d %d", &N, &K);
for (int i = 1; i <= N; i++) {

long long s; scanf("%lld", &s);
S[i] = S[i-1] + s;

}
for (int i = 1; i <= N; i++) dp[0][i] = INF;
for (int k = 1; k <= K; k++) {

for (int j = 1; j <= N; j++) {
dp[k][j] = INF;
for (int t = 0; t < j; t++) {

dp[k][j] = min(dp[k][j],
dp[k-1][t] + (S[j]-S[t])*(S[j]-S[t]));

}
}

}
printf("%lld\n", dp[K][N]);
return 0;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 64

Let us take a look at the recurrence again:

dp[k][i] = min
j<i

(
dp[k − 1][j] + (sj+1 + . . .+ si)

2) .
Let opt[k][i] be the argmin, i.e. the value of j at which the
minimum is attained in the above recurrence. If there’s
several, pick any.
Key Claim:

opt[k][i] ≤ opt[k][i + 1]
Proof later. Intuitively, one expects increasing i to move
our groups to the right. If opt[k][i + 1] < opt[k][i] then the
kth group for i + 1 encompasses the kth group for i.
This seems wrong because the cost of squaring increases
quicker the larger the group gets.
More formally, the key is x2 is convex.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Optimisation 65

This is the setting we work in. We have a 2D dp with
recurrence

dp[k][i] = min
j<i

(dp[k − 1][j] + Cost(j + 1, i)) .

We define the array opt[k][i] to be any value of j at which
the above attains a minimum.
And we know (through some voodoo or maths) that

opt[k][i] ≤ opt[k][i + 1].

We now see how to speed this up.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Optimisation 66

The structure of the following slides:
In the next few slides, I assume the setting just mentioned.
In particular, I assume that opt[k][i] ≤ opt[k][i + 1] for all
k, i.
Under this setting, I will explain the general procedure for
optimising the DP from O(N2K) to O(NK logN).
I will demonstrate the procedure on our example problem.
I will then talk about when opt[k][i] ≤ opt[k][i + 1] holds.
As a special case, we will show it holds for our example
problem.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 67

Suppose opt[k][i] ≤ opt[k][i + 1].
The earlier recurrence for dp[k][i] was O(N) because we
had to try every j < i.
But if we know prev := opt[k][i − 1] then we only need to
try every j ∈ [prev, i).
This doesn’t lead to a speed up just yet. But for example,
if we also know the value nxt := opt[k][i+ 1], then we only
have to try every j ∈ [prev, nxt].
This is how we will proceed: by constraining the range we
have to search on both sides.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 68

First we calculate dp[k][N/2] and opt[k][N/2].
For convenience, define

ok,N/2 := opt[k][N/2].

Now, for all i < N/2 we know ok,i < ok,N/2,
and for all i > N/2 we know ok,i > ok,N/2.
So on the left we have to search the range [1, ok,N/2] and
on the right [ok,N/2,N].
Note: this partitions the range between the 2 halves.
We now divide and conquer by repeating this procedure in
both halves, except only searching the above range in each
of the halves.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 69

Suppose we have k fixed and N = 7. Then we calculate
dp[k][n] in top to bottom order in the following tree.
Each node will store its index i and ok,i in the form o:ok,i.
Each node will also the range in which it searched for its
recurrence like [x, y].

4

2

1 3

6

5 7

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 70

First, we have to search the range [1, 7] to find dp[k][4]
and ok,4. Suppose ok,4 = 3:

4 o:3 [1, 7]

2

1 3

6

5 7

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 71

Next we calculate dp[k][i] for the 2 children. We should
only search for j in the ranges that make sense. Suppose
ok,2 = 1 and ok,6 = 4.

4 o:3 [1, 7]

2 o:1 [1, 3]

1 3

6 o:4 [3, 7]

5 7

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 72

Finally we calculate dp[k][i] for the last layer, again only
searching in the ranges that make sense. I am going to
omit o:x for this layer because it does not matter.

4 o:3 [1, 7]

2 o:1 [1, 3]

1 [1, 1] 3 [1, 3]

6 o:4 [3, 7]

5 [3, 4] 7 [4, 7]

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 73

What can you say about the search ranges of each layer of
the tree?

4 o:3 [1, 7]

2 o:1 [1, 3]

1 [1, 1] 3 [1, 3]

6 o:4 [3, 7]

5 [3, 4] 7 [4, 7]

Besides overlaps at endpoints, they form a partition of
[1, 7].

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 74

Under this procedure, what is the cost to calculate
dp[k][2]?

4 o:3 [1, 7]

2 o:1 [1, 3]

1 [1, 1] 3 [1, 3]

6 o:4 [3, 7]

5 [3, 4] 7 [4, 7]

The size of the range we have to search in for index 2. In
this case it is |[1, 3]| = 3.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 75

What is the total cost to calculate all the dp[k][i]?

4 o:3 [1, 7]

2 o:1 [1, 3]

1 [1, 1] 3 [1, 3]

6 o:4 [3, 7]

5 [3, 4] 7 [4, 7]

Sum of the sizes of the ranges. The sum of the sizes for
each layer is O(N), there are O(logN) layers. Therefore
O(N logN) overall.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 76

Hence by calculating our DP in this divide and conquer
order, we get a speed up of O(N2K) to O(NK logN).
In practice, we DFS instead of doing it layer by layer.
Our code is similar to range trees.
During our DFS, we keep track of a range [cL, cR) and our
DFS will calculate dp[k][i] for all i ∈ [cL, cR).
We also keep the search range (the range in the tree
diagrams).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Divide and Conquer Framework 77

// Insert your cost function here:
long long Cost(int i, int j);

// Search range for our DP is in the range [qL, qR]
// In this branch, calculating dp[k][cL,..cR)
void dnc(int qL, int qR, int cL, int cR, int k) {

if (cR <= cL) return;
int bestpos(-1);
int mid = (cL + cR) / 2;
dp[k][mid] = INF; // assume this is a minimisation problem
for (int i = qL; i <= min(qR, mid-1); i++) {

// Depending on definition of Cost,
// add Cost(i+1, mid) or Cost(i, mid)
long long newcost = dp[k-1][i] + Cost(i+1, mid);
if (newcost < dp[k][mid]) {

dp[k][mid] = newcost;
bestpos = i;

}
}
// Split our range in 2.
// In the left, the search range is [qL, bestpos]
// and we calculate dp[k][cL,mid)
// In the right, the search range is [bestpos, qR]
// and we calculate dp[k][mid+1,cR)
dnc(qL, bestpos, cL, mid, k);
dnc(bestpos, qR, mid+1, cR, k);

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 78

Let us return to our original example problem.
What is the cost function here? Letting S[N] be the
cumulative array, we have

Cost(j + 1, i) = (S[i]− S[j])2.

We can substitute this directly into our divide and conquer
template.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 79

#include <bits/stdc++.h>
using namespace std;

const long long INF = 1e17;
const int MAXN = 10000;
const int MAXK = 100;
int N, K;
long long S[MAXN+1]; // cumulative array
long long dp[MAXK+1][MAXN+1];

// Cost of segment (i, j]
long long Cost(int i, int j) {

return (S[j]-S[i])*(S[j]-S[i]);
}
// Search range: [qL, qR], calculating dp[k][cL..cR)
void dnc(int qL, int qR, int cL, int cR, int k) {

if (cR <= cL) return;
int bestpos;
int mid = (cL + cR) / 2;
dp[k][mid] = INF;
for (int i = qL; i <= min(qR, mid-1); i++) {

// Cost expects (], so we use Cost(i, mid).
long long newcost = dp[k-1][i] + Cost(i, mid);
if (newcost < dp[k][mid]) {

dp[k][mid] = newcost;
bestpos = i;

}
}
dnc(qL, bestpos, cL, mid, k);
dnc(bestpos, qR, mid+1, cR, k);

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 80

int main() {
scanf("%d %d", &N, &K);
for (int i = 1; i <= N; i++) {

long long c; scanf("%lld", &c);
S[i] = S[i-1] + c;

}
// For K = 0, dp[0][0] = 0 is the base case.
for (int i = 1; i <= N; i++) dp[0][i] = INF;
// Just call dnc for k from 1 to N
// Make sure you get the initial [qL,qR] and [cL, cR) correct.
for (int k = 1; k <= K; k++) dnc(0, N, 1, N+1, k);
printf("%lld\n", dp[K][N]);
return 0;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example Problem: Noisy Kids 81

Complexity? O(NK logN). Here N = 104,K = 100 we
get ≈ 14 · 106 which is fine for a second.
But we left out a detail: how do we know that opt[k][i] is
non-decreasing for a fixed k?
This is a special case of a more general phenomenon.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Proof of Monotonicity of opt 82

Warning: this part is quite technical.
I’ve included a key takeaways slide at the end.
The more important part to get is the intuition.
Feel free to skip verifying any of the maths equations.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Proof of Monotonicity of opt 83

For concreteness, let Cost(i, j) := (S[j]− S[i])2.
I claim Cost(i, j) satisfies the following key feature:
if a < b < c < d, then

Cost(a, d)− Cost(b, d) ≥ Cost(a, c)− Cost(b, c).

What does this say? Suppose we started by looking at the
ranges [b, c] and [b, d] and we define A := Cost(b, c) and
B := Cost(b, d).
Then it says that adding an extra item to the interval
[b, d] increases the cost more than adding the same item
to the interval [b, c].

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Proof of Monotonicity of opt 84

But when our function is squaring, this key feature is
immediately true. It just says that

(B + c)2 − B2 ≥ (A + c)2 − A2

if B > A ≥ 0.
This follows from x2 being convex (its derivative is an
increasing function).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Proof of Monotonicity of opt 85

Now, let Cost be any function that satisfies

Cost(a, d)− Cost(b, d) ≥ Cost(a, c)− Cost(b, c)

for all a < b < c < d.
To prove opt[k][i] is increasing in i, we proceed with the
standard swapping argument.
Suppose for a contradiction that opt[k][i + 1] < opt[k][i].

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Proof of Monotonicity of opt 86

Then on the one hand by definition of ok,i+1:
dp[k − 1][ok,i+1] + Cost(ok,i+1, i + 1)
< dp[k − 1][ok,i] + Cost(ok,i, i + 1),

or equivalently:
Cost(ok,i+1, i + 1)− Cost(ok,i, i + 1)
< dp[k − 1][ok,i]− dp[k − 1][ok,i+1].

But the opposite situation holds for ok,i:
dp[k − 1][ok,i] + Cost(ok,i, i)
< dp[k − 1][ok,i+1] + Cost(ok,i+1, i),

or equivalently:
dp[k − 1][ok,i]− dp[k − 1][ok,i+1]

< Cost(ok,i+1, i)− Cost(ok,i, i).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Proof of Monotonicity of opt 87

Composing these two inequalities, we get

Cost(ok,i+1, i + 1)− Cost(ok,i, i + 1)
< Cost(ok,i+1, i)− Cost(ok,i, i)

exactly contradicting the desired inequality on Cost, since

ok,i+1 < ok,i < i < i + 1.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Quadrangle Inequality 88

This inequality

Cost(a, d)− Cost(b, d) ≥ Cost(a, c)− Cost(b, c)

for all a < b < c < d is called the quadrangle inequality.
You should think of it as saying the larger your segment
already is, the more costly it is to put items into it.
So intuitively, one might expect this to imply monotonicity
of opt, since moving the right endpoint from i to i + 1
should disincentivise the last segment growing any larger
to the left.
This is what the above proof showed. Hence, satisfying
the quadrangle inequality is sufficient for opt to be
monotonic, allowing us to apply D&C Optimisation.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Examples of good cost functions 89

Some examples:
Our example involved

Cost(i, j) = F(si+1 + . . .+ sj)

where F(x) = x2. If all our {si} are positive then Cost
satisfies the quadrangle inequality whenever F is convex.
So F(x) = x3, x√x, x log x all work.
Also a lot of CHT, i.e.

Cost(i, j) = bi + mi · pj

where the mi are non-increasing and the pj are
non-decreasing. Conversely, a decent number of D&C
problems can be solved with CHT after clever rewriting.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Examples of good cost functions 90

By induction, it suffices to prove it for one step:

Cost(b−1, c+1)−Cost(b, c+1) ≥ Cost(b−1, c)−Cost(b, c).

Often Cost(i, j) is defined as some function operating on
the multiset of {si, si+1, . . . , sj}. For these, proving a single
step is often easy.
For example,

Cost(i, j) = |{(a, b) | sa + sb = 0 ∧ a, b ∈ [i, j]}| .

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Key Takeaways 91

Key Takeaways:
To show opt is monotone, we almost always instead show
that Cost satisfies the quadrangle inequality.
You don’t need to know why Cost satisfying the
quadrangle inequality implies monotonicity of opt. But it is
worth knowing roughly how to check the inequality holds.
Intuitively, it just says the larger a range already is, the
more Cost increases more upon adding another item.
Many Cost functions satisfy the quadrangle inequality, in
particular convex functions applied to the sum of the
range.
If Cost satisfies the quadrangle inequality or we suspect it
does, then we can apply the earlier Divide and Conquer
framework directly just by modifying the Cost function.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Modifications 92

For maximisation problems, we want the opposite
quadrangle inequality

Cost(a, d)− Cost(b, d) ≤ Cost(a, c)− Cost(b, c),

that is, it is harder to increase the cost of larger segments.
Examples include concave functions such as F(x) := √x
and F(x) = log x.
Again, it suffices to prove it for a single step.
Often the annoying part is calculating Cost(i, j) quickly.
For example, consider

Cost(i, j) = |{(i, j) | si + sj = 0}| .

For D&C it is too slow to calculate this in O(j − i).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Aside: Knuth’s Optimisation 93

The quadrangle inequality further gives that

opt[k − 1][i] ≤ opt[k][i] ≤ opt[k][i + 1]

Using this and doing the DP in increasing k order, then
decreasing i order, gives a running time of O((N + K)N).
This is sometimes called ”Knuth’s Optimisation”. (though
I feel this term is overloaded)

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 94

Problem Statement:
There are N mines on a river, of which the ith is at
position Xi and produces Wi units of coal.
To collect coal, K facilities will be built on the river. The
river only flows downstream so coal from position i can be
delivered to position j iff j > i. To deliver w units of coal
from position X to Y costs w · (Y − X) units of fuel.
If we optimally position the facilities, what is the minimum
amount of fuel necessary to collect all the coal?
Source: 2012 Latin America Regionals.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 95

Input Format:
First line, 2 integers N,K. 1 ≤ K < N ≤ 2000.
Next N lines describe the mines. Each line contains 2
integers Xi,Wi with 1 ≤ Xi,Wi ≤ 106.
The mines are in strictly increasing order of Xi.
Sample Input:
3 2
11 3
12 2
14 1
Sample Output: 3

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 96

As always, start simple. What order to process in and
what state?
The standard ones for 2D DP. State is dp[k][i], the
minimum cost to collect coal exactly from the first i mines
using k facilities.
Order is increasing k then increasing i.
Increasing i then k works too.
Recurrence? Has to be something about building facilities.
Easy Observation: We should only build facilities at
mines.
By definition, in the state dp[k][i], we must build a facility
at mine i.
So what is left to choose? Where the previous facility was
built.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 97

Recurrence:

dp[k][i] = min
j<i

(dp[k − 1][j] + Cost(j, i))

What is Cost(j, i) here? (in words)
It is the total cost to deliver coal from mines j + 1, . . . , i to
a facility at mine i.
Formula is

i∑
t=j+1

Wt · (Xi − Xt).

Exercise: Make this run in O(N2K) (Hint: Either rewrite
the equation or do a backwards sweep to calculate the
above min).
O(N2K) ≈ 8 × 109. Too slow (at least without extreme
micro optimization).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 98

How to speed this up? Note this is a standard 2D DP
where we are making a choice per state, but making this
choice is introducing an O(N) cost. And we are blowing
out due to this O(N) cost, not the state space.
So we should look at whether this choice has a nice
monotone structure, i.e. is opt[k][i] ≤ opt[k][i + 1]?
To check this, we should check the quadrangle inequality,
or the one step version

Cost(b−1, c+1)−Cost(b, c+1) ≥ Cost(b−1, c)−Cost(b, c).

Important: What does your intuition tell you?
My intuition tells me this seems likely.
Adding another mine to a larger segment should incur
more cost, compared to adding it to a smaller segment. In
the former, the coal will have to be shipped further.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 99

We can also give a quick proof that the inequality

Cost(b−1, c+1)−Cost(b, c+1) ≥ Cost(b−1, c)−Cost(b, c)

does indeed hold true.
Recall that

Cost(j, i) :=
i∑

t=j+1
Wt · (Xi − Xt).

Most terms of the inequality cancel. What remains on the
LHS is just Wb · (X[c + 1]− X[b]), while RHS is just
Wb · (X[c]− X[b]).
Therefore the quadrangle inequality is satisfied and we can
apply D&C optimization.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 100

The final ingredient is to calculate

Cost(j, i) :=
i∑

t=j+1
Wt · (Xi − Xt)

in constant time.
The difficulty is that Xi varies, so we can’t precompute
this.
Standard trick: rewrite this to isolate out the Xi part:

Cost(j, i) :=

 i∑
t=j+1

Wt

Xi −

 i∑
t=j+1

WtXt

 .

How do we calculate this in O(1) now?
Cumulative sums over the array W[N] and the array
{WtXt}N

t=1.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 101

#include <bits/stdc++.h>
using namespace std;
const long long INF = 1e18;
const int MAXN = 1000, MAXK = 1000;
int N, K;
long long X[MAXN+1], W[MAXN+1], sXW[MAXN+1], sW[MAXN+1];
long long dp[MAXK+1][MAXN+1];

// Cost of moving mines (i,j] to mine j.
long long Cost(int i, int j) {

return (sW[j]-sW[i])*X[j] - (sXW[j]-sXW[i]);
}
// Best choice for our DP is in the range [qL, qR]
// Calculating dp[k][cL,..cR)
void dnc(int qL, int qR, int cL, int cR, int k) {

if (cR <= cL) return;
int bestpos(-1);
int mid = (cL + cR) / 2;
dp[k][mid] = INF;
for (int i = qL; i <= min(qR, mid-1); i++) {

// We use Cost(i, mid) since Cost(i,j) is the cost of (i,j]
long long newcost = dp[k-1][i] + Cost(i, mid);
if (newcost < dp[k][mid]) {

dp[k][mid] = newcost;
bestpos = i;

}
}
dnc(qL, bestpos, cL, mid, k);
dnc(bestpos, qR, mid+1, cR, k);

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 102

int main() {
scanf("%d %d", &N, &K);
for (int i = 1; i <= N; i++) {

scanf("%lld %lld", &X[i], &W[i]);
sXW[i] = sXW[i-1] + X[i] * W[i];
sW[i] = sW[i-1] + W[i];

}
for (int i = 1; i <= N; i++) dp[0][i] = INF;
for (int k = 1; k <= K; k++) dnc(0, N, 1, N+1, k);
printf("%lld\n", dp[K][N]);
return 0;

}

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Example: Arranging Heaps 103

Complexity? O(NK logN) ≈ 4.4 × 107. Likely fine for a
second on a relatively modern machine.
Common in many problems of this kind.

Start with the obvious DP but the recurrence is too slow.
Look at the structure there. Since you are making choices,
check if these choices might be monotone.
You want your intuition to play a strong role here.
To apply D&C, want Cost to be around O(1) amortized.
For simple examples, this usually just involves rewriting the
equation until you can apply basic data structures.
For more complicated examples, you may need to be more
careful with how you persist state in your D&C.

Aside: with some rewriting, not hard to do this with CHT
either.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Table of Contents 104

1 DP Optimizations

2 Convex Hull Trick
Construction
Application
Examples

3 Divide and Conquer Optimization
Divide and Conquer Framework
Proving monotonicity of opt
Modifications

4 Wrapping Up

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Congratulations! 105

Congratulations on making it to the end! There was a lot
of difficult material and the problem sets were non-trivial.
There were also a fair few rough edges, thanks for sticking
through it all!

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Remaining Dates 106

Problem set 7 due 23rd November at 1pm
Problem set 8 due 7th December at 1pm
Each diary entry is due on the corresponding Thursday
Final exam: 2nd December, 1pm–7pm.
Consultation: TBA.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

myExperience 107

Please fill out the myExperience survey at
https://myexperience.unsw.edu.au. This is particularly
valuable since this course is still iterating.
I’d like feedback on any part you have feedback on, e.g:

Covered topics. Any topics you particularly disliked or any
topics you wished we covered.
Lecturing style or content, e.g. pacing, choice of examples.
Problem sets. Difficulty? Interesting?
Problem diaries - new this year
Contests/exam. Difficutly, format, etc
Tut/labs. How can we make them more useful?
Platforms: course website, Ed forum, Zoom/YouTube,
DOMjudge.
Anything we should include on the Tips page of the
website - e.g. debugging advice.

https://myexperience.unsw.edu.au

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Feedback 108

In addition to myExperience, you can also give us feedback
by:

making a post on Ed, private and/or anonymous if you
want, or
emailing me.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Final Exam 109

6 hours, 8 problems worth 100 points each, with subtasks.
All topics except DP II.
Expect problems akin to the contest problems. Problems
similar to the hardest ones in the problem sets will only
appear as the very hardest problem or two in the set, in
order to distinguish the top couple of students.
Problems will use the theory we covered but typically
require some modifications first.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Final Exam 110

Problems will be in approximate order of difficulty of the
full problem.
Average last year was about 400/800 - we’ll be aiming for
similar, but it’s hard to predict.
Read all the problems! Difficulty is subjective, and
everyone has different strengths. Also, hard problems may
have easy subtasks.
Use the scoreboard to see what problems other students
have had success with, and prioritise those. This is
particularly useful to identify easy subtasks.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Final Exam 111

Roughly same setup as the contests - submissions on
DOMJudge.
Open book - make use of lecture slides and code.
Documentation available at https://cppreference.com or
https://cplusplus.com.
A practice final exam will be made available shortly.

https://cppreference.com
https://cplusplus.com

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Finals Advice 112

Be prepared for bugs to occur, don’t let them throw you
off. Try to get some realistic gauge of how much of your
time is spent debugging on problem sets, what your most
common bugs are and what works for you debugging wise.
If you feel something is suspicious with your submissions,
feel free to send us a clarification.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Study Advice 113

Perhaps the most difficult skill required is to recognise
what tools to use for which problem.
This isn’t a concern in the weekly problem sets, but the
contests should give you an idea of what to expect.
This skill is best acquired through experience - practice on
Codeforces by doing virtual participation in past rounds or
doing assorted problems with tags off.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Study Advice 114

Review problem sets and contests. Try to recall what the
key parts of solutions were and how you derived them.
Look through examples in lectures and tutorials, make
sure you understand roughly how to do them.
I’ve also created a summary of what I think were some of
the key parts of each week.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Summaries Summary 115

This is a list of what I think the biggest themes of each
week are. So things I’ve tried to convey and think are
important.
Note: This does NOT mean if something isn’t on this
slide then it won’t be on the finals.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 1 (Intro) 116

Always ask first whether brute force is fast enough -
complexity analysis.
It’s worth remembering how to do a recursive brute force
like in N-Queens.
If brute force would TLE, instead try to make observations
that could form the basis of a greedy algorithm.
Often want to process in some order, so sorting is useful
and leads naturally to linear sweep.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 1 (Intro) 117

Binary search is an efficient way to search sorted data -
use lower_bound or upper_bound to avoid bugs.
We can also use it to search a monotonic function by
computing function values on the fly.
Particularly useful case is discrete binary search, where
function values are true/false.
Whenever you are asked to find the largest/smallest x for
which some property holds, at least consider binary search.
Consider whether the property is monotonic, and if so, can
you test the property quickly for fixed x?

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 2 (Data Structures I) 118

Basic data structures - vector, stack, queue, heap (pq).
Make sure you remember what sets, maps and order
statistics trees do.
They don’t just store elements, they also maintain order!
Useful things they do:

Store elements.
Find the first element less than or greater than x.
Find number of elements less than x.
Find the kth element in order.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 2 (Data Structures I) 119

Cumulative array is also helpful - allows sum over range in
O(1).
Union find manages disjoint sets. But remember the main
limitation, they don’t do well when you need to support
both insertion and deletion.
PS2:

Classrooms: good example of sweep with set using a
greedy observation.
Ancient Berland Roads: Both the idea of considering a
different order (the reverse) as well as how to maintain
extra metadata along with union find (e.g: total
population).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 3 (Dynamic Programming I) 120

You must be able to DP problems by YOURSELF - the
theory is secondary. I presented an iterative method to
design an appropriate state and recurrence - not the only
method, use whatever thought process works for you.
I expect you know how to do tree DP, exponential DP and
DP involving data structures.
You should at least be comfortable with each example
except Art, Key, Texture, where comfortable means you
can see how you’d solve them yourself.
Also review the week 6 revision lecture for more examples.
PS3:

Coloring Trees: good exercise in designing a good state
here.
Wi-Fi: typical example of DP with a data structure.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 4 (Graph Algorithms) 121

Many basic things you will be assumed to know:
representing a graph, representing a tree in particular,
DFS, DAGs, SCCs, MST.
DFS is surprisingly useful - DFS tree analysis provides
structure, both for directed and undirected graphs
For trees specifically, know how to compute LCA and the
data structure for doing so. The same binary composition
structure answers most path queries on trees without
updates.
PS4: all problems are instructive.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 5 (Data Structures II) 122

Pretty much the entire lecture is important. At minimum
definitely make sure you know how to do basic range/point
queries/updates that may involve lazy propagation.
Make sure you understand specifically how to do range
sets and range adds and e.g: how to do range sum queries
in combination with these.
And you know how to do these over trees/subtrees too
(this shouldn’t be any different from on a line).
The rest is all important to know too.
Same with example problems. Make sure in particular you
understand Mapping Neptune, it is a standard sweep with
a range tree.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 5 (Data Structures II) 123

PS5:
Multiples of 3, The Problem Set and Ada and Mulberry are
all basic important problems to know how to do.
The idea behind On Changing Tree is a good example of
breaking up a formula into multiple parts. This is very
useful later on, especially in DP 2. It is worth noting that
it was essentially irrelevant the original problem was on a
tree. This is generally true for range trees over trees.
Points is a good example of searching for a specific
criterion.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 7 (Shortest Paths) 124

Single source:
Unweighted? BFS
Non-negative weights? Dijkstra
Negative weights, detect negative cycles? Bellman-Ford

All pairs shortest path: Floyd-Warshall.
The most important skill is recognising and constructing
implicit graphs.
PS6: Again all problems but in particular Jzzhu and Cities
and President’s Path for creative applications of Dijkstra
and Floyd-Warshall.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 8 (Network Flow) 125

Max flow is useful for some optimisation problems which
don’t permit a greedy or DP solution - clues include lack
of useful order.
Be familiar enough with Dinitz’s that you can copy paste
and use it.
Be familiar with the basic flow constructions (vertex
capacities, undirected graphs, multiple sources and sinks,
bipartite matching).
Know that min cut is equal to max flow - commonly used
for assignment problems. Understand the common
constructions (Project Selection, Image Segmentation)
Know how to construct a flow graph to fit a set of
constraints (Jumping Frogs, Magic Hours).

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 8 (Network Flow) 126

PS7:
Power Transmission and Magic Potion are both good
exercises in flow graph construction.
Delivery Bears is a nice combination of flow with a
technique from earlier in the course.
Oil Skimming is a non-obvious but very elegant application
of flow.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 9 (Mathematics) 127

Know how to do all operations modulo a prime.
Know how to do primality testing, prime factorisation and
finding all divisors both for a single n and for all n ≤ N.
Know how to compute binomial coefficient modulo a
prime.
Understand the Combinatorics examples. Especially
important: understand how to set up a combinatorial DP.
Understand how to do exponentiation quickly and the
covered examples of why matrix exponentiation is
powerful.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 9 (Mathematics) 128

PS8:
SETDIFF: often a counting problem is easier if you group
the expression in a different way.
Math: understand prime factorisation properties.
The rest are all good examples of combinatorial DP.

Dynamic
Programming

II

DP
Optimizations

Convex Hull
Trick
Construction
Application
Examples

Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity
of opt
Modifications

Wrapping Up

Lecture 10 (Dynamic Programming II) 129

NOT examinable.
Understand the assumptions that CHT and Divide and
Conquer Optimization make.
Be comfortable enough with the code for both to use
them.
For CHT, understand how we transformed the in-class
example into CHT.
For Divide and Conquer, have some feel for what types of
cost functions work with Divide and Conquer.
Feel free to skip the more gory math details. I’ve added
some overview and Key Takeaways slides within the
lecture deck itself.

	DP Optimizations
	Convex Hull Trick
	Construction
	Application
	Examples

	Divide and Conquer Optimization
	Divide and Conquer Framework
	Proving monotonicity of opt
	Modifications

	Wrapping Up

