
Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Introduction
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Sydney

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 2

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Instructors 3

Raveen de Silva (z3372617)
Kevin Zhu (z5206576)
Paula Tennent (z5255101)
Angus Ritossa (z5311370)

Consultation: Tuesday 17:00 – 18:00.
If you want a private consultation, best to email me to set up a
time first.
You can also contact us (and other students) on the Ed forum.

https://edstem.org/au/join/Aw9SSy

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Course Goals 4

To learn algorithms and data structures
To practice fundamental problem solving ability
To practice your implementation and general programming
skills
To prepare for programming competitions

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Prerequisites 5

Significant programming experience in a C-like
programming language
Understanding of fundamental data structures and
algorithms:

Arrays, structs, heaps, merge sort, BSTs, graph search,
etc...

COMP3121/3821
Enthusiasm for problem solving

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Topic Overview 6

1 Introduction
2 Data structures
3 Dynamic programming
4 Graph algorithms
5 Network flow
6 Mathematics

There is a tentative course schedule on the website.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 7

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Timetable 8

Lectures: (weeks 1–10)
Tuesday, 13:00 – 16:00

Tute/Labs: (weeks 1–5, 7–10)
W13A: Wednesday, 13:00 – 16:00
W13B: Wednesday, 13:00 – 16:00
F10A: Friday, 10:00 – 13:00

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Timetable Notes 9

All times are in AEST (UTC+10) until the 3rd of
October, then AEDT (UTC+11) thereafter
All classes will be conducted online via Zoom
In week 6 (flexibility week), we will have a revision lecture
and no labs will take place

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Lectures 10

Lectures for each topic will present the theory, and apply
this to some example problems
Any code in lectures will be in C++
Slides will be available before each lecture
Please ask questions at any time if anything is unclear

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Tut/Labs 11

There are three hours of lab time assigned a week
Your tutor will discuss one or two example problems
related to the topic introduced in the most recent lecture,
and demonstrate how to implement and test a solution
You can spend the remaining time working on the problem
sets by yourself or ask your tutor for help

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 12

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Assessment Breakdown 13

Weekly problem sets: 40%
Problem diary: 8%
Contests: 18%
Final: 34%

Marks are scaled generously in each assessment. Your
performance relative to the cohort is of greater importance
than your raw mark.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Problem Sets 14

A set of (usually) 5 problems will be released each week
with a lecture
Links will be posted on the course website
You have ∼ 2 weeks to complete each set
Worth 5% each, for a total of 40%
Each problem in a set is weighted equally

http://www.cse.unsw.edu.au/~cs4128/20t3/

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Problem Diary 15

Up to 3 pages (excl code snippets) explaining your
problem-solving process and any challenges you
encountered
Submit within 48h of problem set deadline, using give
(TBC)
Worth 1% each, for a total of 8%

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Contests 16

At the end of week 1, you will undergo a timed contest
with 5 problems, to be completed within 48 hours
This first contest is intended to practice coding in a
time-constrained environment, and does not require
extensive technical knowledge
We recommend that you try to complete the task within a
shorter time frame, say 5 hours, but the full time is
available in this case to minimise stress for you

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Contests (continued) 17

In weeks 5 and 9, you will undergo a timed contest with 3
problems, to be completed within 3 hours
We will run up to 8 timeslots over a 24 hour period, to
allow for time differences
Further details will be released closer to the date of each
contest

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Final Exam 18

The final exam will be a timed contest with ∼ 8 problems,
to be completed within 6 hours
Further details will be released closer to the date of the
exam

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 19

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Competitions 20

ACM-ICPC
South Pacific Programming Competition. Divisionals
October 16! Register this week (email me) for free T-shirt.
ANZAC League

Big companies
Google Code Jam
Facebook Hacker Cup
Microsoft Coding Competition (Probably around T1 at
UNSW)
AmazAlgo (Probably around May at UNSW)
Will be announced on CSESoc Facebook page.

Online competitions
Atcoder
Codeforces
topcoder
CodeChef

http://sppcontest.org/
https://www.facebook.com/groups/SPPContest/
atcoder.jp
codeforces.com
topcoder.com
codechef.com

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Practice 21

The best practice is to solve lots of interesting problems
Join CPMSoc

Fortnightly workshops
Other events including competitions

Live contests
ANZAC League

Online problem sets and competitions
AtCoder, Codeforces, TopCoder, CodeChef
USACO, ORAC
Project Euler

Or ask me or your tutor

https://www.unswcpmsoc.com/
https://www.facebook.com/groups/SPPContest/
train.usaco.org
orac.amt.edu.au
projecteuler.net

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 22

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

How to Solve a Problem 23

Read the problem statement
Check the input and output specification
Check the constraints
Check for any special conditions which might be easy to
miss
Check the sample input and output

Reformulate and abstract the problem away from the
flavour text

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

How to Solve a Problem 24

Design an algorithm to solve the problem
Implement the algorithm

Debug the implementation
Submit!

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: A + B 25

Problem statement Alice and Bob are two friends who
are visiting a milk bar. The milk bar is owned by the
crotchety old Mr Humphries. If Alice buys A dollars worth
of items and Bob buys B dollars, how much must they pay
in total?
Input Two integers, A and B (0 ≤ A,B ≤ 10)
Output A single integer, the total amount Alice and Bob
must pay.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: A + B 26

Problem Output A + B
Algorithm Calculate A + B, and then print it out.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: A + B 27

Complexity O(1) time and O(1) space
Implementation
#include <iostream >

int main() {
// read input
int a, b;
cin >> a >> b;

// compute and print output
cout << (a + b) << '\n';
return 0;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 28

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Complexity and Time Limit 29

Your solution must give the correct output for each
possible input, but it must also run within the specified
time limit
If you know your algorithm is not correct or too slow, then
there is no point implementing or submitting it
You can assess whether your algorithm is fast enough
using complexity analysis

Calculate the number of states your algorithm will enter,
and multiply by the amount of work performed in each
state
Sometimes more sophisticated techniques are required, e.g.
recursive algorithms
Your solution will not be accepted if it times out on even
one test case, so assume the worst case input

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Complexity and Time Limit 30

Modern computers can handle about 200 million primitive
operations per second
In some easy problems, the naïve algorithm will run in time
If not, you can use a variety of techniques to reduce the
number of states or the amount of work per state
We’ll see more advanced methods in future topics, e.g.
data structures

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Max Sum Window 31

Problem statement Given an array of positive integers S
and a window size k, what is the largest sum possible of a
contiguous subsequence (a window) with exactly k
elements?
Input The array S and the integer k
(1 ≤ |S| ≤ 1, 000, 000, 1 ≤ k ≤ |S|)
Output A single integer, the maximum sum of a window
of size k

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Max Sum Window 32

Algorithm 1 We can iterate over all size k windows of S,
sum each of them and then report the largest one
Complexity There are O(n) of these windows, and it
takes O(k) time to sum a window. So the complexity is
O(nk). So we will need roughly around 1,000,000,000,000
operations in the worst case.
This is way bigger than our 200 million figure from before!
We need a way to improve our algorithm.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Max Sum Window 33

What are we actually computing?
For some window beginning at position i with a window
size k, we are interested in Si + Si+1 + . . .+ Si+k−1

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Max Sum Window 34

Let’s look at an example with k = 3
We compute:

S0 + S1 + S2
S1 + S2 + S3
and so on

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Max Sum Window 35

Algorithm 2 Instead of computing the sum of each
window from scratch, we can use the sum of the previous
window and just subtract off the first element, then add
our new element to obtain the correct sum.
To calculate Wi(= Si + Si+1 + . . .+ Si+k−1), we can
instead just do Wi−1 − Si−1 + Si+k−1

Complexity After the O(k) computation of the sum of the
first window, each subsequent sum can be computed in
O(1) time. Hence the total complexity of the algorithm is
O(k + n) = O(n)

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Max Sum Window 36

Implementation
#include <iostream >
#include <algorithm >
using namespace std;

const int N = 1e6 + 5;
int a[N];

int main() {
// read input
int n, k;
cin >> n >> k;
for (int i = 0; i < n; i++) cin >> a[i];

long long ret = 0, sum = 0;
for (int i = 0; i < n; i++) {

// remove a[i-k] if applicable
if (i >= k) sum -= a[i-k];
// add a[i] to the window
sum += a[i];

// if a full window is formed , and it's the best so far, update
if (i >= k - 1) ret = max(ret, sum);

}

// output the best window sum
cout << ret << '\n';
return 0;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Queens 37

Problem statement In chess, a queen is allowed to move
any number of squares horizontally, vertically or diagonally
in a single move. We say that a queen attacks all squares
in her row, column and diagonals.

⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ Q ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Queens 38

For N ≥ 4, it is always possible to place N queens on an
N-by-N chessboard so that no pair attack each other.

Q
Q

Q
Q

Q
Q

Q
Q

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Queens 39

Input The integer 4 ≤ N ≤ 12
Output For each valid placement of queens, print out the
sequence of column numbers, i.e. the column of the queen
in the first row, the column of the queen in the second
row, etc., separated by spaces and on a separate line.
Sample For N = 6, the output should be:

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Queens 40

Algorithm 1 Try placing queens one row at a time. The
easiest way to do this is through recursion (sometimes this
is called ”recursive backtracking”).
We place queens one row at a time, by simply trying all
columns, and then recurse on the next row. When N
queens have been placed, we check whether the placement
is valid.
Complexity? Naively there are NN placements of queens to
check. We need to check if this queen duplicates any
column or diagonal. This check takes O(N) time.
Thus the naïve algorithm takes O(NN+1) time, which will
run in time only for N up to 8.
How can we improve on this?

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Queens 41

We need to cut down the search space; NN is simply too
large for N = 12.
Many of the possibilities considered earlier fail because of
conflicts within the first few rows — indeed, a single pair
of conflicting queens in the first two rows could rule out
NN−2 of the possibilities.
Add pruning! Only recurse on valid placements, and
simply discarding positions that fail before the last row.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Queens 42

Algorithm 2 We place queens one row at a time, by
trying all valid columns, and then recurse on the next row.
When N queens have been placed, we print the placement.
Unfortunately, as is typical of backtracking algorithms like
this, it is difficult to formulate a tight bound for the
number of states explored; there are theoretically up to

N!

N!
+

N!

(N − 1)! + . . .+
N!

0! < N × N!

states, but in practice most of these are invalid. The true
numbers turn out to be as follows:

N 8 9 10 11 12
states 15720 72378 348150 1806706 10103868

Each state requires an O(N) check to ensure that the last
queen does not share her column or diagonal.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Queens 43

Implementation Gist
#include <iostream >
using namespace std;

int n, a[12];

void go(int i) {
if (i == n) {

// we have placed all n queens legally , so print this solution
for (int k = 0; k < n; k++) cout << a[k] + 1 << ' ';
cout << '\n';
return;

}

for (int j = 0; j < n; j++) {
// TODO: check whether a queen can be placed at (i,j)
if (can_place(j)) {

a[i] = j;
go(i+1);

}
}

}

int main() {
cin >> n;
go(0);

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 44

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Greedy Algorithms 45

One approach to reduce the number of states explored by
an algorithm is to simply make the best available choice at
each stage, and never consider the alternatives
This is known as a greedy strategy
General Principle: Don’t bother with states that will
never contribute to the optimal solution!
It is imperative that you prove (to yourself) that this
process achieves the optimal solution, that is, it is not
possible to beat the greedy strategy using a suboptimal
choice at any stage.
Look for a natural ordering of states
For some problems, the greedy algorithm is not optimal,
and we instead look to techniques such as dynamic
programming

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 46

Problem statement You are playing a 2-player game with
2 ≤ N ≤ 1000 rounds. You and your opponent have N
different cards numbered from 1 to N. In round i, each
player picks an unplayed card from their hand. The player
with the higher card wins i points (no points are given for
draws).
Through “psychology” you know exactly what cards your
opponent will play in each round. What is your maximum
possible margin of victory?
Input An integer N and a permutation of 1 to N, the i-th
value is the card your opponent plays in the i-th round.
Output A single integer, your maximum margin of victory
assuming optimal play.
Source Orac

http://orac.amt.edu.au/cgi-bin/train/problem.pl?set=aio06int&problemid=252

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 47

Example Input
3
3 1 2

Example Output 4
Explanation: Play 1 2 3. You lose the first round (-1) but
win the second and third (+2, +3).

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 48

Brute force? There are N! possible play orders.
But maybe we can eliminate many of these play orders as
suboptimal.
For this, it helps to imagine what a possible play order
could look like.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 49

Consider the round where the opponent plays card N.
In such a round, we can either draw (play card N too) or
lose.
If we lose, which card should we play?
May as well play our worst card, 1.
But now we can win every other round!

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 50

Okay, how about the play patterns where we play card N
and draw?
Then it’s like we’re repeating the problem with N − 1 in
place of N.
Unrolling this recursion, we now see, we can assume our
play pattern is:

Pick a number i.
Draw all rounds with opponent card > i.
Lose the round with card i.
Win all rounds with cards < i.

Only N play patterns! Can simulate each in O(N). Total
O(N2) = O(1, 000, 000).

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 51

Implementation
#include <bits/stdc++.h>
using namespace std;

const int MAXN = 1005;
int N, opp[MAXN];

int main() {
cin >> N;
for (int i = 0; i < N; i++) cin >> opp[i];
int ans = 0;
for (int i = 1; i <= N; i++) {

// draw > i, lose round i, win rounds < i
int cur = 0;
for (int j = 0; j < N; j++) {

if (opp[j] == i) cur -= j+1;
if (opp[j] < i) cur += j+1;

}
ans = max(ans, cur);

}
cout << ans << '\n';
return 0;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Psychological Jujitsu 52

Moral: One way to eliminate states is figure out
conditions “good” states must satisfy. For this, it helps to
consider a problem from different angles.
Other angles would have worked too. E.g: one could have
considered the round the opponent plays card 1, or the
round you played card N, etc...

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 53

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Linear Sweeps 54

Very basic but fundamental idea. Instead of trying to do a
problem all at once, try to do it in some order that lets
you build up state.
This lets you process events one by one. This can be
easier than trying to handle them all at once.
General Principle: Having an order is better than not
having an order!
Trying to sort and pick the right order to do a problem in
is fundamental.
If there isn’t a natural order to a problem, you may as well
try to do it in any sorted order.
Even if there is a natural order, sometimes it isn’t the
right one!

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 55

Problem statement You have a list of closed intervals,
each with an integer start point and end point. For
reasons only known to you, you want to stab each of the
intervals with a knife. To save time, you consider an
interval stabbed if you stab any position that is contained
with the interval. What is the minimum number of stabs
necessary to stab all the intervals?
Input The list of intervals, S. 0 ≤ |S| ≤ 1, 000, 000 and
each start point and end point have absolute values less
than 2,000,000,000.
Output A single integer, the minimum number of stabs
needed to stab all intervals.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 56

Example

The answer here is 3.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 57

How do we decide where to stab? State space is again
laughably big.
Again let’s ask ourselves if we can eliminate many of the
stab possibilities.
Focus on a single stab for now.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 58

Observation 1: We can move it so it is an end point of
an interval without decreasing the set of intervals we stab.
Proof: Consider any solution where there is a stab not at
the endpoint of an interval. Then we can create an
equivalent solution by moving that stab rightwards until it
hits an end point.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 59

Now let’s try drawing sample data and consider moving
from left to right. Where do we put our first stab?

Observation 2: By Observation 1, we may assume it is at
the first endpoint.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 60

Algorithm 1 Stab everything that overlaps with the first
end point. Then, remove those intervals from the intervals
to be considered, and recurse on the rest of the intervals.
Complexity There are a few different ways to implement
this idea, since the algorithm’s specifics are not completely
defined. But there is a simple way to implement this
algorithm as written in O(|S|2) time.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 61

If we look closely at the recursive process, there is an
implicit order in which we will process the intervals:
ascending by end point
If we sort the intervals by their end points and can also
efficiently keep track of which intervals have been already
stabbed, we can obtain a fast algorithm to solve this
problem.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 62

Given all the intervals sorted by their end points, what do
we need to keep track of? The last stab point
Is this enough? How can we be sure we haven’t missed
anything?
Since we always stab the next unstabbed end point, we
can guarantee that there are no unstabbed intervals that
are entirely before our last stab point.
For each next interval we encounter (iterating in ascending
order of end point), that interval can start before or
on/after our last stab point.
If it starts before our last stab point, it is already stabbed,
so we ignore it and continue.
If it starts after our last stab point, then it hasn’t been
stabbed yet, so we should do that.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 63

Algorithm 2 Sort the intervals by their end points. Then,
considering these intervals in increasing order, we stab
again if we encounter a new interval that doesn’t overlap
with our right most stab point.
Complexity For each interval, there is a constant amount
of work, so the main part of the algorithm runs in O(|S|)
time, O(|S| log |S|) after sorting.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 64

Implementation
#include <iostream >
#include <utility >
#include <algorithm >
using namespace std;

const int N = 1001001;
pair<int, int> victims[N];

int main() {
// scan in intervals as (end, start) so as to sort by endpoint
int n;
cin >> n;
for (int i = 0; i < n; i++) cin >> victims[i].second >> victims[i].first;
sort(victims , victims + n);

int last = -2000000001, res = 0;
for (int i = 0; i < n; i++) {

// if this interval has been stabbed already , do nothing
if (victims[i].second <= last) continue;
// otherwise stab at the endpoint of this interval
res++;
last = victims[i].first;

}

cout << res << '\n';
return 0;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Stabbing 65

Moral: Sorting into a sensible order is often helpful. As is
drawing pictures.
I often find it helpful to play with a problem on paper and
see how I would solve it manually.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 66

Problem statement There are N ≤ 2000 countries, the
i-th has ai ≤ 20 delegates.
There are M ≤ 2000 restaurants, the i-th can hold
bi ≤ 100 delegates.
For “synergy” reasons, no restaurant can hold 2 delegates
from the same country.
What’s the minimum number of delegates that need to
starve?
Input An integer N, N integers ai. An integer M, M
integers bi.
Output A single integer, the minimum number of
delegates that need to starve.
Source Orac

http://orac.amt.edu.au/cgi-bin/train/problem.pl?set=aio07sen&problemid=340

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 67

Example Input
3
4 3 3
3
5 2 3

Example Output 2
Explanation: Someone from the first country starves.
Furthermore, the second restaurant has too few seats.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 68

Yet again, trying all assignments is laughably slow. So
again, let us try to think about what conditions a good
assignment may have?
Makes sense to consider all delegates of a country at once
so we don’t have to keep track of who has been assigned
where.
Consider the countries in any arbitrary order. Suppose
“Australia” is the first country we are considering.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 69

Observation 1: We should assign as many delegates as
possible.
Proof: In any solution that does not, there is some
restaurant with no Australian delegates and there is a
starving Australian delegate.
We can then kick out any delegate for an Australian
delegate without making the solution any worse.
But where should we assign the Australian delegates?
Our main objective is to make it easier to seat the other
country’s delegates.
From some extreme examples, the bottleneck seems to be
the restaurants with few seats.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 70

Observation 2? We should assign delegates to the
restaurants with the most seats remaining.
Proof: Again, consider a solution that does not.
Then we skip restaurant i for a restaurant j where bi > bj.
But this means we can swap some delegate from
restaurant i with the Australian delegate in j while
preserving uniqueness.

By repeating these swaps, we obtain a solution just as
optimal except Observation 2 was obeyed.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 71

Hence we may consider just solutions where Australia’s
delegates are assigned to the restaurants with the most
seats remaining.
Now repeat all other countries in the same manner.
One easy way to implement: Sweep through the countries
one by one. For each country, sort the restaurants in
decreasing capacity order and assign to them in that order.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 72

Implementation
#include <bits/stdc++.h>
using namespace std;

const int MAXN = 2005, MAXM = 2005;
int N, numDelegates[MAXN], M, numSeats[MAXN];

int main() {
cin >> N;
for (int i = 0; i < N; i++) cin >> numDelegates[i];
cin >> M;
for (int i = 0; i < M; i++) cin >> numSeats[i];
int starved = 0;
for (int i = 0; i < N; i++) {

int delegatesRemaining = numDelegates[i];
sort(numSeats , numSeats+M, greater <int >());
for (int j = 0; j < M; j++) {

if (numSeats[j] > 0 && delegatesRemaining > 0) {
numSeats[j]--;
delegatesRemaining --;

}
}
starved += delegatesRemaining;

}
cout << starved << '\n';
return 0;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example problem: Restaurants 73

Complexity? O(N) countries. For each we sort a M
length list and then a linear sweep.
O(NM logM) ≈ O(4mil · 11), fast enough.
Moral: One way to make observations is think abstractly
about what should hold. Often this is guided by examples.
Once you have some guess, you can try to prove it after.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Coordinate Compression 74

Most of the examples in class have coordinates only up to
100,000 or so. But for most examples this is just a
niceness condition.
For most algorithms, the actual values of coordinates is
irrelevant, just the relative order.
So if coordinates are up to 1 billion but there are
N ≤ 100, 000 points then usually there are only O(N)
interesting coordinates and we are bottle necked by O(N).
E.g: range queries on a set of points. I don’t care exactly
what the coordinates of the points or query is, just which
points are within the query’s range.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Coordinate Compression 75

Coordinate compression is the idea of replacing each
coordinate by its rank among all coordinates. Hence we
preserve the relative order of values while making the
maximum coordinate O(N).
This reduces us to the case with bounded coordinates.
A few ways to implement this in O(N logN). E.g: sort,
map, order statistics tree.
I prefer one of the latter 2, since the data structure helps
you convert between the compressed and uncompressed
coordinates if needed (e.g: when querying).
Also with the former, one needs to be careful of equality.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Coordinate Compression 76

#include <bits/stdc++.h>
using namespace std;

// coordinates -> (compressed coordinates).
map<int, int> coordMap;

void compress(vector <int>& values) {
for (int v : values) {

coordMap[v] = 0;
}
int cId = 0;
for (auto it = coordMap.begin(); it != coordMap.end(); ++it) {

it->second = cId++;
}
for (int &v : values) {

v = coordMap[v];
}

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Table of Contents 77

1 Admin

2 Classes

3 Assessment

4 Competitions and Practice

5 Solving Problems

6 Time Limit

7 Greedy Algorithms

8 Linear Sweep

9 Binary Search

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Binary Search 78

Surprisingly powerful technique!
You should have seen binary search in the context of
searching an array before.
For us, the power comes from binary searching on
non-obvious functions instead.
Key problem: Given a monotone function, find the
largest/smallest x such that f(x) is less than/greater
than/equal to/... y.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Binary Search Implementation 79

Hands up if you’ve ever messed up a binary search
implementation.
I think binary search is notorious for having annoying
off-by-1s and possible infinite loops.
Many ways to implement so pick one you’re confident you
can code with no thought. I’ll present the one I use which
I find avoids all these annoying corner cases.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Binary Search Implementation 80

#include <bits/stdc++.h>
using namespace std;

// Find the smallest X such that f(X) is true;
int binarysearch(function <bool(int)> f) {

int lo = 0;
int hi = 100000;
int bestSoFar = -1;
// Range [lo, hi];
while (lo <= hi) {

int mid = (lo + hi) / 2;
if (f(mid)) {

bestSoFar = mid;
hi = mid - 1;

} else {
lo = mid + 1;

}
}
return bestSoFar;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Decision Problems and Optimisation Problems 81

Decision problems are of the form
Given some parameters including X, can you ...

Optimisation problems are of the form:
What is the smallest X for which you can ...

An optimisation problem is typically much harder than the
corresponding decision problem, because there are many
more choices
Can we reduce (some) optimisation problems to decision
problems?

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Discrete Binary Search 82

Let f(X) be the outcome of the decision problem for a
given X, so f is an integer valued function with range
{0, 1}.
It is sometimes (but not always) the case in such problems
that increasing X does not make it any harder for the
condition to hold (i.e: that if the condition holds with X
then it also holds with X + 1).
Thus f is all 0’s up to the first 1, after which it is all 1’s.
This is a monotonic function, so we can use binary search!
This technique of binary searching the answer, that is,
finding the smallest X such that f(X) = 1 using binary
search, is often called discrete binary search.
Overhead is just a factor of O(logA) where A is the range
of possible answers.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Gravy Surprise 83

Problem Statement: You have a bar of chocolate with N
squares, each square has a tastiness ti. You have K
friends. Break the bar into K contiguous pieces. The
overall happiness of the group is the minimum total
tastiness of any of these K pieces. What’s the maximum
overall happiness you can achieve?
Input Format: First line, 2 integers, N,K with
1 ≤ K ≤ N ≤ 1, 000, 000. The next line will contain N
integers, ti, the tastiness of the ith piece. For all i,
1 ≤ i ≤ 100, 000.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Gravy Surprise 84

Sample Input:
5 2
9 7 3 7 4
Sample Output:
14
Explanation: Break the bar into the first 2 squares and
the last 3 squares.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Gravy Surprise 85

It is worth trying to approach the minimization problem
directly, just to appreciate the difficulty.
The problem is there’s no greedy choices you can make.
It’s impossible to determine where the first cut should end.
You can try a DP but the state space is large.
We are asked to maximize the minimum sum of the K
pieces.
Let’s turn this into asking about a decision problem.
Define b(X) to be True iff we can split the bar into K
pieces, each with sum at least X.
Then the problem is asking for the largest X such that
b(X) is True.
Note: We define it to be at least X. This makes it
monotone. If we instead defined it as exactly X then the
function is too messy to be useful.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Gravy Surprise 86

Rephrased Problem: Define b(X) to be True iff we can
split the bar into K pieces, each with sum at least X.
What is the largest X such that b(X) is True?
Key(and trivial) Observation: b(X) is non-increasing.
So we can binary search over b(X). Hence to find the
maximum such X, it suffices to be able to calculate b(X)
quickly.
New Problem: Can I split the bar into K pieces, each
with sum at least A?

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Gravy Surprise 87

New Problem: Can I split the bar into K pieces, each
with sum at least A?
Note that we can rephrase this into a maximization
question. Given each piece has sum at least A, what is the
maximum number of pieces I can split the bar into?
Let’s try going one piece at a time. What should the first
piece look like?
Key Observation: It should be the minimum length
possible while having total ≥ A.
This applies for all the pieces.
So to get the maximum number of pieces needed, we
sweep left to right making each piece as short as possible.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Gravy Surprise 88

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 1000000;
int N, K; long long bar[MAXN];

bool canDo(long long A) {
long long cPiece = 0;
int nPieces = 0;
for (int i = 0; i < N; i++) {

cPiece += bar[i];
if (cPiece >= A) {

nPieces++;
cPiece = 0;

}
}
return nPieces >= K;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Gravy Surprise 89

int main() {
scanf("%d %d", &N, &K);
for (int i = 0; i < N; i++) scanf("%lld", &bar[i]);
long long lo = 1;
long long hi = 1e12;
long long ans = -1;
while (lo <= hi) {

long long mid = (lo + hi) / 2;
// Trying to find the highest value that is feasible:
if (canDo(mid)) {

ans = mid;
lo = mid + 1;

} else {
hi = mid - 1;

}
}
printf("%lld\n", ans);

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Binary Search 90

Complexity? O(N logA) where A is max answer.
This problem and solution is very typical of binary search
problems.
To start with, you are asked to maximize a value.
But we can rephrase it into maximizing a value that
satisfies a decision problem! In forming the decision
problem, you ask if the answer could be at least A, not
just exactly A.
Now with the minimum tastiness of each bar fixed, you
now switch to trying to maximize the number of pieces
you can make. And this can be greedied since we know
how small we can make each piece.
Notice why fixing A made the problem easier. Because we
had one less parameter influencing our choices and we
could make greedy decisions now.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Binary Search 91

One of the most common places binary search appears is
in problems that ask us to maximize the minimum of
something (or minimize the maximum of something).
Another way to see if it’s useful is just to see if the
quantity you are minimizing is monotone.
And this is very common! Usually, you are told to minimize
a value because the problem only gets easier if it increases.
Until you get the hang of it, it’s worth just always trying
to apply it.
At worst, the decision problem can’t be any harder than
the optimization problem (though it may lead you down a
dead end).

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Aside: Ternary Search 92

Ternary search also exists. It applies to finding the
maximum of a function that strictly increases to a peak,
stays the same, then strictly decreases. Note the strictlys.
Instead of splitting the range in 2, we instead now split it
into 3 by querying 2 points. At each step we discard one
of the thirds based on comparison of the 2 points.
Alternatively, we can usually binary search the derivative.
Usually this is the discrete form of the derivative (binary
search on h(x) := f(x + 1)− f(x)).
Appears much less often so won’t talk about it more but it
is a useful thing to know exists.
Exercise left to the reader to figure it out!

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 93

Problem Statement: You have just created a robot that
will revolutionize RoboCup forever. Well 1D RoboCup at
least.
The robot starts at position 0 on a line and can perform
three types of moves:

L: Move left by 1 position.
R: Move right by 1 position.
S: Stand still.

Currently the robot already has a loaded sequence of
instructions.
You need to get the robot to position X. To do so, you
can replace a single contiguous subarray of the robot’s
instructions. What is the shortest subarray you can replace
to get the robot to position X?

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 94

Input Format: First line, 2 integers, N,X, the length of
the loaded sequence and the destination.
1 ≤ |X| ≤ N ≤ 200, 000. The next line describes the
loaded sequence.
Sample Input:
5 -4
LRRLR
Sample Output:
4
Explanation: You can replace the last 4 instructions to
get the sequence LLLLS.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 95

How would one do the problem directly?
There is an O(N2) by trying all subsegments but we can’t
do better if we need to try all subsegments.
Okay, well we can try binary searching now. How?
Key Observation: If we can redirect the robot correctly
by replacing M instructions, then we can also do so by
replacing M + 1 instructions. Why?
Let’s turn this into a decision problem. b(M) is true if...?

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 96

b(M) is true if we can correctly redirect the robot by
replacing a subsegment of size M.
We need to do this in around O(N) now. How? It’s worth
considering how to do it in O(1) if I tell you exactly what
subsegment to replace.
Reduces to, given a list of N − M instructions, can I add
M more instructions to get the robot to position X.

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 97

Key Observation: In M instructions, the robot can move
to every square within distance M.
So we are reduced to finding if there is a subsegment of
size M such that its removal leaves the robot within
distance M of X.
Now we just need to find where the robot is after the
removal of each subsegment of size M.
For this, we precompute a cumulative sum array from the
front and back, where L is −1, S is 0 and R is 1.
Then the position of the robot after removing the segment
[L, L + M) is sum[0,..,L-1] + sum[L+M,..,N-1].

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 98

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 200000;
int N, X;
char moves[MAXN+5];
// cumFront[i] = sum moves[1..i]
int cumFront[MAXN+5];
// cumBack[i] = sum moves[i..N]
int cumBack[MAXN+5];

void precomp() {
vector <int> moveDeltas(N+5, 0);
for (int i = 1; i <= N; i++) {

if (moves[i] == 'L') moveDeltas[i] = -1;
if (moves[i] == 'S') moveDeltas[i] = 0;
if (moves[i] == 'R') moveDeltas[i] = 1;

}
for (int i = 1; i <= N; i++)

cumFront[i] = cumFront[i-1] + moveDeltas[i];
for (int i = N; i >= 1; i--)

cumBack[i] = cumBack[i+1] + moveDeltas[i];
}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 99

bool canDo(int A) {
for (int i = 1; i+A-1 <= N; i++) {

// try replacing [i, i+A-1]
int posAfterCut = cumFront[i-1] + cumBack[i+A];
if (abs(posAfterCut - X) <= A) return true;

}
return false;

}

int main() {
scanf("%d %d", &N, &X);
for (int i = 1; i <= N; i++) scanf(" %c", &moves[i]);
precomp();
int lo = 0;
int hi = N;
int ans = -1;
while (lo <= hi) {

int mid = (lo + hi) / 2;
// Trying to find the lowest value that is feasible:
if (canDo(mid)) {

ans = mid;
hi = mid - 1;

} else {
lo = mid + 1;

}
}
printf("%d\n", ans);
return 0;

}

Introduction

Admin

Classes

Assessment

Competitions
and Practice

Solving
Problems

Time Limit

Greedy
Algorithms

Linear Sweep

Binary Search

Example: Robot Moves 100

Complexity: O(N logN).
Hopefully you can see the similarities between this
example and the earlier example.
Again, we started with a problem where approaching it
directly was too slow.
But the problem naturally could be rephrased as finding
the minimum M such that a decision problem b(M) was
true.
So from that point onwards we only consider the decision
problem.
This still required some work but was more direct. The
idea of trying all subsegments of length M is relatively
straight forward. From that point on it was just trying to
optimize this problem with data structures.

	Admin
	Classes
	Assessment
	Competitions and Practice
	Solving Problems
	Time Limit
	Greedy Algorithms
	Linear Sweep
	Binary Search

